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Abstract. - We theoretically study the behaviour of vesicles filled with a liquid of higher density 
than the surrounding medium, a technique frequently used in experiments. In  the presence of 
gravity, these vesicles sink to the bottom of the container, and eventually adhere even on 
non-attractive substrates. The strong size dependence of the gravitational energy makes large 
parts of the phase diagram accessible to experiments even for small density differences. For 
relatively large volume, non-swdsymmetric bound shapes are explicitly calculated and shown to 
be stable. Osmotic deflation of such a vesicle leads back to axisymmetric shapes and, finally, to a 
collapsed state of the vesicle. 

Lipid vesicles are simple models for many membrane-bounded compartments occurring in 
biology, such as cells or transport vesicles [l]. From a physical point of view, they can be 
understood as flexible closed surfaces whose shapes and dynamics are controlled primarily by 
the bending energy. Frequently, however, additional interactions are relevant for a 
particular experimental situation. The interactions of two vesicles have been studied with 
micropipet experiments [2]. Weak adhesion of a single vesicle to a substrate can be used to 
reduce translational and rotational diffusion and thus to facilitate data analysis [3]. In this 
case, one prefers a small contact area, in order to reduce effects exerted by the substrate. In 
other experiments, however, adhering vesicles with a large contact area serve as a model of a 
bound planar membrane whose fluctuations can be analysed [4-61. 

In order to stabilize the vesicle at the bottom of the measurement chamber, a difference in 
density between the fluids inside and outside the vesicle is often employed. Mostly, this is 
done by solvation of different sugars with equal osmolarity, but different specific weights [3]. 
However, while bending and adhesion energies have been taken into account, gravitational 
energies have so far been neglected in the analysis of experiments [4,3]. We will show that 
this is not justified even for the small density differences usually employed. 

A simple scaling argument reveals that the contribution of the gravitational energy cannot 
be neglected for large vesicles: Whereas the curvature energy is scale invariant [7], adhesion 
energies behave as Fadh a Ri .  However, the gravitational energy scales as FvaV 0: R$, 
because it is proportional to  the volume multiplied with the height of the centre of mass of the 
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vesicle above the substrate. Here, Ro ( A / ( ~ x ) ) ’ / ~  is the radius of a sphere with the same 
area, which sets the length scale. The energy scale is set by the bending rigidity, K, of the 
membrane. We introduce the dimensionless gravity parameter 

where go = 9.81 m s - ~  is the acceleration of gravity and Ae denotes the density difference 
between the fluids inside and outside the vesicle. Typical values for the latter are around 
0.01 . . . 0.1 g i.e. a few per cent of the density of water. Giant vesicles can reach a size of 
Ro = (5-50) pm. With K = lO-”J 25kB T,  one obtains values of 0.5-5. lo4 for g. Thus, for 
giant vesicles, the gravitational energy can be varied over a large range and may be of the 
same order of magnitude as the curvature energy. 

Previous work has successfully explained the observed shapes of freely floating giant 
vesicles in solution by calculating shapes of minimal bending energy with given con- 
straints [7-111. The membrane-substrate interaction for vesicle adhesion was modelled by a 
contact energy W [E] ,  which is justified on a macroscopic scale since the range of most inter- 
actions is orders of magnitude smaller than typical vesicle sizes. Our effective energy, 

(2) F = - dA (C1 + C2 - + g dVZ - WAadh - W’Aseu, 

consists of these energies augmented by gravitational and membrane self-adhesion energies. 
Here, Cl and C2 are the principal curvatures, and CO denotes the spontaneous curvature of the 
membrane. Furthermore, Z denotes the height of a volume element above the substrate, and 
Aadh is the contact area of adhesion at the substrate. The membrane adheres to  itself with a 
contact area Aself and contact energy W’. 

The behaviour for very small and very large gravitational energies may be understood by 
simple arguments. Vesicles filled with a fluid that is only slightly denser than the surrounding 
fluid, i.e. for small g, will always touch the bottom of the measurement chamber but will not 
necessarily form a finite contact area. We will call this state <<pinned. if the vesicle touches the 
wall only in a single point [13]. A contact area of finite size will be formed, as soon as the cost in 
bending energy which is necessary in order to form this area is balanced globally by a gain in 
gravitational energy. In the axisymmetric case, C1 will denote the principal curvature along the 
contour. The criterion for the transition from the pinned state to a bound state then follows 
from the local boundary condition at the contact point SI of the contour[12] as given by 

K 

2 

where w = W R ~ / K .  For vanishing adhesion energy, ie. w = 0, this condition becomes 
C1 (&) = 0. Then, the continuous adhesion transition between the pinned state and a bound 
state with finite contact area happens, when g reaches a critical value where the vesicle is 
deformed into a shape which has vanishing mean curvature at  the contact point. Varying w 
yields a whole line of adhesion transitions at g = gadh (w). Numerically, we find gadh (w = 0) = 
= 0. 45 for CO = 0 without volume constraint. Forg = 0, adhesion happens at  w = 2 induced just 
by the contact potential [121. 

The behaviour for large g is different from the large-w limit. In the latter limit, the 
bending energy may be neglected, and the vesicles will attain the shape of maximal contact 
area for given constraints, which is a spherical cap with a finite contact angle determined by 
the Young-Dupr6 equation[l2]. In the limit of high gravitational energy, bending is also 
irrelevant, but now-given that the volume is fured-the shape of least energy is that of a flat 



M. KRAUS et al.: GRAVITY-INDUCED SHAPE TRANSFORMATIONS OF VESICLES 433 

disc, as can be seen from an expansion of the gravitational energy as a function of the reduced 
volume, v 

We now want to discuss the details of the shape transformations for general g, which 
requires the calculation of shapes and their energies. In order to keep the number of para- 
meters small, we introduce a few simplifications. First, we consider vanishing spontaneous 
curvature, i.e. CO = 0, assuming that the different compositions of the solutions do not affect 
the symmetry of the bilayer. Second, we will focus on w = 0 for the membrane-substrate 
adhesion and w ’ = 0 for the membrane self-adhesion contact energies (2). The case with w Z 0 
and w ’ f 0 will be discussed in more detail in another publication [14]. hisymmetric shapes 
can be calculated numerically by solving the Euler-Lagrange equations resulting from eq. (2) 
with appropriate boundary conditions [lo, 141. A simple argument, however, shows that 
non-axisymmetric shapes are also relevant. 

For large reduced volume, i.e. for shapes close to a sphere, free prolate vesicles have 
smaller energy than the corresponding discocytes [lo]. When these shapes adhere under 
gravity, they will orient their long axis parallel to the wall. For any finite g, the vesicle will be 
flattened, thus giving rise to non-axisymmetric shapes. In order to conserve volume, the 
asphericity in the plane parallel to the wall has to be reduced. A s  discussed above, we expect 
the limit shapes for large density difference to be axisymmetric with the symmetry axis 
perpendicular to  the wall. In general, such an axisymmetric shape should be reached 
asymptotically for large g. In addition, we expect a discontinuous shape transition between 
adhering discocytes and non-axisymmetric prolates for small g and v b 0.65, since the free 
vesicle with CO = 0 exhibits a discontinuous transition between discocytes and prolates at 
w = 0.65 [lo]. 

In order to calculate the energy of these non-axisymmetric shapes a numerical method can 
be employed, which minimizes the discretized curvature energy of a triangulated surface 
subject to given constraints. We have used Brakke’s Surface Evolver [15] program, which 
also allows incorporation of the gravitational energy easily. Since numerical minimization for 
a hard-wall constraint is more problematic than for a soft wall, we have used the latter by 
exposing the vesicle to the additional potential Vw (2) = Vow exp [ - Z/Zo I, with V,, /K = 5 and 
Zo/Ro = 0.1, which leads to a numerically stable algorithm and induces only minor 
deformation of the vesicle shape. 

The Surface Evolver data shown in fig. 1 indicate a ~&icritical>> point at  v = v, = 0.88. 
Hysteresis effects indicating a discontinuous transition are found only a t  v < v,. In the limit 
of small g, the limit of metastability for the discocytes at w = 0.75 coincides with the results of 
an explicit stability analysis for free vesicles [16]. At the spinodals, the energy difference 
between the unstable and the stable shape is of the order of several kB T; e.g., at v = 0.7, 
g = 11, the energy of the prolates is 1 . 5 0 ~  = 3 5 k ~  T above the energy of the stable discocytes. 

In the limit v SJ 1, i.e. close to the sphere, we have also calculated non-axisymmetric 
shapes using two simple approximations, whose results c o n f m  the Evolver data and the 
existence of a continuous transition in this regime. In the first approach, we expand the 
curvature energy and geometrical quantities such as area, volume and centre of mass in 
spherical harmonics up to 1 = 2 along the lines of ref. [17]. The influence of gravity is 
computed under the assumption of ellipsoidal shapes, so that this method is only useful for 

V/(4R,3/3n), for small volumes (l). 

(l) The shape of a vesicle for large g can be approximated by a .coin>>-shaped flat disc of f i e d  area 
A = 4nRt. Denoting the gravitational part of its free energy by F,,, we obtain FCav/Kg = 4/9nv2 + 
+ @/27nv3 + 4/27nv4 + . , . . This is lower than the result FPav / K g  = 32/27nv2 + 64/729nv4 + . . . for 
the analogous spherical cap. 

(2) Strictly speaking, the vesicle has non-adhesive contact with the substrate in the case w = 0. 
Keeping the generalization to w z 0 in mind, we will also call this case <<adhesion>>. 
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Fig. 1. - Phase diagram for adhering vesicles as a function of gravitational parameter, g, and reduced 
volume, v. Non-axisymmetric shapes and the large-volume transition are computed using the Surface 
Evolver program, while axisymmetric shapes are solutions of the Euler-Lagrange equations with w = 
= 0. The transition g * (v) between the non-axisymmetric prolates and the discocytes is discontinuous for 
v < vtr = 0.88 (full line) and continuous for v > vtr (dashed) separated by a tricritical point (black dot). 
For the discontinuous transition, the limit curves of metastable states or spinodals are shown in the 
figure by dashed lines. At g S 1 there is an additional transition from <<pinned. vesicles to those adhering 
in a finite area; the transition line is not shown. On the small-v side of the phase diagram, collapsed 
shapes become relevant. 

volumes v b 0.98. In the second approach, we consider the restricted set of shapes generated 
by ellipsoids deformed by special conformal transformations [ 181. Calculation of both 
curvature and gravitational energies is now exact, but smaller-volume shapes are not very 
well described by the restricted variation. Both approximations predict a continuous sym- 
metry-breaking transition at  finite g, and give an approximation for the transition line g * (v), 
but fail to produce the tricritical point necessary to change to a discontinuous transition at 
smaller volumes. At v = 1, however, both methods predict that g* (v) goes to zero. We 
conclude that for large v and intermediate g there are no stable adhering prolates. 

For the general case of non-zero spontaneous curvature, the phase diagram becomes more 
complex [14]. The trends, however, can be understood in analogy to the effect of spontaneous 
curvature on free vesicles [ 101. Negative CO stabilizes bound discocytes and stomatocytes, 
while positive CO stabilizes bound prolates, and, finally, pears and budded shapes. If one ex- 
pands the shapes for g # 0 around the shapes at  g = 0, one finds that the amplitudes of the de- 
formation depend linearly on g. The prefactors, however, are a non-monotonic function of Co. 

For small v, new phenomena occur: i) stomatocytes enter the phase diagram; ii) the 
self-avoidance of the membrane has to be taken into account. Free discocytes with CO = 0 
self-intersect at their symmetry axis for v = 0.515 [lo], while adhering discocytes self- 
intersect for v between 0.4 and 0.5, depending on g and W. The physical shapes for even 
smaller volumes involve membrane self-adhesion (shapes, which we denote as <<collapsed. in 
fig. 1) even if there is no explicit membrane self-adhesion energy. For vanishing or small 
self-adhesion energy, the cost in bending energy for forming a finite self-adhesion area is high 
at  the contact point, and there is a region of {cself-pinned. shapes in the phase diagram. If the 
self-adhesion energy is large, the possibility of a frst-order collapse transition arises. A shape 
sequence involving such a collapse transition as generated by osmotic deflation (see below) is 
shown in fig. 2. 

For g = 0 and reduced volume v < 0.45, adhering stomatocytes are stable when the 
adhesion energy, w, exceeds a critical threshold value [E].  As these shapes rise higher above 
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the substrate than the discocytes of equal volume, they will not be stable for large g .  With 
increasing g ,  adhering stomatocytes redistribute their volume towards the substrate. As a 
consequence, the neck at  the top of the vesicle closes. For all membrane self-adhesion 
energies w ' > 0, we find a discontinuous self-adhesion transition. At the top of the vesicle, a 
finite area around the infinitesimal neck then sticks together. The detailed order and 
sequence of the transitions between collapsed and non-collapsed, free and adhering 
stomatocytes/discocytes in the small-volume regime depends crucially on the values of w and 
w' and will be discussed elsewhere[14]. The energy diagram and shape sequence of a 
trajectory with futed g is shown in fig.3. The phase diagram might involve even more 
complicated shapes such as self-adhering non-axisymmetric shapes or shapes that self-adhere 
in more than one place. This should be kept in mind when one tries to understand the 
conformation of swollen lipid and vesicle-like structures emerging near a substrate. Many 
conformations formerly ascribed to defects in the membrane might be stable states of pure 
lipid membranes involving self-adhesion. 

There are several possibilities for experimentally scanning the phase diagram with a 
single vesicle. Raising the temperature will expand the membrane much more than the liquid. 
In this case, the actual volume and the density difference remain constant, but the reduced 
volume, U, will decrease, while g will increase because of its dependence on Ro. A trajectory 
starting at  a point (9 ,  v) = ( g , ,  v,) will thus continue as g(v) = g , ( ~ , / v ) ~ / ~ .  

Alternatively, one may vary the volume by exchanging the sugar concentration, X,, , of the 
exterior fluid, while keeping the number of dissolved osmotically active particles inside the 
vesicle, Ni, = Win, constant. The volume will then adjust in such a way that the osmotic pres- 

Fig. 2.  - Sequence of shapes for collapse transition of discocytes. Shapes are taken from a typical 
osmotic trajectory generated by varying the sugar content of the exterior fluid (eq. (4)). Parameters 
approximately matching a typical experimental situation [41 with Ro = 5 pm and concentrations of the 
order 100 mM sucrose or glucose are: w = w ' = 0, Ni, = lo", g0Romh /K = lo-", me, = 0.5min, 
X,,R; = 4.3. lo-'' (1)) 4.8. lo-'' (2) ) ,  and 6.3. lo-'' (3)), leading to volumes w = 0.555 (l)), w = 0.500 (2)), 
and w = 0.379 (3)), respectively. 
Fig. 3. - Energy F for adhering vesicles a t  g = 2, w = 0, and w' = 0.05 as a function of the reduced 
volume, w. Note that lines of constant F are shown diagonally and are not orthogonal to lines of constant 
'U. Stable shapes for the various volumes and their transition lines (dashed) are shown in the lower part. 
All shapes adhere to the substrate. The non-axisymmetric shapes have been calculated only at the 
marked points. 



436 EUROPHYSICS LETTERS 

sure, n= kB T ( X ,  - Ni, /V>, vanishes up to a negligible contribution of the order of K/R$. In 
this case, an increase in the sugar content of the exterior fluid will raise i) the density of the 
exterior fluid directly, and ii) the density of the fluid enclosed in the vesicle by osmotically re- 
ducing its volume. The change of g with X, thus depends on experimental details. If mh, ex de- 
notes the molecular masses of the sugars inside and outside the vesicle, one obtains 

in the limit of small l7. Even the sign of the response of the density difference to the increase 
in sugar concentration, 3g/3Xex, depends on the types of sugars and the other osmotically 
active substances involved. It vanishes for m,, = ma. A trajectory starting at  a point (g, , v,) 
will continue as g(v) = g,(w,/v). Alternatively, one may vary only the density difference by 
exchanging sugars of different molecular weights in the exterior fluid, while keeping X,, and 
the volume constant. 

In conclusion, we have shown that additional energies are necessary for an experimentally 
realistic description of adhering vesicles. Gravity leads to non-&symmetric shapes, which 
show continuous transitions to axisymmetric large-g shapes. For small volumes, the 
self-avoidance of the membrane and the associated self-adhesion energy lead to a large 
variety of <<collapsed)> shapes. By osmotic deflation or exchange of sugars it is possible to 
study these transitions with a single vesicle. 

* * *  
Stimulating discussions with F. JULICHER and W. WINTZ are gratefully acknowledged. We 

also thank H. G. DOBEREINER, W. FENZL, J. RXDLER and E. SACKMANN for sharing their 
knowledge on the experimental aspects of this work with us, and K. BRAKKF: for help with 
Surface Evolver. 

R E F E R E N C E S  

[l] LIPOWSKY R. and SACKMA" E., Structure and Dynamics of Membranes, Handbook of Biological 

[2] EVANS E., CoZZoids Sur$, 43 (1990) 327. 
[3] DOBEREINER H.-G., PhD thesis, Simon Fraser University, Burnaby, Canada (1995). 
[4] R ~ L E R  J. and SACKMA" E., J. Phys. 11, 3 (1993) 727; R ~ L E R  J., FEDER T., STREY H. and 

[5] KRAUS M. and SEIFERT U., J. Phys. ZI, 4 (1994) 1117. 
[6] SEIFERT U,, Phys. Rev. Lett., 74 (1995) 5060. 
[7] HELFRICH W., 2. Naturforsch. C, 28 (1973) 693. 
[8] DEULING H. and HELFRICH W., J. Phys. (Paris), 37 (1976) 1335. 
[9] SVETINA S. and ZEKS B., Eur. Biophys. J., 17 (1989) 101. 

Physics, Vol. 1 (Elsevier Science, Amsterdam) 1995. 

SACKMA" E., Phys. Rev. E ,  51 (1995) 4526. 

[lo] SEIFERT U., BERNDL K. and LIPOWSKY R., Phys. Rev. A, 44 (1991) 1182. 
[ l l ]  MIAO L., SEIFERT U,, WORTIS M. and DOBEREINER H.-G., Phys. Rev. E,  49 (1994) 5389. 
[12] SEIFERT U. and LIPOWSKY R., Phys. Rev. A, 42 (1990) 4768; LIPOWSKY R. and SEIFERT U., 

[13] SEIFERT U., Phys. Rev. A, 43 (1991) 6803. 
[14] KRAUS M., SEIFERT U. and LIPOWSKY R., to be published. 
[15] BRAKKE K., Exper. Math., 1 (1992) 141. The Surface Evolver program is public domain and 

obtainable via anonymous ftp from geom.umn.edu in the /pub/software/evolver directory. 
[16] NIKOLIC M., SEIFERT U., WINTZ W. and WORTIS M., submitted to Phys. Rev. E. 
[17] MILNER S. and SAFRAN S., Phys. Rev. A, 36 (1987) 4371. 
[18] SEIFERT U,, J. Phys. A, 24 (1991) L573. 

Langmuir, 7 (1991) 1867. 


