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Abstract. The movements of cytoskeletal motors such as kinesin or myosin V
cover many length and time scales. When such a motor is bound to a filament, the
consumption of a single fuel molecule leads to a certain motor displacement or step
which is of the order of several nanometers. The motor typically makes about a
hundred such steps in its bound state and, in this way, covers a walking distance
which is of the order of micrometers. On even larger length scales, the motor
undergoes random walks which consist of alternating sequences of bound and
unbound motor states, i.e., of directed walks along the filaments and nondirected
diffusion in the aqueous solution.

1 Introduction

The living cell is a rather complex structure built up from macromolecules and
supramolecular aggregates (or colloids) in aqueous solution. From the physical
point of view, the most amazing property of this structure is its high degree of
spatial organization or ’order’ which is maintained in a stationary state far from
equilibrium.

It has been realized during the last decade that this order is sustained, to a
large extent, by molecular motors which consume ’fuel’ molecules such as ATP
and perform mechanical work within the cell. It is now believed that all trans-
port processes or movements which occur within the cell in a coherent fashion
are governed by such motors. Examples are the transmembrane transport of ions
and macromolecules, the regulated adhesion and fusion of membranes, the intra-
cellular transport of vesicles and organelles, cell division, and cell locomotion. [1]
Thus, these motors act like little mechanical robots and resemble the microscopic
demons envisaged by Maxwell.

There are several classes of motors which fulfill different functions within the
cell: (i) DNA and RNA polymerases which move along the strands of these
biopolymers; (ii) membrane pumps which transport ions and small molecules
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Figure 1: Cartoon of two kinesin molecules bound to a microtubule. The micro-
tubule is a hollow tube with a thickness of about 25 nm; it consists of tubulin
dimers which have a linear size of about 8 nm. Each kinesin molecule has two
heads or motor domains which can bind to the microtubule; the two heads are
connected via a neck region to a long stalk which is about 50 nm.

across membranes; the resulting concentration gradients may be used in order to
drive (iii) rotary motors such as the bacterial flagellar motor and the F1–ATPase
which are used for cell locomotion and ATP synthesis, respectively; (iv) myosins
in muslces which work in groups and collectively displace actin filaments; and
(v) cytoskeletal motors which bind to cytoskeletal filaments and then walk along
these filaments in a directed fashion. The latter class of motors is responsible for
the directed transport of vesicles and other types of cargo across the cell. This
nonequilibrium transport on the micrometer scale is powered by the free energy
released from ATP hydrolysis on the subnanometer scale.

In the following, I will focus on cytoskeletal motors which are processive in
the sense that they make many steps before they detach from the filaments. It
has been estimated that a typical eucaryotic cell might contain between fifty and
a hundred different types of proteins which act as such motors [2]. One example
is provided by dimeric kinesin which moves along microtubules. A cartoon of the
kinesin–microtubule system is shown in Fig. 1.

Two types of cytoskeletal motors, namely dimeric kinesin on microtubules [3]
and myosin V on actin filaments, [4] were observed to walk via discrete steps, the
size of which is close to the repeat distance of the filament which is 8 nm and
36 nm, respectively. The average velocity of these walks depends on the ATP
concentration and on the applied load force; its maximal value is of the order of 1
µm per second and is obtained for high ATP concentrations and zero load force.

At each step, the cytoskeletal motor has a small but nonzero probability to
unbind from the filament. Thus, its directed movement can be characterized
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by a walking time ∆tb, which is the average time period between binding and
unbinding, and a corresponding walking distance ∆xb along the filament. For all
cytoskeletal motors studied so far, ∆tb was found to be of the order of seconds
and ∆xb to be of the order of micrometers [5, 6, 7, 4, 8]. On larger time scales,
the motor undergoes random walks which consist of alternating sequences of
bound and unbound motor states, i.e., of directed walks along the filaments and
nondirected diffusion in the aqueous solution.

This article is organized as follows. First, it is emphasized in Section 2 that
the movements of molecular motors involve a wide range of different length (and
time) scales. The directed walks of bound motors are discussed in Section 3. It
is argued that these walks exhibit some motor properties which are universal in
the sense that they are insensitive to many features of the molecular dynamics.
[9, 10, 11] The random walks arising from the sequence of bound and unbound
motor states are considered in Section 4.

2 Different types of movements

The movements of molecular motors cover many length and time scales. For
cytoskeletal motors as considered here, one can distinguish three different regimes:
(i) the molecular dynamics related to the chemomechanical energy transduction;
(ii) the directed walks along the filaments; and (iii) the random walks arising
from the unbinding and rebinding of the motors to the filaments.

The molecular dynamics regime (i) covers all length scales up to the motor
displacement arising from the ATP hydrolysis. Experiments on dimeric kinesin
strongly indicate that the hydrolysis of one ATP molecule leads to a center–
of–mass displacement or step size �b = 8 nm which corresponds to the repeat
distance of the microtubule (here and below, the subscript b means ’bound’).
The corresponding step time τb depends on the ATP concentration and on the
external load force. For high ATP concentration and low load force, one finds the
step time τb � 6 ms.

The directed walk regime (ii) contains the intermediate length scales which
lie between the step size �b and the walking distance ∆xb. As mentioned, the
walking distance is of the order of micrometers for all cytoskelelal motors studied
so far; the corresponding walking times ∆tb are of the order of seconds. For
dimeric kinesin derivatives without tails, the experimentally determined values
are ∆xb � 2 µm and ∆tb � 2.6 s [6].

Finally, those length and time scales, which exceed the walking distance ∆xb

and the walking time ∆tb, define the random walk regime (iii). This latter regime
applies to the intracellular transport of vesicles and organelles which typically in-
volves transport over tens of micrometers. An extreme case is provided by neurons
and the transport along their axons as schematically shown in Fig. 2. Axons are
tube–like structures enclosed by the plasma membrane of the neuron. The axon
diameter varies between hundreds of nanometers and millimeters. Their length
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Figure 2: Schematic view through an axon which contains many microtubules,
all oriented with their plus ends towards the axon terminal and with their minus
ends towards the cell body. Cytoskeletal motors (indicated by small ’feet’) are
responsible for the transport of vesicles and organelles along these filaments.

is usually much larger than their diameter and can be up to many decimeters.

3 Directed Walks of Bound Motors

In their bound states, the cytoskeletal motors undergo directed walks along the
filaments. For dimeric kinesin, this directed movement has been observed in
various types of assays [12, 3, 13, 14, 15, 16, 17, 18]. This experimental work
has provided several clues (i) to the biochemical and geometric features, which
characterizes this motor on molecular scales, and (ii) to the transport properties
which characterize the motor performance on supramolecular scales.

3.1 Experiments on dimeric kinesin

First, let us look at the kinesin–microtubule system on the molecular scale as
schematically shown in Fig. 1. Each dimeric kinesin consists of two identical
amino–acid chains. The amino–terminal ends of these chains correspond to the
motor domains or heads which have a size of about 7×4.5×4.5 nm3 [19]. The two
heads are connected via a neck region to a long stalk. The neck region consists of
ordered coiled–coil domains and a disordered hinge domain, the stalk is a coiled
coil with an extension of about 50 nm.

The kinesin molecule can bind to a microtubule. The latter tube–like filament
has a thickness of about 25 nm and is built up from tubulin dimers. These tubulin
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molecules form 13 parallel protofilaments which provide the different ’lanes’ on
the surface of the microtubule. Each protofilament or ’lane’ represents a 1–
dimensional lattice of binding sites with a lattice constant of 8 nm.

The kinesin molecule has two binding domains located in its two heads which
can adhere to one of the binding sites of the microtubule. In addition, each head
can act as an ATPase which adsorbs and hydrolyses ATP. Thus, each head has
an ATP–adsorption domain and a microtubule–binding domain.

The free energy released from the ATP hydrolysis is of the order of 20 T (here
and below, temperature is measured in energy units,i.e., the Boltzmann constant
kB is adsorbed into T .) This free energy is then transduced into a conformational
transition of the motor molecule which leads to its directed movement. Dimeric
kinesin requires both heads in order to make many successive steps, see, e.g., [15].
Each step corresponds to a center–of–mass movement of 8 nm [3, 13, 14]. In its
rigor state, the two heads are bound to two successive lattice sites separated by
8 nm [16].

All of these experimental observations are consistent with the view that dimeric
kinesin moves in a ’head–over–head’ (or ’hand–over–hand’) fashion, i.e., by alter-
nating steps in which one head moves forward while the other one remains bound
to the tubule. If the motor does indeed advance by this type of stepping motion,
the unbound head and the center–of–mass of the motor would move by 16 nm
and by 8 nm, respectively, during each step.

The relative displacement of the kinesin motor against the filament was de-
termined by optical trap experiments. The most direct evidence comes from
experiments in which the filament is firmly attached to a solid substrate and the
motor molecule is anchored to a bead. This bead is grapped by optical tweezers
and then brought into contact with the filament. In these experiments, one can
directly measure the time evolution of the displacement of a single motor molecule
(plus the attached bead). From a large number of such displacement–versus–time
curves, one obtains average motor properties such as the motor velocity which
characterize the motor performance on length scales which are large compared to
the step size.

For dimeric kinesin, the motor velocity has been measured as a function of
two control parameters. The first such parameter is provided by the ATP con-
centration Γ, i.e., by the concentration of the fuel molecules. The second control
parameter is given by the external load force F usually applied by the optical
trap.

Several experiments have shown that the motor velocity v increases mono-
tonically with Γ and exhibits a saturation behavior. In addition, the data for
zero or small F could be fitted by the hyperbolic form v(Γ) � vmaxΓ/(Γ∗ + Γ).
[12, 20, 14] More recently, it was found that such a fit is even possible over the
whole range of accessible forces as given by 0 ≤ |F | ≤ 5.6 pN provided one uses
F–dependent fit parameters vmax and Γ∗ which leads to [18]

v(Γ, F ) � vmax(F )Γ/[Γ∗(F ) + Γ] . (3.1)
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As far as the functional dependence on the load force F is concerned, the
motor velocity is observed to decrease monotonically with increasing F as one
would expect naively. However, the precise functional dependence of velocity
versus force has been a matter of some controversy. One problem is related to
the vectorial character of the applied force which may, in general, not act parallel
to the filament. In fact, if the load force is applied to the motor via an attached
bead, one always generates two force components, one which is tangential to and
one which is normal to the filament [20] The normal component of the force acts
to increase the probability that the motor unbinds from the filament and may also
affect the ATP hydrolysis rate. Furthermore, since the tether between the bead
and the kinesin molecule is not expected to behave as a linear spring, the force
applied by the optical trap may not be simply proportional to the tangential force
acting on the motor molecule. Here and below, the force F is taken to be the
tangential component of the force which is conjugate to the motor displacement
parallel to the filament. I also use the sign convention that F < 0 for a load force
which acts against directed walk of the motor.

The relation as given by (3.1) has two nontrivial features. First, it represents
a specific functional dependence of the velocity on the two parameters Γ and F .
Secondly, the dependence on the fuel concentration Γ is found to be rather simple.
These two features raise two general questions: (i) How can one understand the
simple v(Γ) relationship in view of the complex molecular dynamics?; and (ii)
The relation as given by (3.1) describes the data for dimeric kinesin, i.e., for one
particular cytoskeletal motor. Should such a relation hold for other motors as
well? In other words: Is this relation specific to kinesin or is it more universally
valid? In order to address these questions, we have studied a rather large class
of ratchet models [9, 10, 11] as discussed in the next subsection.

3.2 Stochastic (M,K)–ratchets

Within the ratchet models considered here, the directed movement of the motor is
described by one spatial coordinate x. For linear motors, this coordinate describes
the displacement of the center–of–mass of the motor parallel to the filament
(a similar approach should apply to rotary motors where x would represent an
appropriate angular coordinate). For a given value of x, the motor molecule must
be bound to the filament but can still attain different conformations or internal
states. These different states will be labeled by the discrete index m which can
have M different values. In addition, the motor can undergo transitions between
these states at the discrete set of K spatial positions per motor cycle. These
(M,K)–models [9, 11, 10] represent generalizations of those studied in [21, 22, 23],
which were restricted to (M,K) = (2, 2).

Depending on the molecular architecture of the motor, one may identify sev-
eral discrete subgroups of internal states. If the motor has only one enzymatic
domain or head, this head can attain a discrete number of states corresponding
to (i) no substrate, (ii) adsorbed ATP, (iii) adsorbed ADP/P, and (iv) adsorbed
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Figure 3: Network of transitions at locations x = xk with 1 ≤ k ≤ K between
different internal states or levels m with 1 ≤ m ≤ M . Pairs of vertices [xi,m]
and [xj, n] are connected by local lateral currents for n = m and i �= j (corre-
sponding to the full lines), and by local transition currents for i = j and n �= m
(corresponding to the broken lines). These currents obey a vertex rule which
corresponds to Kirchhoff’s first law for electric circuits. The arrows represent the
periodic boundary conditions in the lateral direction.

ADP. In each of these states, the motor may adopt a different conformation
which will experience different interactions with the filament. If the motor has
two heads, a and b, one has three groups of levels corresponding to (I) two bound
heads, (II) bound head a, and (III) bound head b.

In general, the motor conformation also involves internal degress of freedom
which vary in a continuous fashion. For example, one may tilt a two–headed
motor molecule, which is bound by one head, and simultaneously move its un-
bound head without changing the position of its center–of–mass. In the theo-
retical framework considered here, these continuous degrees of freedom are also
discretized. This is primarily done for computational convenience. However, this
discretization can involve a large number M of internal states and a large number
K of transition locations corresponding to many intermediate states, and, thus,
does not represent a real limitation compared to a continuous description. †

Within the (M,K)–ratchets, the time evolution of the motor position x and
its internal state m is described by the probability densities Pm(x, t) to find the
motor particle at center–of–mass coordinate x and in internal state (or level) m.
This probability density may change (i) because of thermally–excited diffusion
within the internal state m or (ii) becauce of transitions between the different
internal states. The probability currents arising from these different processes
form a 2–dimensional network of transitions as shown in Fig. 3.

†A general theoretical framework in terms of continuous variables or coordinates was recently
discussed in [24].
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Figure 4: Transition networks with M = 3 internal states and (top) Q = 1 or
(bottom) Q = 2 unbalanced transitions. In both examples, the balanced and
unbalanced transitions are indicated by thin and thick arrows, respectively. The
unbalanced rate constants are denoted by ∆q with 1 ≤ q ≤ Q.

3.3 Universal or generic aspects

A detailed investigation of the (M,K) ratchets shows that they exhibit some
generic or universal transport properties which hold for arbitrary values of M
and K. [10] In particular, it is possible to determine the explicit dependence of
the motor velocity on the transition rates of the unbalanced transitions, i.e., of
those transitions which arise from the enzymatic activity and which do not satisfy
detailed balance.

In general, there will be Q such transition rates per motor cycle. These unbal-
anced transition rates will be denoted by ∆q with q = 1, 2, . . . , Q, see Fig. 4. The
simplest situation is provided by motors, such as monomeric kinesin, which have
a single enzymatic domain. Such motors should have only one location xk with
only one unbalanced transition rate which implies Q = 1, see Fig. 4. There are
several cytoskeletal motors such as dimeric kinesin, dynein, or myosin V which
have two identical enzymatic domains or heads. The corresponding ratchet mod-
els are characterized by two (usually different) locations with enzymatic activity.
If each head can make (i) only forward steps or (ii) both forward and backward
steps, it can be activated (i) at only one of these locations or (ii) at both locations,
which corresponds to Q = 2 and Q = 4, respectively, see Fig. 4.

Using a transfer matrix formalism, the motor velocity v is found to have the
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general form [10]

v =
A(∆1,∆2, . . . ,∆Q)

B(∆1,∆2, . . . ,∆Q)
(3.2)

where both A and B are two polynomials which are multilinear in the Q argu-
ments ∆q. Thus, the highest order terms which can (but need not) appear in

these polynomials are proportional to the product
∏Q

q=1 ∆q. The functional rela-
tionships as given by (3.2) are universal in the sense that they hold for ratchets
with arbitrary values of M and K and, thus, for any number of balanced transi-
tion rates provided one has the same number Q of unbalanced transition rates.
Likewise, these relationships do not depend on the specific shapes of the molecu-
lar interaction potentials which the filament exerts onto the motor in its various
internal states.

It is also important to note that the velocity–rate relationships as given by
(3.2) do not involve any assumptions about the enzyme kinetics underlying the
unbalanced transition rates. However, in order to relate the behavior of the
(M,K)–ratchets to experiments, one must implement the underlying chemical
kinetics which implies a certain dependence of the unbalanced rate constants ∆q

on the concentration Γ of the fuel molecules and on the applied load force F .
The simplest scheme for an enzymatic reaction between the fuel molecules and
the motor domain(s) is provided by Michaelis–Menten kinetics [25] which implies
that ∆−1

q = (cqΓ)−1 + d−1
q with 1 ≤ q ≤ Q where the reaction rates cq = cq(F )

and dq = dq(F ) will, in general, depend on the load force F .
If one uses these Michaelis–Menten relations, one obtains the general velocity–

concentration relationship as given by [10]

v(Γ, F ) =




Q∑
n=0

gn(F )Γn


 /




Q∑
n=0

hn(F )Γn


 (3.3)

which represents the ratio of two Γ–polynomials of degree Q with F–dependent
coefficients. The first polynomial coefficient g0 in the numerator satisfies g0(F =
0) = 0. If the motor cycle exhibits certain symmetries or constraints, some
polynomial coefficients may vanish for all values of F .

The relationships as given by (3.3) are again universal in the sense that they
are valid (i) for any number of balanced transition rates, (ii) for any choice of the
molecular interaction potentials, (iii) for arbitrary load force F , and (iv) for any
force dependence of the Michaelis–Menten reaction rates cq and dq.

As mentioned, the simplest motor cycles are characterized by Q = 1. In this
case, the relation (3.3) simplifies and reduces to

v(Γ, F ) = [g0(F ) + g1(F )Γ] / [h0(F ) + h1(F )Γ] . (3.4)

For F = 0, one has g0(F = 0) = 0 which implies

v(Γ, 0) = vmaxΓ/[Γ∗ + Γ] . (3.5)
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with the saturation velocity vmax ≡ g1(0)/h1(0) and the characteristic concentra-
tion Γ∗ ≡ h0(0)/h1(0).

The rather simple velocity–concentration relationship (3.5) was first obtained
from a simple tight–coupling picture [12, 20]. The latter picture is based on
two assumptions: (i) the motor makes one step of mean step size ∆x per ATP
hydrolysis; and (ii) the ATP hydrolysis follows Michaelis–Menten kinetics which
implies that its rate constant ωhyd is given by ωhyd(Γ) = ωmaxΓ/(Γ∗ + Γ). A
combination of these two assumptions leads to

v(Γ, 0) = ∆xωmaxΓ/[Γ∗ + Γ] (3.6)

which is equivalent to (3.5).
The simple tight–coupling picture just described has the disadvantage that it

provides no insight into its range of validity or its limitations. In contrast, the
systematic theoretical approach based on the (M,K)–ratches leads to a classifi-
cation scheme which contains the simple Michaelis–Menten–type relation (3.5) as
a special case. In other words, this approach characterizes both those motors for
which the relationship as given by (3.5) holds exactly as well as those motors for
which this relationship is replaced by more general relations as in (3.3).

The simple relationship (3.5) is always valid provided (i) the motor cycle is
characterized by Q = 1 and (ii) this unbalanced rate follows Michaelis–Menten
kinetics. If (ii) remains valid but Q ≥ 2, one should, in general, expect to see the
more general relationships as given by (3.3). There are exceptional cases, however,
which arise from additional symmetries and constraints within the motor cycle.
Indeed, as a result of these symmetries or constraints, some of the polynomial
coefficients in (3.3) may vanish for all values of F . The latter situation has been
explicitly shown to apply to some models for dimeric kinesin with (M,K) = (2, 2)
and (M,K) = (3.2). [9, 10]

Finally, one should note that the enzymatic reaction does not necessarily
follow Michaelis–Menten kinetics. One example for a different kinetics would
be provided by molecular motors with allosteric domains which bind regulatory
molecules. The reaction rate ∆q can then exhibit a sigmoidal dependence on Γ
[25]. If such a sigmoidal form is inserted into the general expression (3.2) for the
dependence of the motor velocity v on the unbalanced transition rates ∆q, one
will obtain a v–Γ relationships which differs from (3.3).

In summary, it is possible to classify the Γ–dependence of the motor veloc-
ity v as discussed in the present subsection. Such a classification scheme is not
available for the F–dependence of v which depends on the details of the interac-
tion potentials between the filament and the motor and, thus, reflects the specific
features of the underlying molecular structure. It is, however, not difficult to
calculate the F–dependence of the motor velocity if one makes some specific as-
sumptions about the interaction potentials as shown in [9] for several types of
sawtooth potentials.
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4 Random Walks of Motors and Motor Traffic

Even processive motors eventually unbind from the filaments. As mentioned
in the introdcution, this unbinding process can be characterized by a walking
time ∆tb, which is of the order of seconds, and by the corresponding walking
distance ∆xb, which is of the order of micrometers. Both quantities depend on
the overall ionic strength [5, 8], on the presence of certain ions such as magnesium
[C. Schmidt, M. Rief, private communication], and on the molecular roughness
of the filaments arising from adsorbed tau proteins [7] or from chemically altered
tubulin [8].

4.1 Diffusion of unbound motors

A motor which is no longer bound to the filament, will undergo diffusive motion in
the surrounding liquid. For an in vitro system, the corresponding diffusion coeffi-
cient Dub is given by the classical Stokes–Einstein relation Dub = kBT/(6πηRhyd),
see, e.g., [26], and depends on the thermal energy kBT , on the dynamic viscosity
η of the solution, and on the effective hydrodynamic radius Rhyd of the motor
particle (here and below, the subscript ub means ’unbound’ state of motor and
filament). If the dynamic viscosity has a value close to η � 0.9 mPa s (≡ cP)
as appropriate for pure water, one has Dub = 24 µm2/s for a motor molecule
with a hydrodynamic radius of 10 nm, and Dub = 2.4 µm2/s for a motor with an
attached bead of radius 100 nm.

It is interesting to compare these estimates for the unbound diffusion coeffi-
cient Dub with the values for the bound state diffusion coefficients Db as measured
for kinesin. These latter values are of the order of 10−3 µm2/s [13, 6] and 5×10−2

µm2/s [6] for two–headed and one–headed kinesin, respectively. The relatively
small values of Db reflect the additional friction arising from the binding between
motor and filament. Thus, for a normal aqueous solution, the unbound diffusion
coefficient Dub is much larger than the bound state diffusion coefficients Db. In
principle, one could reduce Dub by a factor up to 10−2 if one changes the viscosity
of the aqueous solution by adding some solutes such as glycerol or sucrose.

It is more difficult to estimate the diffusive motion of an unbound motor in
vivo. The cytosol contains macromolecules, supramolecular structures, and or-
ganelles, and the unbound motor may experience both repulsive and attractive
interactions with these ’particles’. For repulsive interactions, the particles rep-
resent additional steric barriers for the diffusive motion of the motor which will
then exhibit a reduced diffusion coefficient. This reduction may be estimated by
comparison with the diffusion of inert particles in fibroblasts for which the values
Dub � 1.6 µm2/s and � 3000 nm2/s have been measured for particle radii of
10 nm and 80 nm, respectively [27]. Compared to water, this corresponds to a
size–dependent reduction factor of 10−1 and 10−3, respectively.
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4.2 Tracer motors in open compartments

On time scales which are large compared to the walking time ∆tb, the motor
undergoes random walks which consist of alternating sequences of bound and
unbound motor states, i.e., of directed walks along the filaments and nondirected
diffusion in the aqueous solution. When bound to a filament, the motor walks in
a certain direction until it unbinds; it then undergoes nondirected diffusive mo-
tion in the surrounding aqueous solution until it encounters the same or another
filament to which it can rebind and continue its directed walk.

It is intuitively clear that the relative importance of directed and diffusive
motion will depend on the number and arrangement of the filaments and on the
confinement of the motion by boundaries or walls. For 2– and 3–dimensional sys-
tems without boundaries, the corresponding motor walks were studied by Ajdari
[28] using scaling arguments. For these systems without confining walls, we have
been able to obtain complete analytical solutions for the time evolution of the
drift velocity and of the diffusion coefficient; in addition, we also determined these
quantities by Monte Carlo (MC) simulations and found very good agreement with
the analytical results [29].

We have also extended these studies to bounded geometries or compartments
as shown in Fig. 5 which are accessible to in–vitro experiments. [30] We explicitly
considered oriented filaments which are attached to the interior surfaces of three
types of open compartments (half space, slab, open tube) as in Fig. 5. In the half
space, the motor velocity v decays ∼ 1/t for long times t and the advancement
of the motor is so slow that it will be difficult to measure. In the slab, v ∼ 1/t1/2

and the advancement should be measurable if one tracks the motor for a couple
of minutes. For an open tube which resembles an axon, the velocity is reduced
by a constant factor which depends on the radius of the tube.

Figure 5: Various compartments with one filament attached to the confining walls:
(left) half space; (middle) slab; (right) open tube. The filament corresponds to
the thick rod with its minus–end on the left and its plus–end on the right. The
three compartments are open in at least one spatial direction.

12



4.3 Motor traffic in closed compartments

Finally, let us close the orifices of the open tube in Fig. 5. One now attains
a compartment which confines the motors in all three spatial directions. If an
ensemble of many motors is placed in such a compartment, the ATP hydrolysis
of the bound motors on the nanometer scale generates motor concentration gra-
dients and motor currents on the micrometer scale. These mesoscopic gradients
and currents lead to novel stationary states far from equilibrium which are char-
acterized by a subtle balance between bound currents along the filaments and
diffusive currents in the aqueous solution. [30]

For the open compartments discussed in the previous subsection, it was im-
plicitly assumed that the motor concentration is relatively small and that one
can safely ignore possible interactions between different motor particles. In con-
trast, if the compartment is closed, one must include the mutual exclusion of two
motor particles in order to describe the motors bound to the filaments. Indeed,
these filaments become easily overcrowded or ’jammed’ even if the overall motor
concentration is still rather small.
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