VOLUME 79, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ©TOBER 1997

Driven Ratchets with Disordered Tracks
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The stochastic motion of ratchets is studied in the context of driven or pumped two-state models.
For completely ordered tracks, the ratchets can be characterized both by an effective drift velocity
and an effective diffusion coefficient on large scales. These properties are strongly perturbed by the
presence of frozen disorder or defects along the tracks. Depending on the defect concentration and
on the transition rates between the two states, the ratchets now exhibit several scaling regimes with
anomalous transport properties. [S0031-9007(97)04225-7]

PACS numbers: 05.40.+j, 05.70.Ln, 87.10.+e

Ratchets are model systems for nonequilibrium trans- To proceed, we will consider a particle which moves
port based on the rectification of thermal fluctuations.along a one-dimensional track with coordinateand
This rectification can arise from chemical reactions as enwhich has two internal states, its ground state 1 and
visaged in the classical work on muscle contraction [1]its excited state 2. It is coupled to another energy
or if different parts of the ratchet are at different (effec- producing process (such as a chemical reaction) which
tive) temperatures [2]. Recently, new experimental resultinduces transitions from its ground state to its excited
on motor proteins [3] have stimulated a lot of theoreticalstate with frequencw; and transitions back to its ground
work on such ratchets [4—9]. In addition, ratchets havestate with frequency;. Depending on its internal state,
also been discussed theoretically as models for intracelluhe particle is subject to two different external potentials
lar energy transduction via protrusive forces [10], and arti-/; (x) and U, (x) which have a microscopic range denoted
ficial ratchets have been constructed experimentally usingy a. The particle motion is overdamped with frictional
microstructured electrodes [11] and optical tweezers [12]coefficientf in both states, and its surroundings have the

Most of this work was concerned with single-particle ambient temperaturé (measured in energy units, i.e., the
ratchets. Such a ratchet has the following basic feature®oltzmann factor has been absorbed into the syriifol
(i) It consists of a “particle” which can move along a one- The basic dynamical quantities for this stochastic
dimensional “track” where it is subject to a spatially asym-system are the distribution functioms (x, r) and P»(x, t)
metric potential. The average potential is flat, howeverwhich describe the probabilities at time that the
and there is no average force acting on the particle. (iiparticle has reached the location and is in states 1
The particle can overcome the barriers of the potentiahnd 2, respectively. These guantities are governed by a
via thermally excited fluctuations. (iii) The particle also generalized Fokker-Planck equation which we write in
feels a time-dependent external driving force or pumpinghe compact form
mechanism which acts to rectify these thermal fluctuations. d R . . P,

In all previous work on single-particle ratchets, the Py [F + QJP, withP = <P2>' (1)
asymmetric potential was taken to be periodic in space oL )
corresponding to a completely ordered track. In contrastl"€ Fokker-Planck operator” is diagonal with [13]
we will consider tracks which contain a certain amountaa = (1/f)(8/dx) (dUa/dx + Td/dx) for a = 1,2;
of frozendisorderor defectsand study the effects of this the transition operataf) has the matrix elemen@;, =
disorder on the transport properties of the ratchet. In order €1 = _921 and{};, = W] =__QZ2- ]
to illustrate our results, we will explicitly discuss ratchets 1he basic length scale is given by the potential range
with sawtooth potentials for which the defects correspond: the basic energy scale by the thermal egdrgymd the
to reversed sawteeth as shown in Fig. 1. basic time scale may be defined hy = fa*/T. Thus,

It will be shown below that defects act to reduce thelf l€ngth, energy, and time are measured in units of these
efficiency of the ratchets and that this efficiency loss has
two general and nontrivial features: (i) The motion of the
ratchets is most sensitive to the frozen disorder if it oper-
ates in the “resonance regime,” i.e., in the regime where
it is most effective in the absence of disorder, and (ii) de-
pending on the defect concentration, the ratchets eXthEIG. 1. Asymmetric sawtooth potential with one defect corre-

several Sca””,g regimes With_ anomalous diffusion andlogponding to a reversed sawtooth. Each sawtooth is character-
anomalous drift. These regimes should be accessible {ged by its height. and the two length scales anda, with

experiments on natural or artificial ratchets. perioda = a; + a,.
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basic scales, the behavior of the ratchet depends only (i) This iterative procedure may be applied, in general,
on the reduced potentiald /T and (ii) on the reduced to any two-state model as defined by (1) as long as the
transition ratesv .. potentials and the transition rates are periodi¢.inTo be
For periodic potentials, i.e., in the absence of frozerexplicit, we will consider models for whiclV; is given
disorder, the steady states of the above ratchet modbly an asymmetric sawtooth potentidl, = 0, and the
have been previously studied in some detail [7,8]. Intransition rates do not depend on
the steady state, one finds periodic distributions and a In order to simplify the following discussion, the tran-
time-independent current. Now, we will first d@eyond  sition ratesw; and w; are now taken to be identical and
this steady state analysis and consider the motion adenoted byw. In Fig. 2, we display the behavior af,
a particle which is initially described by a localized and D, for a sawtooth potential with/./T = 10 and
distribution. Numerical integration of the generalizeda,/a; = 4 as a function of the transition rai® which
Fokker-Planck equation (1) with periodic potentials showsvaries over several orders of magnitude. In this figure,
that such a localized distribution evolves with time into athe solid lines and the circles represent the results of our
broad distribution which is modulated on the scale of thdterative procedure and of the direct numerical integration
potential periodz. After some initial transient behavior, of the Fokker-Planck equation (1), respectively; the bro-
the width of this distribution is large compared to  ken lines correspond to the asymptotic behavior for small
In fact, one may introduce a coarse-grained probabilityand for largew as calculated analytically [15]. Inspec-
distribution, denoted byP, which behaves like a Gaussian tion of Fig. 2 shows that the iterative procedure described
wave packet with effective drift velocity, and effective above is very accurate for all values of
diffusion coefficient Dy, and which thus satisfies the  The drift velocityv, exhibits a resonance regime close

effective Fokker-Planck equation to its maximum at the intermediate frequeney= w;.
9 9 9 When the particle is excited from its ground state in this
Pr <—v0 + Dy £>T' (2)  regime, it spends just enough time in the excited state

so that it can diffuse beyond the nearest potential barrier
The two parameters, andD, which enter in (2) can be but not beyond the next-nearest one. The corresponding
determined from the following asymptotic expansion [14].diffusion time #; = fa%/T = (a1/a)*t, which leads to
First, the probabilityP = (P;, P») is expanded according the estimatey; = (a/ay)t .
to In order to introduce frozen disorder, it is convenient
to consider a discrete mesh with lattice sitésand
P(x,1) = Z p" X)< )"T(X/)\ 1), (3) Ilattice constant. The coarse-grained probabilif§ then
satisfies
where the expansion parameter is giveruy. In zeroth
order of this expansion, one finds that
+ hiv1i Py, (8)

[F+Qp? =0, 4)
which, together with an appropriate normalization con-Which is the discrete analog of (2) where the hopping
©) (0 rates are given byh; ;.1 = hexpA/2) and h;jy; =
hexp(—A/2) with A = avo/Do andh = Dy/a? [16].

dition, determinep©® = (p; , p> ). The effective drift
velocity is then given by Now let us introduce frozen disorder in the form of

0P /ot = hi—1; Py — (hij—1 + hijir1)P

1 [ du in Fi ithi ‘
vo = — dx{ 1 (0)( )+ (4% (0)( )} (5) reversed sawteeth as in Fig. 1. Within the effective
f dx
This zeroth order result is equivalent to the results as
obtained previously [7,8] from the steady state analysis. Yo %‘_’7
In the next order of the expansion, the coefficipht 08 0.6
which enters in (3) is determined from the inhomogeneous o 0.5
equation 04
0.4 / S .
1 dU, T 9 \ 0.3
F+ Q) = + v +2—— |p? (6 02 \
with @ = 1,2. Finally, one may calculate the effective ° i 10 100 1000 ® 1 10 100 1000 @

diffusion coefficient via FIG. 2. The effective drift velocityv, and the effective
T a a diffusion coefficientD, as a function of the transition rate.
1+ —f dx The solid lines and the circles are obtained from the iterative
procedure and from direct integration of (1), respectively. The
dUl 1) 2 (1) broken lines represent the asymptotic behavior for small and for
d 1 (x) + (x) (7) large w. The length and time scales are given in units of the
X potential periodz and the time scale. = fa’/T, respectively.
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hopping model as given by (8), such a defect corresponds 0.5 . :
to an interchange of the corresponding hopping rates. a :
Thus, one now hasandomhopping rates 04 /
hi,,'+1 = heS’A/z and hi+1,i = heiS'A/z, (9) 03} I i

where the random variable; has the valuess; = 1 I I
and s; = —1 for a normal and a reversed sawtooth, 0.2
respectively. 0.1 I

For intermediate frequencies = i, one jump in the |
effective hopping model represents the combination of 0 (a) .
one upwards transition and one downwards transition in v (b) ! D
order to overcome the nearest potential barrier and of i 8
the order ofz./f; = (a/a;)* transitions as the particle 0.15 t '
slides down towards the minimum beyond this barrier. 3 D i6
For large and for smallw, on the other hand, the 0.1t ;'
relation between the effective hopping model and the ! Y 4
original two-state model is somewhat different: (i) For 0.05 | _,.i' \
large o, the particle in the two-state model undergoes | ‘D ] 2
many transitions between its ground state and its excited )

state before it can diffuse beyond the nearest potential ' ' : '
barrier. In the hopping model, this is described by a 01 1 10 w100 1000

single jump with an appropriate hopping rate, and (i forFIG 3. (a) Phase diagram for driven ratchet with frozen
small , the particle in its excited state can diffuse disorder as a function of the transition rawe and the

beyond several potential barriers before it falls back tQjefect concentration;, and (b) reentrant behavior for the
its ground state. These events are likely to occur ifeffective drift velocityv (full lines) and the effective diffusion
the diffusion time exceeds, = [(a; + a)/a*t;, i.e., coefficientD (dot-dashed lines) as a function of the transition
forw < wy = [a;1/(a; + a)w,. Inthe hopping model, rate » for fixed ¢ = % _The numerical values on the left and
such an event is described by several subsequent jumps i the right vertical axis correspond toand D, respectively.
the same direction. Therefore, far < ws, the particle ' "¢ units are as in Fig. 2.
can overcome a reversed sawtooth in the two-state model
just because it stays in the excited state for a sufficientlgxact results for random hopping models [18,19] imply
long time whereas it will always encounter the reversed?(r) ~ 7~ *#) with u = In(g~" — 1)/A.
sawtooth in the hopping model. This indicates that the As long as the waiting time distributioR(7) decays
latter model leads to anverestimateof the influence of sufficiently fast, the momentér”) are finite for small
the reversed sawtooth for small < w,. We will show, n. Indeed, forP(r) ~ 7~(*#) the mean waiting time
however, that this influence becomes small for smaall (7) is finite for the decay exponent > 1 and the
even within the hopping model. Therefore, the samesecond momen{r?) is finite for w > 2. This already
behavior should apply, at least qualitatively, to the two-indicates that one has anomalous diffusion fork 2 and
state model as well. anomalous drift forw < 1 as confirmed by more detailed

It is instructive to study the model as defined by (8)calculations [17,19].
and (9) in the dilute limit of a single defect which consists In the present context, the two phase boundauies 2
of a certain number of reversed sawteeth [14]. One theandu = 1 correspond to the critical defect concentrations
finds that the particle is trapped in front of the defect forq¢ = ¢p and ¢ = ¢, respectively, which are given by
a certain waiting timer until it is able to overcome the ¢gp = 1/[exp2A) + 1] and ¢, = 1/[exp(A) + 1] with
barrier arising from the defect. A = avy/D, as before. Thaw dependence ofy, and

For a finite defect concentration, the frozen disorderD,, compare Fig. 2, now leads t®@ dependent phase
leads to a waiting time distributio®(7) which exhibits  boundaries which separate three different scaling regimes
a power law behavior for large. This can be understood (1), (IlI), and (lll) of the driven ratchet with disorder
from the following scaling argument as reviewed in [17].as shown in Fig. 3(a). The transport behavior in these
If g is the probability to find a reversed sawtooth, thethree regimes can be deduced from known results [19] for
probability P(N) to encounter a defect consisting 8f random hopping models.

such sawteeth is given hy". The waiting timery, on In regime (I) withO0 < ¢ < ¢p, both the effective drift
the other hand, is expected to scaleras~ exp(NA).  velocity v(g) and the effective diffusion coefficiem(q)
It then follows from P(7)dr = P(N)dN that P(r) ~  are finite. Asg is increasedy(q) decreases whil®(q)

r~(F ) with uo = In(1/g)/A. The latter value for the increases monotonically. The latter parameter diverges
decay exponent is correct in the limit of smally since as D(g) ~ 1/l¢ — gp| as ¢ = gp is approached from
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below. In regime (ll), the width of the distribution grows K. Svoboda, C. Schmidt, B. Schnapp, and S. Block,
as~r¥* with 1 < w = In(¢g~! — 1)/A < 2, i.e., faster Nature (London)365, 721 (1993).
than+!'/? with time  but the drift is still characterized by [4] N.J. Cordova, B. Ermentrout, and G.F. Oster, Proc. Natl.

a finite drift velocityv(g). In fact, for the hopping model Acad. Sci. U.S.A89, 339 (1992).
discussed here, the drift velocity is given by [5] S. Leibler and D. A. Huse, J. Cell Biol21, 1357 (1993).

[6] M. Magnasco, Phys. Rev. Leffl, 1477 (1993).
v(q) = volqv — 9)/lqv + q(1 — 2g,)] (10) [7] R. Astumian and M. Bier, Phys. Rev. Let?2, 1766
both in regime (1) and in regime (ll). Thus, as= ¢,

(1994).
! ! i i [8] J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev.
is approached from below, the drift velocity vanishes
asv(g) ~ lg — qul. In regime (Ill) with g, < g < 1,

Lett. 72, 2652 (1994).
[9] F. Julicher and J. Prost, Phys. Rev. Léth, 2618 (1995).
both the drift and the diffusion are anomalous. The[10] C. Peskin, G. Odell, and G. Oster, Biophys.65, 316
mean position of the particle and the width of its (1993); W. Sung and P. Park, Phys. Rev. L&, 783
probability distribution are expected to grow &s with (1996).

w=1In(g7" = 1)/A =In(g™" — 1/In(g,' — 1) < 1.
The behavior of the effective drift velocity and the

effective diffusion coefficientD obtained in this way is

[11] J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature

(London)370, 446 (1994).

[12] L. Faucheux, L. Bourdieu, P. Kaplan, and A. Libchaber,

Phys. Rev. Lett74, 1504 (1995).

shown in Fig. 3(b) as a function of the transition rate[13] see, e.g., H. RiskenThe Fokker-Planck Equation:

o = w; = w) for fixed defect concentration = % The

Methods Of Solution And Applicatior{$pringer-Verlag,

transport is normal for both low and high transition rates Berlin, 1989).

but exhibits the anomalous scaling regimes (11) and (1lI)[14] In the present paper we give a brief summary of our
at intermediate rates. In fact, comparison with Fig. 2 results. The derivation of these results is somewhat
shows that these anomalous regimes appear precisely in  lengthy and will be described elsewhere.

the resonance regime where the ratchet is most effectiid®l For small and for largew, the effective drift velocity
in the absence of disorder [20]. behaves ay ~ w and vy ~ 1/w, respectively. The

In summary, we have shown that driven ratchets are te}:feCtive diffusion coefficient, on the other hand, attains

. o . e constant valueDy = (T/2f){1 + [u/sinh(u)]*} for
quite sensitive to frozen disorder. Even though we small @ and Dy =~ (T/f)[u/2sinhu/2)P for large o
have focused on two-state models, analogous behavior i, , = U./2T.
is expected for all single-particle ratchets. If some[ig] In the effective hopping model, the drift velocity and
biophysical transport process is indeed based on such the diffusion coefficient are given bgah sinh(A/2) and
ratchets, the corresponding tracks have to be highly &2k cosiA/2), respectively, which approaah andDj in
regular and the defect concentratigmust be sufficiently the continuum limit of smalk.
small in order for the ratchets to operate in an efficienf17] J.-P. Bouchaud and A. Georges, Phys. R&p5 127
way. On the other hand, it would be most interesting to _ (1990). _ N
experimentally study the effects of frozen disorder in suc18l ua tklf:;taet?c'ﬁl\(;l.lfgﬂ.%v?%)and F. Spitzer, Compositio
oyt since i i rovide a ol check o 11 - D, 3 st Py 453 (195 D panu

) ) g N. Pottier, and D. Saint-James, J. Phys. (Fraf)399

affect the behavior of ratchets containing large groups of (1989).

interacting particles but this remains to be studied. [20] Numerical simulations of the original two-state model

for defect concentrationg; = 0.05 and ¢ = 0.27 are

in complete agreement with the theoretical predictions
obtained here. Faj = 0.27, the drift velocityv(g) attains

a finite value forw =1 and w = 10 but decays to
zero for @ = 100 as one concludes from a finite size
scaling analysis. The asymptotic valuesudfy) are in fair
agreement with the values as given by (10).

[1] A.F. Huxley, Biophys. Biophys. Chen?, 257 (1957).

[2] R. Feynman, R. Leighton, and M. Sandehe Feynman
Lectures on PhysicfAddison-Wesley, Reading, MA,
1965), Vol. I; R.D. Vale and F. Oosawa, Adv. Biophys.
26, 97 (1990).

[3] See, e.g., J. A. Spudich, Nature (Lond@#8 284 (1990);

2898



