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Thomas Harms and Reinhard Lipowsky
MPI für Kolloid- and Grenzflächenforschung, Kantstrasse 55, D-14513 Teltow-Seehof, Germany

(Received 20 December 1996)

The stochastic motion of ratchets is studied in the context of driven or pumped two-state mode
For completely ordered tracks, the ratchets can be characterized both by an effective drift veloc
and an effective diffusion coefficient on large scales. These properties are strongly perturbed by
presence of frozen disorder or defects along the tracks. Depending on the defect concentration
on the transition rates between the two states, the ratchets now exhibit several scaling regimes w
anomalous transport properties. [S0031-9007(97)04225-7]
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Ratchets are model systems for nonequilibrium tran
port based on the rectification of thermal fluctuation
This rectification can arise from chemical reactions as e
visaged in the classical work on muscle contraction [1
or if different parts of the ratchet are at different (effec
tive) temperatures [2]. Recently, new experimental resu
on motor proteins [3] have stimulated a lot of theoretica
work on such ratchets [4–9]. In addition, ratchets hav
also been discussed theoretically as models for intracel
lar energy transduction via protrusive forces [10], and ar
ficial ratchets have been constructed experimentally usi
microstructured electrodes [11] and optical tweezers [12

Most of this work was concerned with single-particle
ratchets. Such a ratchet has the following basic featur
(i) It consists of a “particle” which can move along a one
dimensional “track” where it is subject to a spatially asym
metric potential. The average potential is flat, howeve
and there is no average force acting on the particle. (
The particle can overcome the barriers of the potent
via thermally excited fluctuations. (iii) The particle also
feels a time-dependent external driving force or pumpin
mechanism which acts to rectify these thermal fluctuation

In all previous work on single-particle ratchets, th
asymmetric potential was taken to be periodic in spa
corresponding to a completely ordered track. In contra
we will consider tracks which contain a certain amoun
of frozendisorderor defectsand study the effects of this
disorder on the transport properties of the ratchet. In ord
to illustrate our results, we will explicitly discuss ratchet
with sawtooth potentials for which the defects correspon
to reversed sawteeth as shown in Fig. 1.

It will be shown below that defects act to reduce th
efficiency of the ratchets and that this efficiency loss h
two general and nontrivial features: (i) The motion of th
ratchets is most sensitive to the frozen disorder if it ope
ates in the “resonance regime,” i.e., in the regime whe
it is most effective in the absence of disorder, and (ii) d
pending on the defect concentration, the ratchets exhi
several scaling regimes with anomalous diffusion and/
anomalous drift. These regimes should be accessible
experiments on natural or artificial ratchets.
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To proceed, we will consider a particle which move
along a one-dimensional track with coordinatex and
which has two internal states, its ground state 1 an
its excited state 2. It is coupled to another energ
producing process (such as a chemical reaction) whi
induces transitions from its ground state to its excite
state with frequencyv" and transitions back to its ground
state with frequencyv#. Depending on its internal state,
the particle is subject to two different external potentia
U1sxd andU2sxd which have a microscopic range denote
by a. The particle motion is overdamped with frictiona
coefficientf in both states, and its surroundings have th
ambient temperatureT (measured in energy units, i.e., the
Boltzmann factor has been absorbed into the symbolT).

The basic dynamical quantities for this stochast
system are the distribution functionsP1sx, td andP2sx, td
which describe the probabilities at timet that the
particle has reached the locationx and is in states 1
and 2, respectively. These quantities are governed by
generalized Fokker-Planck equation which we write i
the compact form

≠

≠t
P ­ fF̂ 1 V̂gP, with P ;

µ
P1

P2

∂
. (1)

The Fokker-Planck operator̂F is diagonal with [13]
F̂aa ; s1yf d s≠y≠xd sdUaydx 1 T≠y≠xd for a ­ 1, 2;
the transition operator̂V has the matrix elementŝV11 ­
2v" ­ 2V̂21 andV̂12 ­ v# ­ 2V̂22.

The basic length scale is given by the potential rang
a, the basic energy scale by the thermal energyT , and the
basic time scale may be defined bytsc ; fa2yT . Thus,
if length, energy, and time are measured in units of the

FIG. 1. Asymmetric sawtooth potential with one defect corre
sponding to a reversed sawtooth. Each sawtooth is charac
ized by its heightUp and the two length scalesa1 anda2 with
perioda ­ a1 1 a2.
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basic scales, the behavior of the ratchet depends only
on the reduced potentialsUyT and (ii) on the reduced
transition ratesvtsc.

For periodic potentials, i.e., in the absence of froze
disorder, the steady states of the above ratchet mo
have been previously studied in some detail [7,8]. I
the steady state, one finds periodic distributions and
time-independent current. Now, we will first gobeyond
this steady state analysis and consider the motion
a particle which is initially described by a localized
distribution. Numerical integration of the generalize
Fokker-Planck equation (1) with periodic potentials show
that such a localized distribution evolves with time into
broad distribution which is modulated on the scale of th
potential perioda. After some initial transient behavior,
the width of this distribution is large compared toa.
In fact, one may introduce a coarse-grained probabili
distribution, denoted byP , which behaves like a Gaussian
wave packet with effective drift velocityy0 and effective
diffusion coefficient D0, and which thus satisfies the
effective Fokker-Planck equation

≠

≠t
P ­

≠

≠x

µ
2y0 1 D0

≠

≠x

∂
P . (2)

The two parametersy0 andD0 which enter in (2) can be
determined from the following asymptotic expansion [14
First, the probabilityP ­ sP1, P2d is expanded according
to

Psx, td ­
X̀
n­0

psndsxd
µ

≠

≠x

∂
nP sxyl, td , (3)

where the expansion parameter is given byayl. In zeroth
order of this expansion, one finds that

fF̂ 1 V̂gps0d ­ 0 , (4)

which, together with an appropriate normalization con
dition, determinesps0d ­ s p

s0d
1 , p

s0d
2 d. The effective drift

velocity is then given by

y0 ­ 2
1
f

Z a

0
dx

Ω
dU1

dx
p

s0d
1 sxd 1

dU2

dx
p

s0d
2 sxd

æ
. (5)

This zeroth order result is equivalent to the results
obtained previously [7,8] from the steady state analysis

In the next order of the expansion, the coefficientps1d

which enters in (3) is determined from the inhomogeneo
equation

fF̂ 1 V̂gps1d
a ­ 2

√
1
f

dUa

dx
1 y0 1 2

T
f

≠

≠x

!
ps0d

a (6)

with a ­ 1, 2. Finally, one may calculate the effective
diffusion coefficient via

D0 ­
T
f

√
1 1

a
T

Z a

0
dx

3

Ω
dU1

dx
p

s1d
1 sxd 1

dU2

dx
p

s1d
2 sxd

æ!
. (7)
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This iterative procedure may be applied, in genera
to any two-state model as defined by (1) as long as th
potentials and the transition rates are periodic inx. To be
explicit, we will consider models for whichU1 is given
by an asymmetric sawtooth potential,U2 ; 0, and the
transition rates do not depend onx.

In order to simplify the following discussion, the tran-
sition ratesv" and v# are now taken to be identical and
denoted byv. In Fig. 2, we display the behavior ofy0
and D0 for a sawtooth potential withUpyT ­ 10 and
a2ya1 ­ 4 as a function of the transition ratev which
varies over several orders of magnitude. In this figure
the solid lines and the circles represent the results of o
iterative procedure and of the direct numerical integratio
of the Fokker-Planck equation (1), respectively; the bro
ken lines correspond to the asymptotic behavior for sma
and for largev as calculated analytically [15]. Inspec-
tion of Fig. 2 shows that the iterative procedure describe
above is very accurate for all values ofv.

The drift velocityy0 exhibits a resonance regime close
to its maximum at the intermediate frequencyv ; v1.
When the particle is excited from its ground state in thi
regime, it spends just enough time in the excited sta
so that it can diffuse beyond the nearest potential barri
but not beyond the next-nearest one. The correspondi
diffusion time t1 . fa2

1yT ­ sa1yad2tsc which leads to
the estimatev1 . saya1d2t21

sc .
In order to introduce frozen disorder, it is convenien

to consider a discrete mesh with lattice sitesi and
lattice constanta. The coarse-grained probabilityPi then
satisfies

≠Piy≠t ­ hi21,iPi21 2 shi,i21 1 hi,i11dPi

1 hi11,iPi11 , (8)

which is the discrete analog of (2) where the hoppin
rates are given byhi,i11 ­ h expsDy2d and hi11,i ­
h exps2Dy2d with D ; ay0yD0 andh ; D0ya2 [16].

Now let us introduce frozen disorder in the form of
reversed sawteeth as in Fig. 1. Within the effective

FIG. 2. The effective drift velocityy0 and the effective
diffusion coefficientD0 as a function of the transition ratev.
The solid lines and the circles are obtained from the iterativ
procedure and from direct integration of (1), respectively. Th
broken lines represent the asymptotic behavior for small and f
large v. The length and time scales are given in units of the
potential perioda and the time scaletsc ­ fa2yT , respectively.
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hopping model as given by (8), such a defect correspon
to an interchange of the corresponding hopping rate
Thus, one now hasrandomhopping rates

hi,i11 ­ hesiDy2 and hi11,i ­ he2siDy2 , (9)

where the random variablesi has the valuessi ­ 1
and si ­ 21 for a normal and a reversed sawtooth
respectively.

For intermediate frequenciesv . v1, one jump in the
effective hopping model represents the combination
one upwards transition and one downwards transition
order to overcome the nearest potential barrier and
the order oftscyt1 . saya1d2 transitions as the particle
slides down towards the minimum beyond this barrie
For large and for smallv, on the other hand, the
relation between the effective hopping model and th
original two-state model is somewhat different: (i) Fo
large v, the particle in the two-state model undergoe
many transitions between its ground state and its excit
state before it can diffuse beyond the nearest poten
barrier. In the hopping model, this is described by
single jump with an appropriate hopping rate, and (ii) fo
small v, the particle in its excited state can diffuse
beyond several potential barriers before it falls back
its ground state. These events are likely to occur
the diffusion time exceedst2 ; fsa1 1 adya1g2t1, i.e.,
for v & v2 ; fa1ysa1 1 adg2v1. In the hopping model,
such an event is described by several subsequent jump
the same direction. Therefore, forv & v2, the particle
can overcome a reversed sawtooth in the two-state mo
just because it stays in the excited state for a sufficien
long time whereas it will always encounter the reverse
sawtooth in the hopping model. This indicates that th
latter model leads to anoverestimateof the influence of
the reversed sawtooth for smallv & v2. We will show,
however, that this influence becomes small for smallv

even within the hopping model. Therefore, the sam
behavior should apply, at least qualitatively, to the two
state model as well.

It is instructive to study the model as defined by (8
and (9) in the dilute limit of a single defect which consist
of a certain number of reversed sawteeth [14]. One th
finds that the particle is trapped in front of the defect fo
a certain waiting timet until it is able to overcome the
barrier arising from the defect.

For a finite defect concentration, the frozen disord
leads to a waiting time distributionPstd which exhibits
a power law behavior for larget. This can be understood
from the following scaling argument as reviewed in [17
If q is the probability to find a reversed sawtooth, th
probability PsNd to encounter a defect consisting ofN
such sawteeth is given byqN . The waiting timetN , on
the other hand, is expected to scale astN , expsNDd.
It then follows from Pstd dt ­ PsNd dN that Pstd ,
t2s11m0d with m0 ­ lns1yqdyD. The latter value for the
decay exponentm is correct in the limit of smallq since
ds
s.
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FIG. 3. (a) Phase diagram for driven ratchet with frozen
disorder as a function of the transition ratev and the
defect concentrationq, and (b) reentrant behavior for the
effective drift velocityy (full lines) and the effective diffusion
coefficientD (dot-dashed lines) as a function of the transition
rate v for fixed q ­

1
5 . The numerical values on the left and

on the right vertical axis correspond toy and D, respectively.
The units are as in Fig. 2.

exact results for random hopping models [18,19] imply
Pstd , t2s11md with m ­ lnsq21 2 1dyD.

As long as the waiting time distributionPstd decays
sufficiently fast, the momentsktnl are finite for small
n. Indeed, forPstd , t2s11md, the mean waiting time
ktl is finite for the decay exponentm . 1 and the
second momentkt2l is finite for m . 2. This already
indicates that one has anomalous diffusion form , 2 and
anomalous drift form , 1 as confirmed by more detailed
calculations [17,19].

In the present context, the two phase boundariesm ­ 2
andm ­ 1 correspond to the critical defect concentrations
q ­ qD and q ­ qy, respectively, which are given by
qD ; 1yfexps2Dd 1 1g and qy ; 1yfexpsDd 1 1g with
D ­ ay0yD0 as before. Thev dependence ofy0 and
D0, compare Fig. 2, now leads tov dependent phase
boundaries which separate three different scaling regim
(I), ( II), and (III) of the driven ratchet with disorder
as shown in Fig. 3(a). The transport behavior in thes
three regimes can be deduced from known results [19] fo
random hopping models.

In regime (I) with0 , q , qD , both the effective drift
velocity ysqd and the effective diffusion coefficientDsqd
are finite. Asq is increased,ysqd decreases whileDsqd
increases monotonically. The latter parameter diverge
as Dsqd , 1yjq 2 qD j as q ­ qD is approached from
2897
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below. In regime (II), the width of the distribution grows
as ,t2ym with 1 , m ­ lnsq21 2 1dyD , 2, i.e., faster
than t1y2 with time t but the drift is still characterized by
a finite drift velocityysqd. In fact, for the hopping model
discussed here, the drift velocity is given by

ysqd ­ y0sqy 2 qdyfqy 1 qs1 2 2qydg (10)

both in regime (I) and in regime (II). Thus, asq ­ qy

is approached from below, the drift velocity vanishes
as ysqd , jq 2 qyj. In regime (III) with qy , q ,

1
2 ,

both the drift and the diffusion are anomalous. The
mean position of the particle and the width of its
probability distribution are expected to grow astm with
m ­ lnsq21 2 1dyD ­ lnsq21 2 1dy lnsq21

y 2 1d , 1.
The behavior of the effective drift velocityy and the

effective diffusion coefficientD obtained in this way is
shown in Fig. 3(b) as a function of the transition rate
v ­ v" ­ v# for fixed defect concentrationq ­

1
5 . The

transport is normal for both low and high transition rates
but exhibits the anomalous scaling regimes (II) and (III)
at intermediate rates. In fact, comparison with Fig. 2
shows that these anomalous regimes appear precisely
the resonance regime where the ratchet is most effecti
in the absence of disorder [20].

In summary, we have shown that driven ratchets ar
quite sensitive to frozen disorder. Even though we
have focused on two-state models, analogous behavi
is expected for all single-particle ratchets. If some
biophysical transport process is indeed based on su
ratchets, the corresponding tracks have to be high
regular and the defect concentrationq must be sufficiently
small in order for the ratchets to operate in an efficien
way. On the other hand, it would be most interesting to
experimentally study the effects of frozen disorder in suc
systems since this will provide a nontrivial check on the
underlying transport mechanism. Such disorder will als
affect the behavior of ratchets containing large groups o
interacting particles but this remains to be studied.
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