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We consider a three-dimensional liquid drop sitting on a rough and chemically heterogeneous substrate.
Using a novel minimization technique on the free energy of this system, a generalized Young’s equation
for the contact angle is found. In certain limits, the Cassie and Wenzel laws, and a new equivalent rule,
applicable in general, are derived. We also propose an equation in the same spirit as these results but
valid on a more “microscopic” level. Throughout we work under the presence of gravity and keep account
of line tension terms.

1. Introduction
Recently, there has been an upsurge of interest in

wetting phenomena, particularly in the experimental
arena with many dramatic new techniques and results
available. The impact of these on theory has been 2-fold,
both allowing older work to be thoroughly tested and also
posing fresh challenges for those researching in the field
today (for current reviews see ref 1). Presently, most
theoretical approaches are trying to go beyond wetting on
simple, flat, homogeneous substrates and are exploring
the effect a structured surface can have on the wetting
phase. This heterogeneity can be both geometrical and
chemical. However, there have existed for quite some
time a few empirical laws describing the contact angle of
a drop sitting on such a heterogeneous surface. Wenzel2

introduced an “average” contact angle on a rough, chemi-
cally homogeneous substrate which is expressed in terms
of the contact angle on a planar one. Likewise, for smooth
but chemically heterogeneous surfaces, the Cassie equa-
tion3 is widely used, which defines an “average” contact
angle by the weighted mean of the angles that the drop
would take on pure substrates. The associated wall
tensions have been recently studied both for the geo-
metrically rough4,5 and for the chemically heterogeneous
case.6 Much of the literature has also been concerned
with the modification of these laws when line tension
effects are included (see, for example, refs 7-9).

In this paper we investigate the statistical mechanical
foundations of such empirical approaches. Young’s equa-
tion10 is surely the bedrock of all wetting theory, and from

its most general form, after making an important number
of assumptions, we are able to provide a systematic
derivation of both the Cassie and Wenzel laws. We choose
to describe the chemical heterogeneities within the surface
in terms of interfacial and contact line tensions which are
position-dependent. We consider a solid substrate com-
posed of several different atomic (or molecular) species
and first coarse-grain up to a certain length scale, the
small scale cutoff, to define appropriate composition
variables. For the simplest case of a binary system, only
one such composition variable is needed and can be
defined, for example, as the relative area fraction of one
of the two species in the surface layer. In this way, we
arrive at composition variables, X(y) say. These, in
general, depend on the coordinate y ≡ (y1,y2) of the two-
dimensional surface and thus reflect the chemical het-
erogeneities which are present on length scales large
compared to the atomic scale.

A chemically homogeneous surface is characterized by
position-independent composition variables X(y) ) X, and
one may define the different interfacial tensions σ and
the line tension λ in the usual way.11 The values of these
tensions will, of course, depend on the values of the
composition variables: σ ) σ(X) and λ ) λ(X). Thus, in
the heterogeneous case with X ) X(y), one may allude to
a small gradient expansion and assume that the local
tensions are given by σ ) σ(X(y)) and λ ) λ(X(y)); i.e., they
are essentially determined by the local surface composi-
tion. In general, the anisotropy of the solid substrate will
lead to a line tension which depends on the orientation
of the contact line. In the following, this anisotropy will
be ignored and the surface of the solid will be treated as
a structureless wall.

For imprinted surfaces, one has surface domains which
are large compared to the small scale cutoff.12 An example
is provided by domains obtained from microcontact
printing, which have typical sizes in the micrometer range.
In this case, the various tensions are constant within the
domains but vary across their boundaries. Droplets on
such domains may exhibit contact angles which do not
satisfy Young’s equation in the limiting case where the
boundary width is small compared to the domain size.
However, in the absence of such an extreme separation
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of length scales, one has a position-dependent Young
equation as discussed in ref 12 (though here contributions
from the line tension have been ignored).

The outline of our paper is as follows. In section 2 we
specify the free energy of a drop adsorbed on a hetero-
geneous substrate. By applying a novel minimization
procedure to this free energy, detailed in section 3, we are
able to find the most general form of Young’s equation. A
statistical mechanical interpretation of Cassie’s and
Wenzel’s laws is then discussed in section 6, and a number
of strong assumptions are highlighted which are implicity
adopted by them. In the following sections, using the
generalized Young equation, we are then able to go on
and provide a systematic derivation of both these rules
where we keep account of line tension and gravity. For
substrates which have both geometrical and chemical
structure, a new composite equation is suggested in section
9. An alternative approach is adopted in section 10 in
which a local version of Cassie’s law is proposed which
needs no suppositions about the drop or heterogeneity of
the surface. Finally, we make some short conclusions.

2. Wetting of a Heterogeneous Surface
We start by considering the free energy of a three-

dimensional drop of nonvolatile â phase within a bulk R
phase sitting on a rough, chemically heterogeneous
substrate or wall. Let the area covered by the drop be Γ
and let the edge of this area, i.e., the position of the contact
line, be ∂Γ (see Figure 1). The Râ interface has a surface
tension σ and is at height h(y) above some reference plane,
with Cartesian coordinates (y1,y2) ) y as in Figure 1. The
line tension of the contact or triple phase line, ∂Γ, is denoted
λ, while the wall-R and wall-â interfacial free energies are
σwR and σwâ, respectively. If the substrate surface has a
configuration Z(y) above the reference plane, then the
free energy is

Here s is the arc length of the contact line at ∂Γ on the
substrate surface z ) Z(y) and ∇ is the two-dimensional
gradient operator

We choose the location of the y-plane to be such that

The function Q(h,Z) in (2.1) can be decomposed into

where ∆p and ∆F are the pressure and density differences
between the â and R phases, respectively. The gravita-
tional acceleration is denoted g. Intermolecular forces,
such as van der Waal’s interactions, enter only implicitly
through the various tensions.13

3. Minimization Procedure

The equilibrium configuration of the drop will be given
by that location h(y) of the liquid surface or Râ interface
and that contact line configuration ∂Γ(Z) which minimizes
(2.1). To carry out this functional minimization, it proves
useful to take advantage of a version of Gauss’s theorem
in two dimensions. For future reference we state this
here

where the line integral is evaluated in a clockwise direction
as indicated in Figure 1.

Rather than functionally minimize with respect to h(y)
with the variable boundary condition

we choose instead a different approach. Initially ∂Γ is
fixed, the equilibrium liquid surface calculated for this
particular configuration, and then the free energy mini-
mized again with respect to the location of the contact
line ∂Γ.

Using (3.1) minimization of (2.1) with respect to h(y) is
straightforward, and we find the Laplace equation

with condition (3.2). Note that this condition implies that
the equilibrium h(y) will be a functional of ∂Γ. If we ignore
gravity and the effective interface potential V, (3.3) implies
that the surface has constant mean curvature ∆p/2σ.

To consider variation with respect to the contact line,
we can without loss of generality specialize to the upper
right-hand side quadrant of Figure 1. We assume that y
on ∂Γ can be written as y ) (y1,γ(y1)) for some function
γ(y1) and for 0 e y1 e Y, where Y is defined by γ(Y) ≡ 0
(see Figure 1). Thus, the function γ(y1) describes the shape
of the contact line when projected onto the y-plane.

For this region the free energy functional (2.1) can be
written as (in the Monge representation)

(13) Lipowsky, R. Phys. Rev. B 1985, 32, 1731.

Figure 1. Schematic of the three-phase contact line of a droplet
sitting on a rough, heterogeneous substrate. The contact area
is denoted by Γ and the position of the contact line by ∂Γ. The
upper right-hand quadrant defined by 0 e y1 e Y is described
by y2 ) γ(y1) for some function γ(x).

F[h, Z] ) ∫Γ
dy{σx1 + (∇h)2 - [σwR(y) - σwâ(y)] ×

x1 + (∇Z)2 + Q(h,Z)} + I∂Γ(Z) ds λ(s) (2.1)

∇ ) ( ∂

∂y1
, ∂

∂y2
).

∫ dy Z(y) ) 0. (2.2)

Q(h,Z) ) ∆p(h - Z) + 1
2

∆Fg(h2 - Z2) (2.3)

∫Γ
dy(∇ f)‚g ) I∂Γ f(g2dy1 - g1dy2) - ∫Γ

dyf∇‚g (3.1)

h(y) ) Z(y) for y ∈ ∂Γ (3.2)

-σ∇‚( ∇h

x1 + (∇h)2) + ∂Q
∂h

(h, Z) ) 0 (3.3)
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with the prime denoting differentiation with respect to
the argument. The remainder of this part of the paper
becomes by necessity quite mathematically intense, and
a casual reader may prefer to skip immediately to section
4.

Functional minimization of (3.4) leads to

where

and

The term I3 arises from the implicit dependence of h(y)
on γ(x) and can be derived using the chain rule for
functional derivatives.

We shall concentrate on simplifying the expression I2
first. This becomes

where the notation fx ) ∂f/∂x is used and all functions are
evaluated at y ) (x,γ(x)). Fortunately, (3.9) can be
rewritten as

where m̂ ) m̂(y) is the unit vector orthogonal to both the
normal to the surface z ) Z(y) and to the tangent vector
to the curve ∂Γ. Here we use the convention that the
z-component of ∇λ is zero. Furthermore, Cg ) Cg(y)
denotes the geodesic curvature of ∂Γ at y, i.e., the
component of the “acceleration” vector of the curve in the
direction m̂.14

Extending (3.8) to the whole drop, one can use Gauss’s
theorem and write

by virtue of the Laplace equation (3.3). Once again we
now specialize to the upper right-hand quadrant. Here
the boundary condition (3.2) can be expressed as

Functionally differentiating (3.12) with respect to γ(x)
leads to

while differentiation with respect to y1 gives

As we are on ∂Γ, γ′(y1) ) dy2/dy1 and so both (3.13) and
(3.14) allow simplification of (3.11). Using (3.13) to
eliminate δh/δγ and (3.14) to express everything in terms
of y1, the integral can be evaluated and (3.11) becomes

4. The Generalized Young Equation
We are now in a position to interpret (3.5). At

equilibrium δF/δγ must vanish and so using (3.10) and
(3.15), (3.5) implies

for y ∈ ∂Γ. Recall that Cg(y) is the geodesic curvature of
the contact line at the point z ) Z(y) on the substrate
surface and m̂(y) is the unit vector perpendicular to the
surface normal and to the vector tangential to the triple
line at y.

It follows from (2.3) that Q(Z,Z) ) 0, which we use to
write (4.1) as

In fact, if we define the contact angle θ(y) to be the angle
between the normal (and hence the tangent) vectors to
the surfaces z ) h(y) and z ) Z(y) at y, then it is simple
to show that

(14) Thorpe, J. A. Elementary Topics in Differential Geometry;
Springer-Verlag: New York, 1979.

F[h,Z] ) ∫0

Y
dy1 ∫0

γ(y1)
dy2{σx1 + (∇h)2 - [σwR(y) -

σwâ(y)]x1 + (∇Z)2 + Q(h; Z)} + ∫0

Y
dy1λ(y1,γ(y1)) ×

[1 + γ′(y1)
2 + ( d

dy1
Z(y1,γ(y1)))2]1/2

(3.4)

δF
δγ(x)

) I1 + I2 + I3 (3.5)

I1 ) {σx1 + (∇h)2 - [σwR(y) - σwâ(y)] x1 + (∇Z)2 +
Q(Z, Z}|y)(x,γ(x)) (3.6)

I2 ) δ
δγ(x) ∫0

Y
dy1λ(y1,γ(y1))[1 + γ′(y1)

2 +

( d
dy1

Z(y1, γ(y1)))2]1/2
(3.7)

I3 ) ∫Γ
dy{σ

∇h‚∇δh
δγ

x1 + (∇h)2
+ ∂Q

∂h
δh
δγ} (3.8)

I2 )

λ
(γ′Zy1

- Zy2
)(Zy1y1

+ 2γ′Zy1y2
+ γ′2Zy2y2

) - γ′′(1 + (∇Z)2)

[1 + Zy1

2 + 2γ′Zy1
Zy2

+ γ′2(1 + Zy2

2 )]3/2
+

λy2
(1 + γ′Zy1

Zy2
+ Zy1

2 ) - γ′λy1
(1 + Zy1

Zy2
/γ′ + Zy2

2 )

[1 + Z2
y1

+ 2γ′Zy1
Zy2

+ γ′2(1 + Zy2

2 )]1/2
(3.9)

I2 ) (∇λ‚m̂ - λCg) x1 + (∇Z)2|y)(x,γ(x)) (3.10)

I3) ∫Γ
dy{σ

∇h‚∇δh
δγ

x1 + (∇h)2
+ ∂Q

∂h
δh
δγ}

) σ I∂Γ
δh
δγ(hy2

dy1 - hy1
dy2

x1 + (∇h)2 ) +

∫Γ
dy {-σ∇‚( ∇h

x1 + (∇h)2) + ∂Q
∂h}δh

δγ

) σ I∂Γ
δh
δγ(hy2

dy1 - hy1
dy2

x1 + (∇h)2 ) (3.11)

h(y1,γ(y1)) ) Z(y1,γ(y1)). (3.12)

∂h
∂y2

δ(y1 - x) + δh
δγ(x)

) ∂Z
∂y2

δ(y1 - x) (3.13)

∂h
∂y1

+ ∂h
∂y2

γ′(y1) ) ∂Z
∂y1

+ ∂Z
∂y2

γ′(y1) (3.14)

I3 ) -σ
∇h‚∇(h - Z)

x1 + (∇h)2
|y)(x,γ(x)) (3.15)

σx1 + (∇h)2 - σ
∇h‚∇(h - Z)

x1 + (∇h)2
+ Q(Z,Z) -

x1 + (∇Z)2[σwR(y) - σwâ(y) - ∇λ‚m̂(y) +
λ(y)Cg(y)] ) 0 (4.1)

σ 1 + ∇h‚∇Z

x(1 + (∇Z)2)(1 + (∇h)2)
) σwR(y) - σwâ(y) -

∇λ‚m̂(y) + λ(y)Cg(y) (4.2)

6774 Langmuir, Vol. 14, No. 23, 1998 Swain and Lipowsky



Hence, (4.2) is the generalized Young equation for a sessile
drop sitting on a rough, chemically heterogeneous surface
z ) Z(y), and can be rewritten as

where y is at the three-phase contact line. This is the
main result of our paper.

Particular cases of the generalized Young equation (4.4)
have been obtained previously. If the line tension terms
are ignored, one has

as derived by Lenz and Lipowsky.12

The correction terms arising from the line tension have
also been obtained previously for some special situations.
First of all, their effect has been determined for planar
and homogeneous substrates by Boruvka and Neumann15

(and see also ref 16). This case will be discussed in the
following section. In addition, Rusanov17 has initiated
study of an axially symmetric geometry for which the
rotation axis is perpendicular to the y-plane. In this case,
the shape Z of the substrate surface depends only on the
distance F ) (y1

2 + y2
2)1/2 from the rotation axis. Therefore,

the wall tensions σwi ) σwi(F) and the line tension λ ) λ(F)
are taken to depend only on F, and the problem becomes
one-dimensional. The contact line of the droplet forms a
circle of radius F ) R, the unit vector m̂has the F component
mF ) 1/(1 + Z′(R)2)1/2, and the geodesic curvature is given
by

If these expressions are inserted into the general
equation (4.4), one obtains

where the slope angle φ satisfies

To understand the geometric meaning of this angle,
consider the contour z ) Z(F) of the substrate surface
within the (F,z)-plane and construct the straight line which
is tangential to Z(F) at F ) R. The slope angle φ(R) is the
angle between this tangential line and the F axis. The
special form (4.7) of the generalized Young equation (4.4)
is equivalent to the equation derived by Rusanov.17

Real substrates which are heterogeneous do not exhibit
the axial symmetry, assumed in the derivation of (4.7),
and the shape of the contact line will not be circular. To
incorporate the deviations of the line shape from a circle
in a qualitative manner, Rusanov has proposed a gen-

eralization of (4.7) which involves a heuristic line rough-
ness factor.18

Another effectively one-dimensional geometry has been
investigated by Marmur.19,20 He has considered “cylin-
drical” interfaces which depend only on one surface
coordinate, say y1, and are translationally invariant in
the y2-direction. For this case, the contact line is perfectly
straight and lies at y1 ) (Y, for some constant Y say,
implying that the geodesic curvature Cg((Y) ) 0. The
unit vector m̂ has a y1 component my1 ) 1/(1 + Z′(y)2)1/2

at y1 ) Y and so (4.4) becomes

as stated in ref 20.

5. Planar and Chemically Homogeneous
Substrates

To show that (4.4) includes the more familiar form of
Young’s equation is quite straightforward. We specialize
to a smooth, homogeneous substrate, that is

For planar curves the geodesic curvature simply becomes
the curvature, looking at (3.9) the first term tends to

as Z(y) tends to a constant, while the vector m̂(y) in the
same limit is the normal n̂(y) to the curve within the plane.
Consequently, (4.4) is now

This is Young’s equation10 with the Boruvka and Neu-
mann line tension term.

If corrections due to gravity and long-range intermo-
lecular forces are ignored, the solution of the Laplace
equation (3.3) is a spherical cap with radius of curvature
Rπ ) 2σ/∆p. It is then easy to see that the curvature of
the contact line itself satisfies

When this relation is inserted into (5.3), the contact angle
θ is found to depend on the two dimensionless parameters
(σwR - σwâ)/σ and ∆pλ/σ2. Note that, in the pressure
ensemble considered here, the curvature C of the contact
line is fixed for a smooth, homogeneous substrate.

Similarly, if one specifies a fixed volume V of â phase,
then again for a smooth, homogeneous substrate a rela-
tionship between C, θ, and V can be determined. Ignoring
gravity and long-range forces, the droplet must take the
form of a spherical cap. Consequently, it is easy to
determine its volume and using (5.4) relate this to the
contact line curvature

(15) Boruvka, L.; Neumann, A. W. J. Phys. Chem. 1977, 66, 5464.
(16) Vesselovsky, V. S.; Pertzov, V. N. Zh. Fiz. Khim. 1936, 8, 245.
(17) Rusanov, A. I. Colloid J. USSR (Engl. Transl.) 1977, 39, 618.

(18) Rusanov, A. I. Mendeleev Commun. 1996, 1, 30.
(19) Marmur, A. Langmuir 1996, 12, 5704.
(20) Marmur, A. Colloids Surf., A 1998, 136, 81.

cos[θ(y)] ) 1 + ∇h‚∇Z

x(1 + (∇Z)2)(1 + (∇h)2)
(4.3)

σwR(y) ) σwâ(y) + σ cos[θ(y)] + ∇λ‚m̂(y) - λ(y)Cg(y)
(4.4)

σwR(y) ) σwâ(y) + σ cos[θ(y)] (4.5)

Cg(R) ) - 1

Rx1 + Z′(R)2
(4.6)

σwR(R) ) σwâ(R) + σ cos[θ(R)] + [1R λ(R) + λ′(R)]
cos[φ(R)] (4.7)

cos[φ(R)] ) 1

x1 + Z′(R)2
. (4.8)

σwR(Y) ) σwâ(Y) + σ cos[θ(Y)] + λ′(Y) cos[φ(Y)] (4.9)

σwR(y) ) σwR; σwâ(y) ) σwâ; λ(y) ) λ; Z(y) ) 0
(5.1)

-λC ≡ -λ
γ′′(x)

[1 + γ′(x)2]3/2
(5.2)

σwR ) σwâ + σ cos θ - λC. (5.3)

C ) - 1
Rπ sin θ

(5.4)

) - ∆p
2σ sin θ

(5.5)
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The contact angle once more depends on (σwR - σwâ)/σ but
now also on the new dimensionless quantity λ/σV1/3.

In principle, the line tension λ may be determined via
(5.3) if one knows the interfacial tensions σwR, σwâ, and σ
and if one measures the geometric parameters θ and C.
The contact line curvature C depends on θ both in the ∆p
and in the V ensembles. For the latter, it also depends
on the droplet volume V; see (5.6).

Finally, thermally excited fluctuations away from the
minimal free energy would in general change the contact
line contour and so give additional corrections to θ. Such
effects are not included in this paper.

6. Spatial Averaging
Using the generalized Young equation (4.4), it is possible

to provide a systematic derivation of the Cassie law (valid
for flat but chemically heterogeneous substrates) and the
Wenzel rule (applicable for purely rough surfaces):

Here θeff is an effective or average contact angle assumed
on the heterogeneous substrate, θi is the angle taken on
a simple planar surface composed entirely of surface
component or chemical species i, fi is the fraction by area
of the surface made up of i, and r is the ratio of true to
planar surface area.

The starting point for a derivation of eqs (6.1) and (6.2)
should be a definition of the effective or average angle θeff.
However, to perform any average, one must first establish
choices for the following criteria:

(i) What statistical mechanical ensemble should be used
and what are the different states in this ensemble?

(ii) What are the a priori probabilities or statistical
weights assigned to these different states? Often, one
makes an implicit assumption about equal a priori
probabilities but this choice is not unique.

(iii) Which quantities does one wish to average?
To answer question (i) we can choose to prescribe either

the volume of the â drop or else the pressure difference,
∆p, across the Râ interface. It is more convenient to use
∆p as the basic variable, and so we opt to work in the
corresponding pressure ensemble. Consequently, by
ignoring gravitational and long-range intermolecular force
corrections, we have droplet surfaces of constant mean
curvature. For flat and homogeneous substrates, the
latter are given by spherical caps and, from (5.5), have a
fixed contact line curvature C. As discussed before, this
is no longer true in the volume ensemble since C depends
on V; see (5.6). Therefore, if one wants to deduce the
magnitude of the line tension λ from observations of the
droplet shape, it is important to specify the appropriate
ensemble one is working in.

Having selected an ensemble, we next need to decide
what the different states are in this ensemble. Three
different possibilities present themselves:

(a) One could investigate a drop at a certain position on
the surface and move along its contact line. Aside from
the flat and homogeneous case, the contact angle will vary
and, thus, one could study the average θ of an individual
droplet. If a flat and homogeneous substrate is considered,
then the contact angle is constant satisfying (5.3).

(b) Different positions for the drop could be considered,
and the different states would then be determined by these
positions. For the flat and homogeneous case, this is the
same as (a). However, if one places a drop at different
positions on a heterogeneous substrate, the contact line
contour and the contact angles at that contour will, in
general, change if we require the state of the drop to be
a local minimum of its free energy. The task of determin-
ing these states and then assigning a priori probabilities
to them seems to be prohibitively difficult.

(c) Instead of considering the states of the drop, one
could instead opt for those of the contact line. To start,
a certain position y on the surface is selected and an
average over all contact line contours which pass through
this point and correspond to the states of the droplet which
are local minima of the free energy is carried out. To be
local minima, these states must satisfy (3.3), and so (if
gravity and long-range intermolecular interactions can
be ignored) be of constant mean curvature, as well as
obeying the Young equation (4.4). A final further average
over all positions y is then taken.

In this section of the paper we choose option (c) above
and proceed to average over different contact lines. To
answer (ii), a Boltzmann weight is chosen for each contour,
calculated via (2.1), and again we point out that only those
contours which are local minima of the free energy are to
be considered.

From (4.4) one can see that the variation of the local
contact angle θ(y) is mainly governed by the change in
the interfacial free energies σwR and σwâ (the line tension
is typically ≈10-9 J m-1, see ref 9). However, these
quantities determine the cosine of the contact angle and
consequently summing over their position dependence
should give an effective cos θeff. Therefore, in response to
(iii), we choose to average cos[θ(y)] rather than θ(y) itself.
Arguing in terms of surface tensions, it is the component
of the Râ tension that is in the surface that is the one
chosen to be averaged.

The Young equation (4.4) implies that the contact angle
is dependent on position y and, as mentioned before, the
local configuration taken by the contact line contour ∂Γ
at y, that is

To proceed, we define {∂Γ(y)} to be the set of all contours
of the drop which pass through y and are local minima
of (2.1). Then option (c) can be written mathematically
as

where we use a Boltzmann weight function with units
such that kB ) 1 and write explicitly the functional
dependence of the equilibrium h ) h[∂Γ] on the contour
configuration.

To make further progress several strong assumptions
are needed. First, the dependence of the contact angle on
the shape of the droplet is ignored, i.e.

Second, the heterogeneities are taken to be such that the
drop is not strongly confined to or repelled from any
particular region. All nonhomogeneities are “uniform” in
this aspect. The probability that the contact line of the
droplet passes through y is given by

C ) -[π(2 - 3 cos θ + cos3 θ)

3V sin3 θ ]1/3

(5.6)

cos θeff ) ∑
i

fi cos θi Cassie (6.1)

cos θeff ) r cos θ Wenzel (6.2)

θ ) θ(y; ∂Γ). (6.3)

cos θeff )
∫ dy ∑{∂Γ(y)} cos(θ(y:∂Γ))e-F[h[∂Γ],Z]/T

∫ dy ∑{∂Γ(y)} e-F[h[∂Γ],Z]/T
(6.4)

cos[θ(y; ∂Γ)] ≈ cos[θ(y)] (6.5)
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and we assume that this is approximately independent of
y,

where Aπ represents the projected area of the substrate
surface onto the y-plane. No position is dramatically
favored over any other. Equation (6.7) clearly drastically
reduces the domain of validity of any results derived from
(6.4). Notice, that for a flat and homogeneous substrate
(6.5) and (6.7) are satisfied identically.

Consequently, (6.4) reduces and the effective angle now
satisfies

which we use as a working definition.

7. Planar but Chemically Heterogeneous
Surfaces

We first specialize to smooth, chemically heterogeneous
substrates. In light of (6.5), eq (4.4) is simply

where all the line tensions terms are ignored. When this
is integrated over the surface we are led to (recall (6.8))

where Aπ ) ∫ dy. If our substrate has a fraction (by area)
fi of substance i, then

where σiR is the wall-R interfacial free energy for a
substrate chemically coated with material i. Conse-
quently, (7.2) is

which can then be interpreted in terms of more physical
parameters using the Young equation (5.3). At this point,
we would like to emphasize that (7.4) already contains,
at the level of the approximations used (see (6.5) and (6.7)),
all the physics associated with the heterogeneous sub-
strate which is now completely characterized by the
numbers fi.

Therefore, if, in the spirit of Cassie, we use

to re-express (7.4) in the traditional form

then the values of θi and Ci will, in general, have no relation

to the original experimental setup. The Young equation,
(7.5), is obeyed by all droplets adsorbed on a chemically
homogeneous surface i. Therefore, provided θi and Ci are
measured for the same drop, it does not matter whether
the pressure or volume ensemble is used, or what the
pressure difference or volume of â actually is. If one
chooses to make the measurements on a heterogeneous
substrate, then it is vital that a point is selected for which
the chemical composition of the surface can be unambigu-
ously determined as i and that both the contact angle and
curvature of the contact line are measured precisely at
this point.

We feel that this step, from (7.4) to (7.6), has not been
highlighted in the literature, and, while it is certainly
possible to determine Ci and θi from a particular point of
a complicated drop configuration present on a heteroge-
neous surface, there is no advantage in doing so. We
emphasize that (7.4) is the fundamental equation in which
no ambiguities arise.

Note that the line tension terms in (7.6) are identical
to those first included by Drelich and Miller8 by the use
of thermodynamic arguments.

8. Chemically Homogeneous but Rough
Substrates

Wenzel’s rule is widely used for rough, chemically
homogeneous substrates. However, from (4.4), when line
tension terms are ignored, the contact angle taken on a
rough surface (defined as the angle between the normal
vectors to the surface and to the drop) is identical to that
on a planar substrate. Consequently, we believe that
Wenzel’s rule (6.2) in fact refers to the average of a local
planar contact angle θπ(y), defined as

Thus, θπ(y) is the angle between the tangent to the drop’s
surface and a local horizontal plane given by r ) (y′,Z(y))
for all y′.

Such an approach has a long history with, we believe,
Shuttleworth and Bailey21 first defining the observed
contact angle to be the sum of the actual (or in their
terminology intrinsic) contact angle and the slope angle,
φ (see Figure 2)

Here the slope angle is defined by

(21) Shuttleworth, R.; Bailey, G. L. J. Discuss. Faraday Soc. 1948,
3, 16.

Figure 2. A cross section through a drop sitting on a one-
dimensional rough surface z ) Z(y). The true contact angle θ,
defined in (4.3), the local angle, θπ (8.1), and the slope angle φ
(8.3) are all clearly marked.

∑{∂Γ(y)} e-F[h[∂Γ],Z]/T

∫ dy ∑{∂Γ(y)} e-F[h[∂Γ],Z]/T
(6.6)

∑{∂Γ(y)} e-F[h[∂Γ],Z]/T

∫ dy ∑{∂Γ(y)} e-F[h[∂Γ],Z]/T
≈ 1

∫ dy
≡ 1

Aπ
(6.7)

cos θeff ≈
∫ dy cos[θ(y)]

Aπ
(6.8)

σwR(y) ) σwâ(y) + σ cos[θ(y)] (7.1)

Aπσ cos θeff ) ∫ dy[σwR(y) - σwâ(y)] (7.2)

∫ dy [σwR(y) - σwâ(y)] ) Aπ ∑
i

fi(σiR - σiâ) (7.3)

cos θeff ) ∑
i

fi(σiR - σiâ)/σ (7.4)

σiR - σiâ ) σ cos θi - λiCi (7.5)

cos θeff ) ∑
i

fi (cos θi -
λiCi

σ ) (7.6)

cos[θπ(y)] ) 1

x1 + (∇h)2
|y∈∂Γ (8.1)

θob(y) ) θ(y) + φ(y) (8.2)

cos[φ(y)] ≡ 1

x1 + [∇Z(y)]2
(8.3)
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For a substrate surface shape z ) Z(x), which is dependent
on only one surface coordinate x, it is straightforward to
show that (8.1) and (8.2) are identical. For example, if
the substrate surface is axially symmetric and its height
is described by z ) Z(r), we obtain the slope angle φ, (4.8),
which has the simple geometric interpretation explained
in section 4. In a three-dimensional space the decomposi-
tion (8.2) is not valid in general as there is no guarantee
that φ and θ lie in the same plane. Our choice, θπ or the
slope angle of the Râ interfacial surface, is more general
and does not suffer from any such problems.

Proceeding with the definition (6.8), valid for θ(y) )
θπ(y), we write (4.4) as

where (6.5) is again called upon to ignore line tension
effects. The surface area of the rough substrate, A, is

and therefore from (3.1) and (3.3), the integral of (8.4)
becomes

or

using (2.3) and (5.3), where θ and C can again be measured
for any drop located on a planar substrate. Notice that
Z(y) f 0 as y f ∞ has been assumed. Denoting r ) A/Aπ
to be the ratio of nonplanar to planar surface areas and
utilizing the definition (2.2) we have

where Z2 is the mean square height of the surface

Equation (8.8) is Wenzel’s rule,2 incorporating line tension
effects and gravity for the first time. Here there is some
disagreement between our line tension correction and that
proposed by Drelich.9 It is also interesting to note that
the simple form of Wenzel given by (6.2) was postulated
a long time ago to become invalid under a gravitational
field.22 Finally, we again wish to emphasize that (8.6) is
independent of the properties of the drop being considered.

9. Rough and Chemically Heterogeneous
Surfaces

Continuing to use the definitions (6.8) and (8.1) for the
effective contact angle, it is not too difficult to see that an
additional law is possible for a sessile drop on a rough and

chemically heterogeneous substrate. Equation (4.4), via
(6.5), leads to

which can be integrated over y. Using (3.3) one finds

and so arrives at

where ri is the ratio of the nonplanar surface area covered
with material i to the total planar area.

10. An Alternative Prescription
It is somewhat unsatisfying that the traditional forms

of the Cassie and Wenzel equations are independent of
the shape of the drop and assume a “uniform” distribution
of the heterogeneities as given by (6.7). In this section we
derive a new relation for the effective contact angle θeff on
a chemically heterogeneous substrate, which, while not
being quite as aesthetically pleasing, does not have these
two drawbacks. Here we switch from the choice (c),
described in section 6, of the states in our statistical
mechanical ensemble to that of (a).

Let a drop of â phase on a flat, chemically heterogeneous
substrate equilibrate and take up the shape of the
optimum contour, i.e., that which is a local minimum of
the free energy. We then define the effective contact angle
to be simply the average contact angle taken around this
particular configuration of the three-phase contact line.
Writing s for the arc length on ∂Γ and the local contact
angle then as θ(y) ) θ(s) we have

Integrating Young’s equation in the form of (7.1) around
the optimum contour gives

Now looking again at the upper right-hand quadrant of
Figure 1, the normal to the contact line is given by

and so

implying(22) Johnson, R. E.; Dettre, R. H. Adv. Chem. Ser. 1964, No. 43, 112.

σ cos[θπ(y)] + σ ∇h‚∇Z

x1 + (∇h)2
) [σwR - σwâ] x1 + (∇Z)2

(8.4)

A ) ∫ dy x1 + (∇Z)2 (8.5)

Aπσ cos θeff - σ ∫ dyZ(y)∂Q
∂h

(Z, Z) ) A(σwR - σwâ)
(8.6)

cos θeff - 1
Aπ

∫ dy (∆pZ(y) + ∆FgZ2(y)) )

A
Aπ

(cos θ - λC
σ ) (8.7)

cos θeff ) r (cos θ - λC
σ ) + ∆FgZ2 (8.8)

Z2 )
∫ dy Z2(y)

∫ dy
(8.9)

σ cos[θπ(y)] + σ ∇h‚∇Z

x1 + (∇h)2
) [σwR(y) - σwâ(y)] ×

x1 + (∇Z)2 (9.1)

Aπσ cos θeff ) σ ∫ dyZ(y)∂Q
∂h

(Z, Z) + ∫ dy[σwR(y) -

σwâ(y)] x1 + (∇Z)2 (9.2)

cos θeff ) ∑
i

ri (cos θi -
λiCi

σ ) + ∆FgZ2 (9.3)

cos θeff )
I∂Γ ds cos[θ(s)]

I∂Γ ds
. (10.1)

σ cos θeff I∂Γ ds ) I∂Γ ds [σwR(s) - σwâ(s)] +
I∂Γ ds[λ(s)C(s) - ∇λ‚n̂(s)] (10.2)

n̂(y) ) 1

x1 + γ′(y1)
2(-γ′(y1)

1 ) (10.3)

∇‚n̂(y) ) - d
dy1( γ′

x1 + γ′2) ) -C(y1, γ(y1))

) -C(y)
(10.4)
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Hence, we have

or

where li is the fraction of the total perimeter of the drop
which is on surface composed of material i and λi is the
line tension for this surface. The angle θi and curvature
Ci are defined as before and can be measured for any drop
on any flat surface i providing both measurements are
taken at the same point. Equation (10.7) can be written
quite succinctly as

if line tension contributions are negligible.
From a theoretical point of view (10.7) is preferable to

(7.6) as
(i) Only one (the most likely) contour is considered.
(ii) It is a local equation and it is only the surface in the

immediate neighborhood of the contact line that is needed.
It would be obviously foolhardy to use (7.6) for a surface
half of which is purely hydrophobic, for example, and the
rest consisting of alternating hydrophobic and hydrophilic
strips if the drop sits entirely in either of these two regions.
Equation (10.7) requires no assumptions about the nature
of the heterogenieties.

(iii) There is explicit dependence on the droplet shape
due to the last integral term (remember that n̂ is the
normal to the contact line).

Experimentally, during the past decade a variety of
techniques have been developed in order to measure
surface topographies on small scales. One pertinent
example is provided by atomic or scanning force micros-
copy, which makes it possible to measure the precise shape
of small droplets on nanometer scales and so, the exact
location of the contact line, see e.g., ref 23. Similar
techniques can also be used in order to determine the
chemical composition of the substrate surface. Conse-
quently, one may obtain an estimate for the variation of
the line tension λ along the contact line ∂Γ. Therefore, it
seems probable that the line integral in (10.7) can be
determined experimentally from a careful analysis of
scanning force micrographs. Hence, we can expect (10.7)
to be of some practical use.

11. Conclusion
In this paper, by introducing a novel minimization

scheme of the free energy, we have found the most general
form of the Young equation. Equation (4.4) is valid for
substrates both chemically and geometrically inhomoge-
neous and under the influence of gravity. Taking ad-
vantage of this new result, we have looked again at the
phenomenological laws of Cassie and Wenzel and exam-
ined their statistical mechanical foundation.

To recover (6.1) and (6.2), two strong assumptions are
needed: (i) the dependence of the contact angle on the
shape of the drop has to be ignored and (ii) all locations
of the droplet are taken to be equally likely. These two
assumptions lead to the estimate (6.8) for the effective
contact angle.

A new insight, that our approach has brought to light,
is the interpretation of the contact angle θi and contact
line curvature Ci in the Cassie (7.6) and in the Wenzel
(8.8) equations. Recall that here the index i distinguishes
between the different compounds or chemical species in
the substrate surface. When using these results, it is
vitally important to realize that θi and Ci are present in
the exact combination described by the planar Young’s
equation (5.3); i.e., for each substrate component i, σ cos
θi - λi Ci always appears, which is identically equal to σiR
- σiâ. Therefore, when we wish to understand (7.6) and
(8.8) on a practical level, the effective contact angle is
determined by the ratios fi or r and by the value of σiR -
σiâ for the surface i under investigation. Due to the
universality of Young’s equation (5.3), the actual θi and
Ci used are irrelevant, in the sense that they need bear
no relation to the droplet shape observed in our current
experiment. All that is required is that they are measured
at the same position in space for any drop of â in R phase,
providing it lies, at that point, on a surface domain
composed of the substrate compound i. Young’s equation
then guarantees that the measured values of θi and Ci,
when used in the Cassie or Wenzel laws, will simply
combine to give σiR - σiâ as required. To reiterate, due to
the particular way they occur in (7.6) and (8.8), θi and Ci
have, in general, no relation to the actual shape of the
droplet on a heterogeneous substrate.

Within this remit, the relation (9.3) is proposed which
relates the effective contact angle on a substrate with
both geometric and chemical heterogeneities to those on
simple planar surfaces. We also find the new relation
(10.7) for the effective contact angle on a chemically
heterogeneous substrate, which is true generally and
requires none of the above assumptions. Consequently,
the influence of the surface on the shape of the wetting
droplet is taken into account. As discussed in the previous
section, the line integrals which appear in the new relation
(10.7) for the effective contact angle can be estimated from
scanning force microscopy data of the droplet shape. Such
an alternative approach does not recover a local form of
Wenzel’s rule, possibly because this rule does not involve
an average of the true contact angle but rather of a local
planar one.

12. Glossary

A surface area of rough substrate
Aπ surface area of planar substrate
Cg(y) geodesic curvature of triple phase line at y
fi fraction by area of planar substrate covered by

material i
F[h,Z] free energy of system relative to a simple planar

wall-R interface
g acceleration due to gravity
h(y) height of Râ interface above the y plane
li fraction of total perimeter of drop which is on

surface of material i
n̂(y) unit normal to the triple line for a planar substrate
m̂(y) unit vector normal to substrate and to the tangent

vector to the triple phase line at y
Q(h;Z) potential for external forces acting on drop
r ratio of true to planar surface area of the substrate

(23) Herminghaus, S.; Fery, A.; Reim, D. Ultramicroscopy 1997, 69,
211.

∇‚n̂(s) ) -C(s) (10.5)

cos θeff ) ∑
i

li (σiR - σiâ) -
I∂Γ ds∇‚(λ(s)n̂(s))

I∂Γ ds
(10.6)

cos θeff ) ∑
i

li (cos θi -
λiCi

σ ) -
I∂Γ ds∇‚(λ(s)n̂(s))

I∂Γ ds
(10.7)

cos θeff ) ∑
i

li cos θi (10.8)
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ri ratio of rough surface area covered with material
i to total planar area

R radius of the circular configuration taken up by
the contact line in an axially symmetric system

Rπ radius of curvature of a drop on a planar,
homogeneous substrate

s arc length parameter of triple phase line
V(h;Z) effective interfacial potential due to intermolecu-

lar forces
V volume of drop
y two-dimensional planar vector, y ) (y1, y2)
Z(y) height of substrate above the y plane

Z2 mean square height of substrate

Y point where the contact line meets the y1 axis
γ(y1) a certain parametrization of the triple phase line
Γ area covered by drop
∂Γ contact or triple phase line
∆p pressure difference between R and â phases

∆F density difference between R and â phases
θ(y) contact angle of drop at y
θeff average contact angle taken up by the drop on a

heterogeneous substrate
θπ(y) angle between the surface of the drop and a local

horizontal plane at y
λ line tension of contact or triple phase line
F distance from the axis in an axially symmetric

system, F ) (y1
2 + y2

2)1/2

σ interfacial free energy of Râ interface
σwR wall-R interfacial free energy
σwâ wall-â interfacial free energy
φ(y) slope angle of rough substrate at y
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