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The influence of non-anchored polymers on the membrane curvature of vesicles is studied
theoretically. The interaction between polymer and membrane consists of a hard-wall
contribution, which prevents the polymer from penetrating the membrane, and an additional
attractive potential which can lead to polymer adsorption onto the membrane surface.
The vesicle membrane divides space into an interior and an exterior compartment. These two
compartments are taken to be osmotically balanced but may contain different polymer species.
The polymer-induced curvature of the vesicle membrane is calculated as a function of the
adsorption strength which is described by the inverse extrapolation length. For strong
adsorption, the membrane bends away from the adsorbed polymers whereas it bends towards
the polymers for complete desorption. The polymer-induced curvature changes its sign at
a characteristic adsorption strength below the adsorption transition which corresponds to

a positive value of the inverse extrapolation length.

1. Introduction

Composite systems, which contain polymers, nano-
particles, or colloids in contact with fluid membranes,
form simple models for biological membranes and are
promising candidates for biotechnological applications
[1]. Explicit experimental examples include polymers
which are attached to membranes via lipid/hydrophobic
anchors [2, 3] as well as water-soluble polymers which
are confined in lamellar membrane stacks [4]. A separate
line of experimental research has been performed on
the growth of nanoparticles in closed membrane
shells [5, 6].

From the theoretical point of view, one should
distinguish several distinct systems. The presumably
simplest situation is provided by polymers which are
anchored with one end to the membranes. Each
anchored polymer suffers a loss of configurational
entropy by the presence of the membrane [7]. If all
other polymer segments experience effectively repulsive
interactions with the membrane, the polymer forms
a mushroom which entropically bends the mem-
brane away from it [7-12]. In addition, the polymer
mushrooms increase the bending rigidity of the
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membranes [8, 12]. The latter effect has been confirmed
experimentally [13]. Another mechanism for the genera-
tion of membrane curvature is provided by ensembles of
anchored molecules which are rigid but undergo
collisions because of their lateral diffusion within the
membranes [10, 14].

If the polymer—-membrane interaction contains
a sufficiently strong attractive part, the anchored
polymers form adsorbed pancakes on the membranes
which can bend towards or away from the polymers
[9, 15-17]. This non-universality was first found for
spherical and conical membrane segments with a
curvature-dependent extrapolation length [9, 15]. A
self-consistent calculation of the membrane shape in
the presence of the adsorbed polymers showed that the
sign of the polymer-induced curvature depends on
the relative size of the anchor segment and the range
of the attractive polymer—-membrane interaction [16].
In all cases, the membrane curvature decreases mono-
tonically as one increases the strength of this attractive
interaction (using the convention that the membrane
curvature is positive and negative if the membrane
bends away from and towards the anchored polymer,
respectively).

In the present article, we consider aqueous solutions
of vesicles and dispersed polymers without any anchor
segments. The vesicle membranes are impermeable for
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(a) (b)

Figure 1. Three different systems with a membrane separating an exterior (up) and an interior (down) vesicle compartment:
(a) the exterior compartment contains adsorbing polymers whereas the interior compartment contains desorbing ones. In this case,
the membrane bends away from the adsorbed polymers and towards the desorbed polymers. (b) The polymers are adsorbed on the
membrane, whereas the colloids are desorbed. The membrane bends again away from the adsorbed polymers. (¢) Two different
types of nanoparticles: the membrane bends away from the adsorbing and/or smaller particles.

the polymers which implies that the polymers in the
interior vesicle compartments cannot explore the exter-
ior compartment and vice versa. Therefore, the presence
of the vesicles leads to an additional loss of translational
entropy for the dissolved polymers. This translational
entropy loss does not depend on the internal structure of
the dissolved particles and, thus, is also present for rigid
nanoparticles or dispersion colloids.

The non-anchored particles may be repelled from or
attracted towards the membrane surfaces. If these
particles are repelled from the membranes, depletion
layers are formed in front of these membranes which
increase the excess free energies of the membrane—water
interfaces [18]. In such a situation, the membranes bend
towards the particle solution in order to decrease the size
of the depletion zone [19, 20]. On the other hand, if
relatively small particles are adsorbed onto the mem-
brane, the Gibbs adsorption equation implies that the
membrane tends to bend away from the particle solution
in order to increase its area [20]f.

In general, the two spatial compartments, which are
separated by the membrane, may contain identical or
different polymer solutions. For the symmetric case with
identical polymer solutions on both sides of the
membrane, the polymers do not induce any ‘sponta-
neous’ membrane curvature, and their main effect is
to modify the membrane’s bending rigidity. This effect
has been studied by molecular field theories [21-24],
perturbation expansions [25] and computer simulations
[26]. On the other hand, for the asymmetric case, the two
compartments contain distinct polymer solutions and
a ‘spontaneous’ curvature will be induced in the
membrane. The latter situation was studied for ideal
polymers in [27] but this study concluded that mem-
branes bend away from non-anchored polymers if these
polymers are not adsorbed onto the membranes.

However, subsequent theoretical studies both for ideal
[19, 28] and for non-ideal polymers [19] led to the
opposite sign for the polymer-induced curvature.

In this article, we will reconsider this asymmetric
situation, i.e. we will consider mixtures of vesicles and
non-anchored polymers for which the interior and
exterior vesicle compartments contain different aqueous
solutions. The specific situation which we have in mind
corresponds to vesicles which have been prepared
in a certain polymer solution and are subsequently
transferred to another solution. We will study the
dependence of the polymer-induced membrane curva-
ture on the polymer—-membrane interactions which we
vary from purely repulsive to strongly attractive. We
find that the membrane bends towards the non-adsorbing
polymers but bends away from the adsorbing ones. This
implies that there is an intermediate adsorption strength
at which the polymer-induced curvature changes its sign.

Within our theoretical models, the strength of the
attractive polymer—-membrane interactions is described
by the so-called extrapolation length [29, 30]. Since these
interactions may differ on the two sides of the
membranes, we consider the general situation of two
different extrapolation lengths for the interior and
exterior vesicle compartments. The polymers are taken
to behave as ideal chains corresponding to the
experimentally accessible case of polymers in 6-solvents
for which the excluded volume interactions between the
polymer segments are balanced by their attractive
interactions.

In addition to polymer solutions, we also treat
solutions of spherical nanoparticles or colloids as
previously considered in [20]. Therefore, our theoretical
results apply to a variety of dispersions as shown in
figure 1: (i) both the interior and the exterior vesicle
compartments contain dissolved polymers as in

+The size of these particles should be small compared to the membrane thickness; otherwise, the membranes will tend to wrap

around the particles.
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figure 1 (a); (ii) these two types of compartments contain
rigid nanoparticles and polymers, respectively, as in
figure 1 (b); and (ii1) both types of compartments contain
spherical nanoparticles or colloids, as in figure 1(c).

In cases (i) and (ii), the polymers lose both transla-
tional and configurational entropy by the presence of
the non-permeable membranes. In case (iii), the
spherical nanoparticles lose translational entropy only
and we recover the results of [20].

Our article is organized as follows. In section 2, we
define the partition function of a single polymer chain
in contact with a vesicle membrane. We first discuss
general polymer—membrane interactions and then
introduce the extrapolation length for the attractive
part of these interactions. In sections 3 and 4, we
calculate the partition function for a single polymer
chain which can explore the whole exterior or interior
vesicle compartment. We will describe two different
calculational methods which give identical results.
In section 5, we generalize our results to polymer
solutions characterized by different chemical potentials.
The corresponding partition functions for colloidal
dispersions are discussed in section 6. Finally, section 7
describes our main results for the membrane curvature
induced by non-anchored polymers and colloids.

2. Single polymer chain close to spherical vesicle

We first consider a single polymer chain close to a
spherical vesicle. The polymer is characterized by its
end-to-end distance which is denoted by Ry ex and Ry in
if it is located within the exterior or interior vesicle
compartment, respectively. Since the chain is taken to be
ideal, the end-to-end distance satisfies the relation

R, = a,N'"?, (1)

where a, denotes the Kuhn length and N is the number
of monomers or statistically independent polymer
segments.

In this section, we determine the partition function of
a single chain with one of its ends anchored in the
exterior compartment. The anchor point is not located
on the vesicle membrane but has an arbitrary distance
from this membrane. In the next section, we will then
sum over all possible locations of this anchor point.

In the following, we start from the situation of a
polymer chain for which both ends have a fixed location
and then integrate over all configurations of one end.
We show how the corresponding partition function for a
curved membrane surface can be transformed into the
one for a planar membrane surface. Finally, we describe

the attractive polymer—membrane interaction in terms
of the extrapolation length.

2.1. Path integral representation of partition function

Let us first consider a single, ideal polymer chain in the
presence of a force potential ' which corresponds to
the potential energy per monomer or bead. The spatial
position of the beads is described by the Cartesian
coordinates r = (ry,r,r3). If the two end points of the
polymer are fixed at r =ry and r =ry, the reduced
partition function Z of the polymer satisfies the
Schrédinger-type equation as given by

0 M(y) _ ‘ _
|:8N_ 6A + i|Z(r0,0|y,I\O_O with y=ry,

2
where N is the total bead number, a, is the Kuhn length
and T is the temperature in energy units. This differential
equation is supplemented by the ‘initial’ condition

Z(xo,0lry, N = 0) = 8(rg — ry). 3)
The solution of the Schrédinger-type equation (2)

together with the ‘initial’ condition (3) is given by the
path integral

N 2
Z(ro,0lry, N) = /D/{r} exp <—222/0 dn[(fnr(n)}
p
N V(r(n)
—/0 dn T ) 4)

with the abbreviation

f Dir} = / DI — oo k(V) —ral, (5)

where the internal coordinate n of the chain varies
between 0 to N. We now change variables from n to
the contour length s=n/N with 0 <s <1, and sum
the partition function over all possible positions ry
of the second polymer end. This leads to the new
partition function

2
Z(rg) = /D{r}zS[r(O) — 9] exp ( 222/ ds[—r(s):|

b V()
— /0 ds—T ) (6)
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for an ideal polymer chain with one of its ends anchored
at r=rg, where R, =a,N'/? denotes its end-to-end
distance as in (1).

2.2. Polymer chain with one anchored end point

The path integral representation of the partition
function as discussed in the previous subsection is rather
general and applies to any geometry. We will now focus
on the situation in which the force potential arises from
the membrane of a spherical vesicle with radius R, as
shown in figure 2. The centre of the spherical vesicle
surface is placed at the origin of the Cartesian
coordinate system with r = (0,0,0). In addition, this
coordinate system is rotated in such a way that the
anchored end point of the polymer is located on the
ry axis with

rop = (0, 0, r3) = (0, 0, R()), (7)

see figure 2. We will also use the notation r = (ry, r,) for
the two Cartesian coordinates perpendicular to rs.

The vesicle membrane partitions space into two
separate compartments, the interior and the exterior
compartments which will be indicated by the subscripts
‘in’ and ‘ex’. In the next subsections, we will first discuss
the situation in which the polymer is located in the
exterior compartment as shown in figure 2. The
corresponding partition function is denoted by Z.(Ry).

In order to calculate Z(Ry), we will apply a small
curvature expansion as developed previously in
[10, 16] which applies to the limit of large vesicle radius
R > R, In this latter limit, a polymer chain which is

nrf“

At

R,

R

r

Figure 2. Single polymer in the exterior compartment out-
side a spherical vesicle of radius R. One end of the polymer is
anchored at distance R, from the origin of the coordinate
system. The latter system is chosen in such a way that the
anchor point has the lateral coordinate r(0) = (r(0),
(0)) = (0,0) and, thus, r3 = Ry. The difference Ry — R, i.e.
the distance of the anchored end from the membrane surface
will be denoted by po.

anchored above the ‘north pole’ of the spherical vesicle,
see figure 2, will not explore the lower half space with
r3 < 0. It is then convenient to consider the auxiliary
surface as defined via

R(1—r?/R)'*  for |r| <R,

I(K)E{o for |r|>Rr O

The surface as defined by (8) is taken to be impene-
trable for the polymer chain. In addition, the spherical
surface corresponding to the vesicle membrane exerts
a short-ranged attractive potential onto the polymer
beads. Thus, a bead located at r experiences the
attractive potential V,(Jr| — R) which depends on the
distance, |r| — R, of the bead from the spherical surface.
In the limit of small curvature 1/R, this distance
behaves as

1 11
Irl = R~ 13 = 1) + 5 (] +r§)<g—§>
AV3

1
~ry—Ir) — E(V% + ’%)F ©))

with Ar; = r; — R which is of order O(R"). Thus, the
short-ranged attractive potential }/, behaves as

Va(It] = R) = Va(ry — () + O(1/R*)  (10)

for small curvatures 1/R. Since we will limit our
calculation to first order in 1/R, we can simply replace
Va(r] — R) by Vu(rs — I(r)) as will be done in the
following.

In this way, we arrive at the partition function

31 [d 7
Zex(Ro) = /D’/{r} exp —F/O ds[ar}
p.ex

b Valrs — (1)
—/0 ds#) (11)

with the abbreviation

f D'ir) = / DO [ Dirs)olr(0) — Rol. (12)

)

where Ry is the end-to-end distance in the exterior
compartment which may, in general, differ from the
corresponding distance in the interior compartment.
Note that the hard-wall interaction between the polymer
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beads and the membrane surface has been incorporated
by the lower bound /(r) for the integration over the
displacement field r5.

We will now change variables from r3 to r; = r3 — I(r)
and wuse the small curvature expansion [(r)=
R—1r?/2R+O(R™?) which follows from the
definition (8) of the height variable /. As a result,
we obtain the expression

_ _ 3 ' Td 2
Ze(Ry = [ DU} [ Dt ex (—2 o [ @ gmo] )
p.ex
301 1d 152\ 1
X exp <_2R§,ex/0 ds[ds<r3(s)— R )i|

: Va(r3)
—/0 dsT) (13)

with

f Dir} = f h D{r}8[r(0)] and

/ Dirs) = /0 Dirs)olrs(0) — Rol, (14)

where the dummy variable r§ was again denoted by r;.
Note that the partition function (13) has two appealing
properties: (i) the variable r3; = r3(s) is now restricted
to the half space with r; > 0; and (ii) the vesicle radius
R enters only via the ‘gradient’ term [(d/ds) (r3(s) —
(s)?/2R)]>. Note also that the vesicle radius R and the
anchor distance R, which both enter the above expres-
sion for the partition function Z(Ry), satisfy R < Ry.

2.3. Contact potential and extrapolation length

In general, the attractive potential V, between the
membrane surface and the polymer beads will depend
on many parameters. In order to reduce the number of
these parameters, we will now consider the limit of a
contact potential which is characterized by a single
parameter, namely the extrapolation length ¢, [29, 30].
In this case, the Schrodinger-type equation (2) does not
contain any potential term but is supplemented by an
additional boundary condition at the membrane surface
which depends on ..

In general, the extrapolation length scale may differ
on the two sides of the membranes and we will, thus,
distinguish £ i, from £, . For the exterior compart-
ment, the boundary condition for the partition function

is then given by

n- er_ex(r07 Olry, N) = Z_ex(IOa Ory, N)/Le,ex
for ry located on the surface, (15)

where n is the normal vector on the membrane
surface pointing into the outer polymer solution. The
corresponding boundary condition for the interior
compartment is obtained if we replace € ex by Lein
and change the direction of the normal vector n.

In the case of a purely steric repulsion, i.e. in the
desorption regime, the polymers are repelled from the
membrane surface, leading to a depletion zone in which
the monomer density decreases. In the limit of strong
adsorption, the polymers prefer to be close to the
membrane surface. Consequently, the monomer density
in the vicinity of the membrane increases and the
polymers form an adsorption layer on the membrane.
In contrast to the situation of anchored polymers, where
the bending of the membrane is governed by the
changes in the configurational entropy of the polymer
[7, 8, 10, 11, 16], in the case of non-anchored polymers
studied here, the curvature is governed by both the
configurational and the translational entropy of the
polymers. The desorption limit of purely steric interac-
tion corresponds to large positive 1/€..x, whereas the
adsorption limit corresponds to large negative 1/f¢ey.
Both regimes are separated by the adsorption—
desorption transition at 1/f..x =0. Note, that this
transition is a genuine phase transition only in the
limit of an infinitely long chain. For finite chain lengths
and finite concentration, the adsorption and desorption
regimes are distinguished by increased and decreased
monomer densities in the vicinity of the membrane.

3. Curvature expansion of partition function

In order to calculate the effect of a polymer on the
membrane curvature, we will now study the dependence
of the polymer partition function on the vesicle radius R.
As previously mentioned, the partition function (13)
depends on R only via the ‘gradient’ term [(d/ds)(r3(s) —
#(s)?/2R)]. Tt is then straighforward to expand this
expression for the partition function in powers of 1/R
which corresponds to a small curvature expansion.

If the polymer is anchored in the exterior compart-
ment, the radius R, of the anchor point must satisfy
Ry > R, see figure 2. It is now convenient to define the
shifted radius

po=Ro—R (16)
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of the anchor point and to keep p, fixed as both R and
Ry go to infinity.
As a result, one obtains

1 .
Zes(R+po) = )~ ZE(po)R™"  with
n= 0
dl
=Rl (17)
= (/R |1 ke

The first, R-independent term of this expansion is
given by

29 (00) = f ExeZi(Olx,. 1)

/ d=eZ8 (plze, 1), (18)

where the coordinate (x,, ze) represents the location of
the end-point of the polymer. In the lateral directions,
the polymer moves freely and is thus described by the
free space partition function as given by

3 1 3 x?
Zi;(0lx, s) = TR &P < AR ) (19)
p.ex

p.ex

In the perpendicular direction, the movement of the
monomers is restricted to the half space (hs). The
corresponding partition function reads [31]

eex

(polz, s)

_ (i) RN PO Gt
2ns)  Rpex 2 R]% o
3 (z+ )
+exp (— % ﬁ

1 Riee z+4p
— ex — 5+
lor T (w Cees

e.ex
x erfc Rp.ex <£> l/2+ (i) Fata (20)
Leex \O 2s Rpex |’

in which, according to (15), the contact potential has
been replaced by the characteristic extrapolation length
Leex for the half-space. Here and below, the symbol erfc
denotes the complementary error function

erfc(x) = #/ dt exp (—1%)

~ exp (—x?)/n'/?x  for large x. (21)

In the perpendicular direction of equation (18), the
integration with respect to the polymer endpoint

e”x(p )= [y dzZ Z”*(p0|ze, 1) yields the probability
of finding the starting point of the polymer at a distance
po from the planar wall. Far away, this probability is 1
due to the normalization of the partition function. Close
to the surface, the probability will decrease in the case of
desorption and increase in the case of adsorption. Thus,
for large values of z, the integrated partition function
Z “*(pp) leads to the bulk behaviour, whereas for small
values of po one finds the desorption/adsorption
behaviour.

Insertion of the two partition functions into (18) then
leads to

ZQ(00) = 1+ AZE)(po) (22)

with

N2 gy
AZO(p) = —erfe (2
ex (:00) eric <(2> Rp,ex)

R N oo
f p.ex -
+ erfc (61/2%“ + 5 Ro.or

2
X exXp Ry en + il (23)
665 ex e ex .

The asymptotic behaviour of the complementary error
function as given by (21) implies that

Zg?()(po) ~ 1 for large py. (24)
In the next section, we will consider non-anchored
polymers and, thus, integrate over the anchor radius R,
or po = Ry — R respectively. Because of (24), the leading
term obtained from this integration is proportional to
the exterior volume.

In the next order, the expansion of (13) in powers of
1/R leads to the first-order term

30 d| & 1)
(1) _ . A7
2= dsds|:/D{L} :
xexp( 2R32 /ds —r(s) )i|
p,ex
x—[/D{r%}lz(S)exp( 2R]23ex/ |:—73(S):|

1
—/ dsV[r3(s)]):|, (25)
0
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where the integration symbols have been defined in (14).
Integrating out the polymer degrees of freedom leads to
the first-order term

Z8 (o)
= |:/0 dz/o dz. 2 (polz, )22, (zlzen 1 — s)] .

(0 + Leex) AZV(00) (26)

1

with AZY as defined in (23).

4. Non-anchored polymer chain close to spherical vesicle

So far, we have considered a single polymer that is
anchored at one of its ends which has the fixed distance
R, from the origin or py = Ry — R from the membrane
surface, see figure 2. In the present section, we will now
allow this end to move in a certain exterior volume Ve
around the vesicle and, thus, consider non-anchored
polymer chains.

For anchored polymers, the bending of the membrane
is governed by the configurational entropy of the
polymer [7, 8, 10, 11, 16]. For non-anchored polymers,
the situation is more complex since the curvature is now
governed by both the configurational and the transla-
tional entropy of the polymers. In order to avoid
over-counting of polymer configurations, we assume,
that the polymer starting and end-point are chemically
different and thus distinguishable. However, both ends
are taken to experience the same monomer—membrane
interaction.

4.1. Geometry

If we move the anchored polymer far away from the
membrane, the anchor distance R, becomes large and
the polymer partition function becomes equal to one as
in (24). Therefore, in order to obtain a finite integral, we
now restrict the integral over all possible positions of the
anchored end by introducing an auxiliary spherical
surface with radius R+ L as shown in figure 3.
Inspection of figure 3 shows that the exterior
compartment is now bounded by the spherical vesicle
surface with radius R and by the spherical auxiliary
surface with radius R+ L. Therefore, the distance R, of
the anchored end from the origin of the coordinate
system is now restricted to R < Ry < R+ L. The
spherical membrane surface is impenetrable for all
segments of the polymers. In contrast, the spherical
auxiliary surface with radius R+ L is only impenetrable
for the ‘starting’ end-point of the polymers but is
penetrable for the remaining segments of the polymer
chains. We will calculate the partition function for finite

Figure 3. Spherical vesicle of radius R in contact with two
polymer solutions. In general, the interior and exterior
compartments will contain different polymers. In order to
define the system in such a way that it has a well-defined
thermodynamic limit, the exterior volume is bounded by a
spherical surface (dashed) of radius L+ R. The latter surface
represents a hard, impenetrable wall for one end-point of the
polymers (filled circle) but is penetrable for the remaining
segments of the polymer chains. The vesicle surface (thick line)
is impenetrable for all polymer segments. Only one half space
of the system is shown. For a polymer chain anchored at the
r3 axis with r3 = Ry > R as in figure 2, the other half space
below the dashed horizontal line plays no role. However, when
integrating over Ry, we include both half spaces.

L and then define an appropriate excess quantity that
is finite in the limit of large L.

4.2. Small curvature expansion

The partition function of a freely moving polymer in the
exterior volume is given by

L
20 —an [ dm(R+ o ZaRot ). D

As before, the partition function Z(R+ pg) corre-
sponds to a single polymer with one end-point fixed at
R+ py = Ry > R in the exterior compartment.

As explained before, see figure 3, only the spherical
membrane surface of radius R is impenetrable for the
polymer chains and therefore leads to configurational
changes of the polymers in its vicinity. The outer sphere
provides a boundary only for the translational motion
of the polymers in the bulk and, thus, only for one of its
end points, see figure 3. Thus, in order to perform the
limit of large L, one must first subtract the volume part
corresponding to the translational movements of the
polymer in the bulk system. In this limit, one obtains
the partition function difference

AZ., = dn [ doo(R + po [ Ze(R+ po) — 11, (28)
0

which is independent of L.
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Inserting the expansion of the polymer partition
function Z(R+ po) as given by (17), (22) and (26)
into expression (28), we obtain

AZex ~ 47[/ de [R2 + (,00 - Ee,ex)R] AZS;)()(:OO) (29)
0

for a single polymer in the exterior compartment up to
and including all terms of order R with AZY as in (23).
Performing the final integral over the polymer starting

point R, leads to
AZy = —4nR*A; — 4nRA;| + O(R), (30)

with

I\ 12
A, = (ﬁ) Rp,ex + Ee,ex

Ryp.ex Rpex
x erfc (61/;2; cx) €Xp (ﬁ) - Ze,ex (31)

€,ex

and

6 3n

Rpex RYex
x erfc (61/21352 ex) exp (ﬁ) + 2£§’ex. (32)

R2 ) 1/2
Ay =D 2(-) Rpexleex — 202

e,ex

In a similar way, one can calculate the partition
function Zj, of a single polymer of size Rp;, in the
interior vesicle compartment. This partition function is
defined via

R
Zin = 41 / dRy R Zin(Ro)
0

0
—dn / AR+ OZnR 4 ). ()

We now use the path integral representation for the
partition function Z;,, compare with the corresponding
expression (11) for Z.,, make the analogous change of
variables from r3 to r3—I(r), compare with the
transformation from (11) to (13), expand the resulting
expression in powers of 1/R, and subtract the constant
bulk term. In this way, we arrive at the small curvature
expansion for the partition function difference

AZi, = —4nR>B, 4+ 4nRB; + O(R") (34)

with
2\ 172
h = ﬂ Rp,in + Ze.in
4 2
X erfe (61/2102: ‘n) o (6;;1) e
L1 e,in
and
R, 2\ Ry,
— p.in . H 2 o
Bl = T — 2(311:) Rp,mee,lll - 2£e,in erfC (61/2£e’in>
RZ.
X exXp (6;;,“) + 2£§,in» (36)
e,in

which has the same form as (30) apart from the change
of sign for the term of order R.

Note that expressions (30) and (34) for the exterior
and the interior compartment both vanish in the limit of
small polymer size Ry« and Ry ;n, respectively. Indeed,
in the limit of small polymer sizes, there is only a single
conformational state of the polymers that is contained
in the bulk term and has been subtracted in order to
define the partition function differences.

4.3. Non-perturbative calculation

For a spherical surface, the partition function of a single
polymer can also be calculated in closed form. If one end
of the polymer is anchored at distance R, from the
origin and the spherical vesicle surface has radius R as
before, one obtains the explicit expression [32]

1
T T R/B( T /R

1/2
X |:Zf — erfc((%) %)} (37
p

ZR(R) =1

with

R 3\'*R I (R, R
= 2y 20, - (B,
Z; =erfc ((2> ) + 572 (ZE + >

1(R, R,\> (Ry Ry
X €Xp (6 <€§+R) +<€§+R)>a (38)

where R, and ¢} are the polymer size and the extra-

polation length at the spherical surface, respectively.
The extrapolation length ¢} depends on the curvature

I/R of the spherical surface. Using a square well
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potential and performing the contact potential limit of
vanishing potential range and infinite depth, the
extrapolation length behaves as ¢} ~ ¢.(1 + ¢./R) for
small curvatures 1/R where £, is the extrapolation length
in the half-space as used above. If one inserts this
expansion for the extrapolation length into the partition
function as given by (37) and expands the resulting
expression in powers of 1/R, one recovers the two
expressions (30) and (34) for the exterior and interior
vesicle compartment. This provides an explicit check of
the perturbative calculation.

5. Many polymer chains close to a spherical vesicle

So far, we have considered the partition function of a
single polymer chain. We now extend our calculation to
the case of many chains. As before, we will consider
ideal chains and, thus, ignore the effects of self-
avoidance. The basic geometry is again the one sketched
in figure 3. The exterior volume accessible to the
polymers is given by the spherical shell of thickness L.
Thus, we define the exterior and interior volume by

Ve =4n(L+ R —RY/3 and Vi, =4nR3/3, (39)
respectively, and the total volume by
V = Vex + Vin. (40)

The interior and exterior compartments contain N, and
Nin polymers, respectively.

5.1. Osmotic conditions

For dilute solutions and non-interacting polymers, the
osmotic pressure difference AP across the membrane is
given by AP = T(nex — njn), where ngx = Nex/Vex 1S the
polymer number density in the exterior compartment,
and nj, = Niy/Vin 1s the polymer number density in the
interior vesicle compartment. The osmotic pressure can
be balanced by choosing the same number density on
both sides of the vesicle. The combined grand canonical
partition function for the polymers on both sides of the
membrane is given by

26 = Z2G,exZG.in> (41)

where Zg o and Zgi, are the grand canonical
partition functions for the exterior and interior com-
partment, respectively. For non-interacting polymers
as considered, the grand canonical partition functions
factorize and can be expressed in terms of the partition

functions Z; with i=-ex,in for the single polymers.
The corresponding expression is given by

z V1 B tiZi
Zgi= ;I exp (MiNt/T)[X_#] NI xp (Aﬁ)

(42)

with the chemical potentials u;, the thermal de Broglie
wavelength A7 = h/(21tmpT)l/2, which depends on the
Planck constant /2 and the polymer mass my,, and
the fugacities ¢; = exp (u;/T), which are connected to
the average number of particles in the bulk Ny ; by the
relation §[:AT3Nb,,-/Z,-. Because the bulk term of
the single polymer partition function is given by the
bulk volume, the fugacities are proportional to the bulk
number densities 7y, ; of the polymers, and ¢; = )\T3nb,,-.

Since the osmotic pressures on both sides of the
membrane are taken to be equal, we can simplify
the notation and put

Np = Np,ex = Nb,in> C = Cex = gin and
W = Hex = Min- @3)

The grand canonical potential or free energy of the total
system is given by

F = _Tanex — Tanin (44)

and is, thus, expressed in terms of the partition functions
Zex and Zj, of a single polymer. Since we are interested
in the free energy difference between the system with
and without vesicle, we will calculate the grand
canonical potential difference AF = F — Fp, where
Fp is the grand canonical potential for the bulk system.
Our normalization convention implies that the bulk
partition function of non-anchored polymers is equal to
the volume. This leads to Fy = —TnyV. The grand
canonical free energy difference is thus given by

AF =F +TnyV = —-Tn(AZ + AZy) (45)
with the partition function differences
AZex = Zex - Vex and AZin - Zin - Vin (46)

for a single polymer as calculated in section 4.2. In this
way, the grand canonical free energy difference for
a solution of many chains has been expressed in
terms of the partition function differences for a single
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chain. An analogous calculation holds for a solution
of colloidal particles, for which one has to calculate the
partition function for a single colloid, see next section.

5.2. Curvature expansion of fiee energy

The expression (45) for the grand canonical free energy
difference is proportional to the membrane area
A = 4nR? and, thus, diverges for large radius R or
small curvature 1/R as ~ R’?. In order to obtain a
regular curvature expansion, it is convenient to consider
the corresponding free energy density AF /A which is the
grand canonical free energy difference per membrane
area. A systematic curvature expansion of this quantity
is obtained in terms of the two principal curvatures 1/R;
and 1/R, of the membrane surface which define
the mean curvature M = (1/2)(1/R; + 1/R;) and the
Gaussian curvature G = 1/R;R,. This leads to the
general form [8]

AF|ARfo+/i M+ LM + f,G (47)

for small curvatures M and G.

For a vesicle in contact with two polymer solutions in
the interior and exterior compartment, the first two
expansion coefficients fy and f; can be obtained from the
curvature expansions for AZ, and AZ;, as given by
(30) and (34). When these latter expressions are inserted
into relation (45) for AF, one obtains

Jo = Tnp(A2 + B) (48)

with 4, and B, as given by (31) and (35) and
Ji = Tnp(A4) — By) (49)

with 4, and B as given by (32) and (36).

In order to determine the coefficient f; in the
curvature expansion (47) of the free energy density,
one has to consider the single polymer partition
functions both for a spherical and for a cylindrical
membrane surface, and expand these partition functions
up to order R” in the radius R of the sphere and the
cylinder, respectively. This is explicitly done in the next
section for aqueous solutions containing non-adhesive
nanoparticles or colloids. For solutions containing
non-adhesive polymers, the general form AF =
—Tny(AZ + AZiy) as given by (45) together with
dimensional analysis implies that

‘fz = Tl’le;er(Rp,in/Rp,ex)’ (50)

where Rpex and R, denote again the end-to-end
distance of the polymers in the exterior and interior
compartment, respectively, and Q(x) is a dimensionless
function which depends on the ratio x = Rpjn/Rpex Of
these two length scales.

6. Non-adhesive nanoparticles or colloids

In this section, we consider nanoparticles or colloids
which are spherical with radius Rcex and Rg, in the
exterior and interior compartment, respectively. These
particles are taken to be non-adhesive and thus
experience only hard core interactions with the
membrane. In this case, the excess free energies can be
casily calculated both for a spherical and for a
cylindrical membrane surface.

6.1. Spherical membrane surface

First, let us again consider a spherical membrane surface
with radius R as in figure 3 and a single nanoparticle
with radius R.ey in the exterior compartment at distance
R, from the origin with Ry > R+ Re. In the limit of
large thickness L of the auxiliary spherical shell,
compare figure 3, the partition function for this
nanoparticle is simply given by

Z:f(R()v R) = Q[RO - (R + Rc,ex)]a (51)

where 6(x) is the Heaviside step function with 6(x) =0
for x < 0 and 6(x) = 1 for x > 0. Likewise, the partition
function of a single colloid in the interior compartment
is equal to

ZP(Ro) = O[(R — Rein) — Ro)]. (52)

Inserting these expressions into (27) and (33) leads to
the single colloid partition functions, which correspond
to the volumes accessible to these particles. Therefore,
one obtains Z = dn(L + R)*/3 — 4n(R + Reex)’/3 and
ZP =4n(R - Rein)’/3 for the exterior and interior
compartment, respectively.

If we subtract the bulk terms which are equal to the
exterior and interior volume, respectively, we obtain the
partition function differences

4
AZ® = AR R — 4R, R——R . (53)

c,ex 3 Teex

and

4
AZP = —4nR.WR> + 4TR2, R — — R

c,in 3 c,in®

(54)
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The grand canonical free energy difference per unit area
is now given by

AFP = —TnbAZZEZ - TnbAZisg (55)

as follows from (45).

The spherical surface has constant mean curvature
M = 1/R and constant Gaussian curvature G = 1/R?,
and the curvature expansion (47) of the free energy
difference now has the form

AFPIAX fo+fi/ R+ (fr+ 1)/ R (56)

Using the explicit expressions (53) and (54) for AZF
and AZ:", we thus arrive at the expansion coefficients

fO = Tnb(Rc,ex + Rc,in)s (57)

Ji = Tnn(RE o = REy) (58)

and the relation

1
St fy =3 Tin(RE g + REy). (59)

6.2. Cylindrical membrane surface

In order to determine the values of f> and f3, we need
another relation for these two coefficients which can be
obtained by repeating the same calculation for a
cylindrical membrane surface. The radius of this
cylinder is again denoted by R, the corresponding
membrane area by A. As a result, one obtains

AZYJA = —Reex — Réex /2R, (60)
AZJ/A=—Rein+ Ri;0/2R 61)
and
AFY A= Tnp(Reex + Rein) + Tn(RE o — R2;)/2R.
(62)

The cylindrical surface has constant mean curvature
M = 1/2R and zero Gaussian curvature G =0, and the
curvature expansion (47) of the free energy difference
has the form

AFY AR fo+/1/2R+12/2R*. (63)

Comparing this expansion with the explicit expression
(62), we recover the two expansion coefficients f, and f;
as obtained for the spherical surface. In addition, the
coefficient f> of the M>-term in the curvature expansion
of the free energy is simply given by

f2=0. (64)

It then follows from (59) that

f3= % Tny(R: .. + R2.). (65)

c,ex c,in

The vanishing of f5 is related to the fact that the
curvature expansion of the excluded volume in front of
a curved surface contains no term proportional to M>
as previously noticed in [20].

7. Particle-induced membrane curvature

We now study the interplay between the entropy of the
polymers or nanoparticles and the bending energy of the
membrane. As before, the membrane is described as a
two-dimensional surface which divides space into an
interior and exterior compartment. For a symmetric
membrane, the bending energy of the membrane surface
depends on the bending rigidity « and the Gaussian
modulus xg and is given by [33]

Eme = 7§ dAQkM? + k6G), (66)

where the area integral extends over the whole
membrane area and the mean curvature M and the
Gaussian curvature G will, in general, depend on the
local surface coordinates.

For a spherical and a cylindrical shape, one has
constant curvatures which implies the bending energy
per membrane area

Eme) A = 2kM?* + k6G. (67)

The total free energy density of the spherical or
cylindrical membrane surface in contact with the
particle dispersion is then given by

(AF + Eme) /AR fo + fi M+ 2k + L)M* + (k6 + 13)G
(68)
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for small curvatures M and G. Minimization of this free
energy density with respect to M for fixed G [8] leads to
the particle-induced curvature

Ming = —/1/(4k + 2/2) = Mp, (69)

which we identify with the ‘spontaneous’ curvature My,
of the membrane.

For a dispersion of non-adhesive nanoparticles or
colloids as considered in the previous section, one has
f>=0 and M, = —f1/4k. In general, the expansion
coefficient /> will be non-zero and will then lead to the
effective bending rigidity

Keft = K +/2/2 (70)
and the spontaneous curvature
Msp = _fl/4Keff- (71)

If both the exterior and the interior vesicle compart-
ments contain non-adhesive particles that have
essentially the same linear size, Rp,, it follows from
relations (50) and (59) that f; ~ Tan?)a ~ T¢ where ¢ is
the volume fraction of the particle dispersion. For
dilute solutions as considered here, the volume fraction
¢ < 1 and

ST (72)
Furthermore, for lipid bilayers, the bending rigidity « is

large compared to 7 and the effective bending rigidity
Kepr 18 rather close to «.

Adsorption f—

0.05

£ L . 0.125
0.1
0.075

7.1. Two species of polymers

First, consider two polymer solutions in the exterior and
interior compartment with different polymer radii Ry ey
and Ry, respectively, and assume that the exterior
polymers are adsorbing onto the membrane whereas the
interior polymers are non-adsorbing, see figure 1. In this
case, expression (71) for the polymer-induced curvature
leads to

My=——"py l( 2 —R2-)
P 4Keff 6 p.ex p,in

g\ 172 ) B
_ (5) Rp,exee,ex - 2£§’ex[erfc (R) exp (R ) _ 1]

(73)
with the reduced polymer size
R = Rpex /6"l cx. (74)

In figure 4, the membrane curvature is plotted as a
function of the adsorption strength between polymers
and membranes for vanishing Ry, (the radius of
polymers inside the vesicle). In this case, the curvature
effect arises from the adsorption—desorption behaviour
of the exterior polymers. In the strong desorption
limit, the spontaneous curvature attains Mg, =
-T Réﬂexl’lb/24Keff. Thus, our theory predicts that the
membrane bends towards the polymers in agreement
with the results obtained in [19] and in [20] but in
disagreement with those in [27].

Desorption

‘l?(\N
Y e

0.025
5

-0.025

10 15 * 20 Rp,ex/le,ex

R 0

p,in=

Figure 4. Polymer-induced membrane curvature M, as a function of the inverse extrapolation length 1//. . for a vesicle in
contact with an exterior solution of adsorbing polymers and an interior solution of desorbing polymers (or colloids). The functional
dependence shown in this figure corresponds to the limit of small size of the interior polymers (or colloids). The spontaneous
curvature is rescaled according to My, = kerMp/ T ny R2 o With the temperature 7 in energy units, the bulk particle number density
ny,, which is identical in both compartments, and the en(g:to-end distance Ry ex of the exterior polymers. If the polymers are adsorbed
to the membrane surface (left) and desorbed from this surface (right), the membrane bends away from and towards the polymers,
respectively. The polymer-induced curvature changes its sign at Reex/leex = 3.04.
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The behaviour of non-anchored polymers differs
from the situation of anchored polymers, in which the
membrane bends away from the polymers in the non-
adsorbing case [7]. This difference reflects the fact
that non-anchored polymers influence the membrane
both by their configurational and by their translational
degrees of freedom and thus, by the depletion volume
close to the membrane. As a consequence, if the
membrane bends towards the solution the volume of
the depletion zone is decreased compared to the flat
situation, see the schematic picture in the inset on the
right side of figure 4.

In the limit of strong adsorption, i.e. for large
negative 1/l..x, the membrane bends away from the
polymer solution in order to increase the volume of
the adsorption layer above the membrane surface, see
the left inset of figure 4. The curvature in this direction
does not saturate, since the volume can be increased
further for stronger bending. The same sign of the
particle-induced curvature is found for adhesive
nanoparticles [20].

If one starts in the regime of adsorbed polymers and
decreases the strength of the attractive potential between
polymers and membrane, the curvature is a monotonic
function of the potential strength. For Ry ex/feex =0,
i.e. at the adsorption/desorption transition of polymers
in the vicinity of a flat surface, the membrane curvature
is given by M, =T R2 __ny /24K and thus has the same

p.ex
amplitude as the induced curvature in the strong

~0.025 AT — —

Rp,m:O.SRP’ex p.in~

Figure 5. Particle-induced membrane curvature Mg, as a
function of the inverse extrapolation length 1//. ¢ for a vesicle
in contact with an exterior solution of adsorbing polymers
and an interior solution of desorbing polymers (or colloids).
The rescaling of the spontaneous curvature is the same as in
figure 4. The three curves correspond to three different sizes
Rp,in of the interior polymers. As one increases the ratio
Rpin/Rpex of the interior polymer size to the exterior one, the
point at which the membrane curvature changes its sign is
shifted towards larger values of Rpex/leex. For Rpin = Rpex,
the membrane curvature vanishes for large positive Ry ex/Leexs
i.e. in the limit of total desorption.

desorption limit but with opposite sign. Thus, for
Rpex/leex =0, the membrane is still bent away from
the polymers. This is understandable since the positive
membrane curvature leads to additional configurational
space for the polymers and therefore leads to an
increase of the monomer density in the vicinity of
the membrane surface, corresponding to stronger
adsorption. The membrane curvature changes its sign
for Rpex/€eex ~ 3.04: in order to avoid any curvature
effect arising from the polymer solution, one has to go
beyond the adsorption—desorption transition and enter
the desorption regime.

In figure 5, the membrane curvature is plotted as a
function of the inverse extrapolation length for different
values of the interior polymer size. The spontancous
curvature increases with increasing size of the interior
polymers. If the polymers in the interior and exterior
compartment have the same size and both polymer
species are totally desorbed, the polymer-induced
curvature vanishes as expected.

7.2. Adsorbed polymers and desorbed colloids

If the exterior volume contains adsorbing polymers of
radius Ry« and the interior volume contains desorbed
colloids or nanoparticles of radius Rjn, expression (71)
leads to the particle-induced curvature

M, =

T I 5 5
- Kgffnb |:g Rp,ex - Rc,in

g\ 1/2 ) .
B <3n) Rpexleex — 2£gjex[erfc (R) exp(R) — 1]

(75)

with R = Ryey/6'"?leex as before. Comparison with
equation (73) shows that desorbed colloids have the
same effect on the membrane curvature as desorbed
polymers if the colloid size and the polymer size satisfy
the relation Ry, = R /6.

It follows from relations (73) and (75) that an increase
in the colloid size R.j, and in the polymer size Rp;,
within the interior compartment leads to an increase
in the membrane curvature. In the limit of total
desorption, i.e. when the inverse extrapolation length
1/€eex > 1, one obtains

T 1 [Rein\’
Mo = — R2 L c,in

T Roin\’
— R | 1= (2 76
L p[ (Rp)] (76)
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Figure 6. The polymer-induced curvature My, =
ketMp/Tny as a function of the polymer size Ry in the
exterior compartment in the limit in which the size of the
interior particles is small. The different curves correspond to
different values of the extrapolation length £ .

for colloids and polymers in the interior compartment,
respectively. This curvature vanishes for Rgin =
Ry ex/ /6, and for Rpin = Rpex.

In figure 6, the dependence of the polymer-induced
curvature on the polymer radius of the exterior
polymers is shown for vanishing particle radii in the
interior compartment. As expected, for all values of the
inverse extrapolation length, the curvature effect
vanishes in the limit of small Ry .

7.3. Two species of desorbed colloids

If one has two species of desorbed colloids or
nanoparticles with different radii R.ex and Rcj, in the
exterior and interior compartment, expression (71) leads
to the particle-induced curvature

My = ——Ln, [R2 _R ] (77)

A c.ex c,in

where we have used the fact that xeyp =k since the
expansion coefficient f, = 0 in this case. As one can
easily deduce from this equation, the membrane bends
towards the larger colloids as previously shown in [20].
In the latter reference, the finite membrane thickness €.
was taken into account which leads to

T
Msp = - _”b(Rc,ex

P - Rc,in)(eme + Rc,ex + Rc,in)- (78)

If both colloidal species have the same size, the
curvature of the membrane vanishes as expected.

8. Conclusion and outlook

We have shown that the curvature of membranes is
strongly influenced by polymers and colloids which are
dispersed in the surrounding solution. We focused on
the experimentally relevant situation of vesicles which
are osmotically balanced and considered particles of
different sizes and adsorption behaviour on both
sides of the vesicle membrane. The particle-induced
membrane curvature was calculated as a function of the
adsorption strength.

For two different particle species, which are totally
desorbed from the membrane surface, the membrane
bends towards the larger particles. If the particles in the
exterior compartment are adhesive, the curvature is
increased, such that the membrane bends away from
the strongly adsorbed particles. This is due to the
translational entropy of the non-anchored particles. For
strong desorption, the depletion volume above the
membrane is reduced (relative to the membrane area),
if the membrane bends towards the desorbed particles.
For strong adsorption, the membrane bends away from
the adsorbed polymers in order to increase the area of
the adsorption layer. All of these results agree with those
obtained previously in [20] by different arguments based
on the interfacial tensions of the two membrane-water
interfaces.

The results obtained here for the polymer-induced
curvature are valid in the whole range between the
strong adsorption and the complete desorption regime.
The adsorption strength is described in terms of the
inverse extrapolation length 1/f.. As one varies this
parameter from large negative values, corresponding to
strong adsorption, to large positive values, correspond-
ing to complete desorption, one encounters a certain
characteristic value at which the polymer-induced
curvature vanishes, see figures 4 and 5. This provides
the possibility to switch the polymer-induced curvature
from positive to negative values by reducing the
adsorption strength.

Inspection of figures 4 and 5 shows that the polymer-
induced curvature vanishes at a positive value of the
inverse extrapolation length 1/£., which corresponds
to a desorbed state at the flat membrane. For
1/€. =0, on the other hand, which corresponds to
the adsorption—desorption transition point of the flat
membrane, the polymer-induced curvature is positive
and the membrane bends away from the adsorbed
polymers. The vanishing of the polymer-induced curva-
ture at positive values of 1/¢. reflects the interplay
between translational and configurational entropy of the
polymers.

Another situation studied here is a vesicle which is in
contact with nanoparticles of radius R, in the interior
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compartment and with polymers characterized by their
end-to-end distance R in the exterior compartment.
In the complete desorption limit, the effects of the
nanoparticles and the polymers cancel for Rgi, =
Ryex/6'%. All of these curvature effects should be
accessible to experiments if one studies the shape and
the shape fluctuations of the vesicle as has been
demonstrated for vesicles in contact with two different
sugar solutions [34].

RL takes this opportunity to thank Ben Widom for
much advice and helpful correspondence over many
years.

Appendix A: Glossary: list of symbols

A membrane area
Eme bending energy of membrane configuration
expansion coefficients of free energy
grand canonical potential or free energy
Gaussian curvature
bending rigidity
kg Gaussian modulus
L thickness of auxiliary spherical shell around
spherical vesicle
¢, extrapolation length
Ar thermal de Broglie wavelength
M  mean curvature
spontaneous curvature
chemical potential
n number density of particles
ny,  bulk number density of particles
n normal vector
Nin number of particles in the interior compartment
N¢ number of particles in the exterior compartment
N monomer number of polymer
P osmotic pressure
r(s) three-dimensional spatial position of monomer s
r(s) lateral position of monomer s
r3(s) perpendicular position of monomer s
R curvature radius of vesicle
Ry distance of polymer anchor point from origin
R, radius of spherical nanoparticle or colloid
R, end-to-end distance of polymer
s internal (contour) length of polymer
T absolute temperature (in energy units)
V' interaction potential between polymer and
membrane
VY total volume
Vin  volume of interior compartment
Vex  volume of exterior compartement
x lateral coordinates xi, x»
z perpendicular coordinate
Zs  grand canonical partition function

x QW

Z  partition function of anchored polymer
Zns half-space polymer partition function
Z"  coefficients of curvature expansion of Z
Z  partition function of non-anchored particle
¢ fugacity
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