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The traffic of molecular motors through open tube-like compartments is studied
using lattice models. These models exhibit boundary-induced phase transitions
related to those of the asymmetric simple exclusion process (ASEP) in one
dimension. The location of the transition lines depends on the boundary condi-
tions at the two ends of the tubes. Three types of boundary conditions are
studied: (A) Periodic boundary conditions which correspond to a closed torus-
like tube. (B) Fixed motor densities at the two tube ends where radial equilib-
rium holds locally; and (C) Diffusive motor injection at one end and diffusive
motor extraction at the other end. In addition to the phase diagrams, we also
determine the profiles for the bound and unbound motor densities using mean
field approximations and Monte Carlo simulations. Our theoretical predictions
are accessible to experiments.
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1. INTRODUCTION

Molecular motors are proteins that transform the free energy released from
chemical reactions into mechanical work. In this article we consider a
special class of motor proteins, namely cytoskeletal motors which perform
directed walks along cytoskeletal filaments as reviewed in refs. 1 and 2.
In the cell, these motors have different functions related, e.g., to vesicle
transport and cell division. The best studied examples are kinesins, which
walk along microtubules, and certain types of myosins, which walk along



actin filaments. After a certain walking time, such a motor unbinds from
its filament because its binding energy is finite and can be overcome by
thermal activation. For kinesins, this typically happens after 100–150 steps
or after a walking time of about 1.2–1.8 seconds, see, e.g., refs. 3 and 4.
In many motility assays, the filaments are immobilized on a substrate and
are in contact with an aqueous solution. In such a situation, the unbound
motors diffuse in the surrounding fluid until they eventually reattach to the
same or another filament.

Recently, we have introduced lattice models to study the motors’
random walks, which consist of many diffusional encounters between
motors and filaments in open and closed compartments. (5, 6) If many
motors are placed in such a compartment, hard core exclusion between
the motors has to be taken into account, since the motors are strongly
attracted to the binding sites of the filaments, so that the filaments get
overcrowded. These models are new variants of driven lattice gas models
and exclusion processes, for which the active processes which drive the
particles are localized to the filaments.

Lattice models of driven diffusive systems have been studied extensi-
vely in the last years, see, e.g., refs. 7 and 8. The simplest model is the
asymmetric simple exclusion process (ASEP) in one dimension, where par-
ticles hop on a one-dimensional lattice with a strong bias towards one
direction (in the simplest case there are no backward steps at all) and
the only interaction of the particles is hard core exclusion, i.e., steps to
occupied lattice sites are forbidden. When coupled to open boundaries,
this simple model already exhibits a complex phase diagram, see, e.g.,
ref. 8, which we will review below in some detail. The first model for the
1-dimensional ASEP was introduced more than 30 years ago by MacDonald
et al. (9, 10) in the context of protein synthesis by ribosomes on messenger
RNA (mRNA). At that time it was solved using a mean field approach
and used to explain results of radioactive labeling experiments (11–13) which
showed that protein synthesis gets slower as the ribosome moves on the
mRNA template. The model of MacDonald et al. explained this by the
steric hindrance between successive ribosomes along the mRNA track. Two
years later the same model was discussed by Spitzer as a simple example for
interacting particles in probability theory. (14) Since then, the asymmetric
simple exclusion process (and variants) has been studied extensively as a
generic model for non-equilibrium phase transitions (15–17) and interacting
stochastic systems (18) as well as in other applications such as traffic flow. (19)

Many properties of the 1-dimensional ASEP are known exactly.
As mentioned, the lattice models for random walks of molecular

motors differ from the driven lattice gas models in an important way:
Walks of molecular motors are only ‘‘driven’’ as long as the motor is

234 Klumpp and Lipowsky



attached to a cytoskeletal filament, hence ‘‘driving’’ is localized to one or
several lines. It can therefore be viewed as an ASEP which has the addi-
tional property, that particles (molecular motors) can unbind from the
track with a small probability, diffuse in the surroundings and reattach to
the same or another filament. In more mathematical terms, the ASEP is
coupled to a symmetric exclusion process via adsorption and desorption of
particles onto filaments.

Boundary conditions play an important role in driven systems. This
becomes apparent, e.g., if one compares a tube-like system with periodic
boundary conditions with one with closed boundaries. In the system with
closed boundaries, a traffic jam of motors arises at one end of the system
and the current of motors bound to the filament is balanced by diffusive
currents of unbound motors as first shown in ref. 5. With periodic bound-
ary conditions, motors arriving at the right end of the system just restart
their walk from the left end and a net current through the systems is
obtained.

In this article, we study the stationary states of tube-like compart-
ments with open boundaries. These compartments have the shape of a
cylinder and contain one filament which is placed along the cylinder axis
in order to obtain the simplest possible geometry. The bound motors
move along the filament and the unbound motors diffuse within the
cylinder, see Fig. 1. At the ends of the tube, motors are inserted and
extracted. Such a system is accessible to in vitro experiments using stan-
dard motility assays, but it can also be viewed as a strongly simplified
model for motor-based transport in an axon, (20) if these motors, which are
synthesized in the cell body, are at least partly degraded at the axon ter-
minal, (21) a situation that can be mimicked by insertion and extraction of
motors at the ends of a tube. The stationary states depend strongly on the
way, in which the motors are inserted and extracted at the boundaries as
we will explicitly demonstrate for three different types of boundary condi-
tions, see Fig. 2.

Our article is organized as follows. After introducing the model in
Section 2, we start in Section 3 with periodic boundary conditions. This
case can be solved exactly, since it satisfies local balance of currents in the
radial direction, see Appendix A. In Section 4, we discuss the situation in
which the density of bound motors on the filament is fixed at the bound-
aries. Finally, in Section 5, we consider the case where the filament is
shorter than the tube and the motors diffuse into and out of the tube. The
main tool to study the open systems are Monte Carlo simulations. These
are supplemented by dynamical considerations and self-consistent or mean
field calculations. Some details of the latter calculations are presented in
Appendix B.
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2. THEORETICAL MODELLING

2.1. Tube Geometry

We consider the motion of molecular motors in a cylindrical tube as
shown in Fig. 1. The tube has length L and radius R. The total number
of motors within the tube, denoted by Nmo, defines the overall motor
concentration

rmo —
Nmo

pR2L
. (1)

Note that this concentration corresponds to the particle number density of
the motors and, thus, is insensitive to the size of the motor particles. In
general, the latter size depends on the type of motor and on the type of
cargo attached to it. In the following, we will implicitly assume that the
motor particle has a linear size which is comparable to the basic length
scale a as defined further below. If one wants to study the dependence on
the motor particle size in a systematic way, one should measure the overall
motor concentration in terms of the volume fraction of the motor particles.

The cylindrical tube contains one filament located along its symmetry
axis which is taken to be the x-axis; the two other Cartesian coordinates
are denoted by y and z. Motors bound to the filament undergo directed
motion, while unbound motors diffuse freely. Since the motors are strongly
attracted by the filament, a large fraction of these motors is in the bound
state and mutual exclusion from the binding sites on the filament has to be
taken into account even for relatively small overall motor concentrations.

In order to include this mutual exclusion (or hard core repulsion) in
the theoretical description, we map the system onto a lattice gas model on a
simple cubic lattice. The lattice is oriented in such a way that its three
primitive vectors point parallel to the x-, y-, and z-axis, respectively.
A rather natural choice for the lattice parameter a is the repeat distance of
the filament, which is 8 nm in the case of kinesin motors moving on micro-
tubule and 36 nm for myosin V motors moving on actin filaments.

Fig. 1. Motor particles which can bind and unbind to a filament (dark rod) within a cylin-
drical tube. Single motors which are bound to the filament (and are not sterically hindered by
other motors) move with velocity vb to the right. Unbound motors diffuse with diffusion
coefficient Dub in the surrounding liquid.
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The discretized tube consists of one line of binding sites, which repre-
sents the filament, and Nch unbound ‘‘channels,’’ i.e., lines of lattice sites
parallel to the filament. Thus the cross section f of the tube is equal to

f=(1+Nch) a
2. (2)

For sufficiently large radii, one has f % pR2, while for small radii, there are
corrections due to the underlying lattice.

In the following, we will measure all distances such as L and R in units
of a. Thus, for the simulations, both L and R will be quoted as integers.
The integer value of R corresponds to a certain number of lattice sites
along the Cartesian coordinates y and z which are perpendicular to x and
run parallel to two basis vectors of the simple cubic lattice. Thus, the
interior of the tube contains all channels with y2+z2 [ R2.

2.2. Random Walks with Mutual Exclusion

At each time step, a bound motor attempts to make a forward or
backward step and to jump to the next lattice site to its right or to its left
with probability a or b. In addition, the motor attempts to jump to each
of the neighboring sites away from the filament with probability E/6,
and does not attempt to jump at all, i.e., to rest at the filament site, with
probability c. Since the sum of these probabilities is equal to one, we have
c=1 − a − b − 2E/3. The velocity vb in the bound state is given by vb=
(a − b) a/y, where y is the basic time scale of these random walks. In the
following, we will measure all times and rates in units of y and y−1, respec-
tively. Since backward steps are rare for cytoskeletal motors, we will focus
on the case b=0, i.e., we will ignore backward steps.

If the particle unbinds from the filament, it attempts to jump to all
nearest neighbor sites of the simple cubic lattice with equal probability 1/6.
By choosing the time scale y as a

2/Dub, this hopping probability can be
made to fit the diffusion coefficient of unbound motors, Dub. When
measured in units of a and y, the dimensionless diffusion coefficient
Dub=1/6. In principle, the resting probability c can then be used to
account for the ratio Dub/(vba), which is quite large in the case of kinesin,
and to adapt the velocity vb to the values obtained from experiments. (5) For
simplicity, we will often choose c=0 in order to eliminate one parameter
from the problem. If an unbound motor attempts to hop to a filament site,
the motor binds to it with sticking probability pad, while the step (and
hence binding) is rejected with probability 1 − pad.

Both in the bound and in the unbound state, hopping attempts can
only be successful, if the target site is not occupied by another motor;
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otherwise the particle must stay where it is. In the following, we will mainly
study overall motor concentrations rmo in the range 0 [ rmo M 0.05. For
such small values of rmo, mutual exclusion of the unbound motors can be
safely ignored. However, because the motors are strongly attracted to the
filament, the concentration of bound motors is much larger and it is crucial
to take their mutual exclusion into account.

3. PERIODIC BOUNDARY CONDITIONS

First, we consider a cylindrical tube with periodic boundary conditions
in the longitudinal direction. Because of the translational invariance in the
direction parallel to the filament, there are no net radial currents in the
stationary state. Indeed, a non-zero radial current in a state, which is

Fig. 2. Different types of boundary conditions: (A) Periodic boundary conditions which is
similar to a closed torus geometry; (B) Open tube with boundaries satisfying radial equilib-
rium: the bound and unbound motor densities are fixed at the two boundaries and satisfy
radial detailed balance at each boundary; and (C) Open tube with diffusive injection and
extraction of motors. In all cases, the tube has total length L; in cases (A) and (B), the fila-
ment has the same length as the tube; in case (C), the filament has length LF < L and there are
two boundary compartments of linear size DL.
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translationally invariant in the longitudinal direction, would lead to net
radial transport of motor particles, which is incompatible with the reflect-
ing radial boundaries. This means that there is a bound current jb on the
filament, but both currents of motors binding to and unbinding from the
filament and radial currents of unbound motors are balanced locally. We
call this situation radial detailed balance or radial equilibrium. If there is
only one unbound channel, Nch=1, (or Nch equivalent channels) radial
equilibrium is equivalent to adsorption equilibrium. It is clear, that this will
no longer be true, if translational invariance is broken by boundaries or
blocked sites on the filament. Another important property of systems with
periodic boundary conditions is that, in this case, the number Nmo of
motors in the system is conserved, which does not apply to open systems.

Because of translational invariance along the x-axis, the bound and
unbound motor densities, rb and rub, do not depend on x. In addition, it
follows from the absence of radial currents that rub is also independent of
the radial coordinate r=(y2+z2)1/2. Hence rb and rub are constant, and
radial equilibrium implies the relation

E

6
rb(1 − rub)=

pad

6
rub(1 − rb) (3)

which leads to

rb=
rub

E/pad+(1 − E/pad) rub
. (4)

Here and below, the densities rb and rub are local particle number densities
which satisfy

0 [ rb [ 1 and 0 [ rub [ 1. (5)

In dimensionful units, this corresponds to 0 [ rb [ 1/a
3 and 0 [ rub

[ 1/a
3.

Since the total number Nmo of motors is conserved, we can use the
normalization condition,

rb+Nch rub=
Nmo

L
, (6)
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to obtain a quadratic equation for the densities as a function of the system
size and the total number of motors. Since one root is always negative, the
physically meaningful solution is:

rub=
1

2Nch(1 − E
pad

)
5− 1 − Nch

E

pad
+

Nmo

L
11 −

E

pad

2

+=1− 1 − Nch
E

pad
+

Nmo

L
11 −

E

pad

222

+4Nch
11 −

E

pad

2 E

pad

Nmo

L
6 . (7)

From this expression for the unbound density, the bound density rb

follows via Eq. (4) and the stationary current is given by J=jb=
vb rb(1 − rb). The current calculated in this way is shown in Fig. 3 as a
function of Nmo/L. The data points (circles) are the results of Monte Carlo
simulations for a system of length L=200 and radius R=25 and are in
very good agreement with the analytical solution.

It follows from the analytical solution that the current J=jb vanishes
at Nmo/L=1+Nch, behaves as

J
vb

%
1

1+ E
pad

Nch

Nmo

L
(8)

for small Nmo/L, and has the maximal value max(J/vb)=1/4 for
rb=1/2, rub= E

pad
/(1+ E

pad
), and Nmo/L=1

2+Nch
E

pad
/(1+ E

pad
).

0 2 4 6 8 10

Nmo/L

0

0.1

0.2

0.3

J/vb

Fig. 3. Reduced current J/vb through the tube with periodic boundary conditions as a
function of the reduced particle number Nmo/L. The line is calculated from Eq. (7), the Monte
Carlo data are obtained for a tube of length L=200 and radius R=25 corresponding to
channel number Nch=1940. The random walk probabilities are b=0, c=99/100, E=10−4,
a=1 − c − 2E/3, and pad=1.
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Let us add two remarks:

(i) Equation (3), as stated here, can be considered as a mean field
equation. However, using the quantum Hamiltonian representation of the
stochastic process, it can be shown to hold exactly. The calculation is
simple, but rather technical and is therefore presented in Appendix A,
which shows that stationary states can be constructed as product measures
provided the bound and unbound densities satisfy Eq. (3).

(ii) Note that in contrast to a homogeneously driven lattice gas such
as the asymmetric simple exclusion process, there is no particle hole sym-
metry here. Particles attempt to leave the filament with rate E/6 to a
neighboring site while holes do so with rate pad/6, i.e., particles are
strongly attracted by the filament, while holes are not. However, if one
considers only the bound density, the current density relationship J=jb=
vb rb(1 − rb) is invariant under the exchange of particles and holes. As we
will see in the next section, this can lead to an apparent particle hole sym-
metry for systems with radial equilibrium, because the radial currents
vanish and the state of the system can be determined by the bound density
alone.

4. OPEN BOUNDARIES WITH RADIAL EQUILIBRIUM

Now, let us consider the more interesting case, where the tube is open
and the densities at the left and right boundary are fixed. To be precise, we
consider two different sets of boundary conditions, (B) and (C) as shown
schematically in Fig. 2. In this section, we study case (B) while case (C) will
be considered in Section 5.

For case (B), we add two layers of boundary sites at x=0 and
x=L+1 with y2+z2 [ R2. As before, the filament is located at y=z=0.
We then fix the density on the additional filament sites according to

rb(x=0) — rb, in and rb(x=L+1) — rb, ex, (9)

see Fig. 2. Furthermore, the densities on the nonfilament boundary sites
are chosen in such a way that radial equilibrium as given by (3) holds at
both boundaries.

These boundary conditions are implemented by the following choice of
random walk probabilities. First, we eliminate two parameters from the
problem, namely the jump probability b to make backward steps on the
filament and the resting probability c to make no step at all on the fila-
ment. Thus, we take b=c=0 throughout this section.
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Next, when we choose a site within the left or right boundary layer
during the Monte Carlo sweep, we first draw a random number w which is
uniformly distributed over the interval 0 < w [ 1. The chosen left or right
boundary site is taken to be occupied if w [ rb, in, w [ rub, in, w [ rub, ex, or
w [ rb, ex, respectively. If a boundary site with y2+z2 > 0 is occupied by a
motor particle, this particle attempts to jump into the tube with probability
1/6. If the left boundary site with y=z=0 is occupied, the corresponding
particle attempts to jump onto the left end of the filament with probability
(1 − 2E/3). If the right boundary site with y=z=0 is occupied, this par-
ticle cannot enter since b=0. In addition, all particles which jump from a
site within the tube, i.e., from a lattice site with 1 [ x [ L, onto a boundary
site, are extracted from the tube.

4.1. Phase Diagram

In the limiting case with Nch=0 and E=0, our system becomes
equivalent to the 1-dimensional ASEP, for which the density profiles and
the phase diagram are known exactly. (16, 17) Let us therefore summarize
some of the known properties of this process, for which we use symbols
without the subscript ‘‘b.’’

For the 1-dimensional ASEP, there are three different phases. If the
density rin at the left boundary is small and satisfies rin < 1/2 and if the
density rex at the right boundary is not too large with rex < 1 − rin,
the system is in the low density (LD) phase, for which the bulk density
r0 is equal to the left boundary density, and the current is given by
J=vrin(1 − rin). Because of the particle hole symmetry, an analogous
situation holds for rex > 1/2 and rin > 1 − rex [high density (HD) phase].
Now, the bulk density is given by r0=rex and the current is J=
vrex(1 − rex). At the line rex=1 − rin < 1/2, a discontinuous phase transi-
tion takes place, and the bulk density jumps from the left boundary value
to the right boundary value. Finally, for rin > 1/2 and rex < 1/2, the bulk
density r0=1/2 and the current attains its maximal value J=v/4. There-
fore, this phase is called maximal current (MC) phase. The phase transition
towards the maximal current phase is continuous with a diverging correla-
tion length.

The formation of three different phases can be understood in terms of
the underlying dynamics of domain walls and density fluctuations. (8) In the
low density and high density phases, the selection of the stationary state
is governed by domain wall motion. Thus consider a domain wall, which
forms between regions of different densities. If its velocity is positive, the
domain wall travels to the right boundary and the bulk density is equal to
the left boundary density (low density phase). Likewise, the bulk density is
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given by the right boundary density, if the domain wall velocity is negative
(high density phase). At the transition line with rex=1 − rin < 1/2 the
domain wall velocity is zero, and domain walls diffuse through the system.

The second mechanism is related to density fluctuations. If a small
perturbation of the density, corresponding, e.g., to some added particles,
enters the system at the left boundary, it can move with positive or negative
velocity, i.e., it can spread into the bulk or is driven back towards the
boundary. In the maximal current phase the velocity of such density per-
turbations, is negative and density fluctuations coming from the left
boundary are driven back to the boundary. Hence, increasing rin does not
increase the bulk density, since additional particles cannot enter the system
(overfeeding effect). Both the velocities of domain walls and of density
fluctuations are governed by the same density current relation which is
j=vr(1 − r) for the 1-dimensional ASEP. (8)

For the filament in a tube as considered here, the velocities of domain
walls and density fluctuations are similar to those for the ASEP in one
dimension. This can be understood from the fact that the density-current
relationship on the filament is the same as for the 1-dimensional ASEP
provided one rescales all currents by the factor (1 − 2E/3) which arises from
the possibility to unbind from the filament.

Thus, let us first consider the case, where the behavior on the filament
is determined by domain walls, i.e., the low density and high density
phases. Drift motion of domain walls is governed by the domain wall
velocity on the filament, which is vs=v(1 − rex − rin) for the one-dimen-
sional ASEP. (8) In the tube system considere here, the domain wall velocity
is slowed down compared to this value, because the domain wall of the
unbound density must follow the bound density domain wall by binding
and unbinding of motors to and from the filament. However, the sign of
the domain wall velocity is the same for this tube system as for the one-
dimensional ASEP, and the domain wall velocity changes sign at the same
values of the boundary densities. An explicit expression for vs can be
obtained from the general expression for the domain wall velocity as given
in ref. 8 by integrating the density over the tube cross-section, which leads
to

vs=
vb rb, ex(1 − rb, ex) − vb rb, in(1 − rb, in)
rb, ex − rb, in+Nch rub, ex − Nch rub, in

(10)

for the geometry considered here. Remember that the unbound densities
are related to the bound densities by radial equilibrium at the boundaries.
If a domain wall spreads from the left or right boundary into the system,
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radial equilibrium will hold approximately in the bulk because of transla-
tional invariance, but, in addition, all the way down to the dominating
boundary, where we have imposed radial equilibrium via the boundary
conditions. Therefore, the current and the bulk density are determined by
the bound density at the boundaries.

The drift velocity of fluctuations of the bound density is vc=1 − 2rb. (8)

If the behavior on the filament is determined by this velocity, i.e., in the
case rb, in > 1/2 and rb, ex < 1/2, radial equilibrium will not hold up to the
boundary and unbound motors can enter the tube. However, after a short
distance they will bind to the filament and act like an additional particle in
the maximal current phase: The density fluctuation generated by the addi-
tional particle moves towards the boundary. Therefore in the bulk, the
bound density is 1/2 and the current is vb/4.

Summarizing these considerations, we predict to find exactly the same
phase diagram as for the 1-dimensional ASEP, see Fig. 4. In fact, we have
chosen our boundary conditions (B) in such a way that we only have to
replace the density r of the 1-dimensional ASEP by the bound density rb

and the boundary densities rin and rex by the boundary densities on the
filament, rb, in and rb, ex. The unbound density in the bulk is obtained by
radial equilibrium from the bound density. These expectations are con-
firmed (i) by a detailed analysis of the discrete mean field equations and (ii)
by extended Monte Carlo simulations.

0 0.5 1

ρb,in

0

0.5

1

ρb,ex

MC

HD

LD

ρb

0
=ρb,ex

ρb

0
=1/2ρb

0
=ρb,in

Fig. 4. Phase diagram for motor traffic in open tubes with boundary condition (B) as a
function of the boundary densities rb, in and rb, ex at the left and right end of the filament,
respectively. There are three phases distinguished by the bulk value of the bound density r0

b:
A low density phase (LD), a high density phase (HD), and a maximal current phase (MC).
This phase diagram is identical to the phase diagram of the 1-dimensional ASEP as explained
in the text.
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A remarkable feature of the phase diagram is that it seems to exhibit
particle hole symmetry, while the dynamics does not. The signature of par-
ticle hole symmetry in the phase diagram is the symmetry between the high
density and low density phase. In both these phases, the bulk density is
approximately constant and radial equilibrium holds approximately in the
whole system except close to the left or right boundary. Radial equilibrium
holds exactly at that boundary which determines the bulk behavior. There-
fore radial currents vanish on average and the phase diagram is determined
by the bound density alone, resulting in a phase diagram which gives the
impression of particle hole symmetry, although this symmetry is broken.
Indeed, even though the substitution of the bound density rb by 1 − rb

leads to the same bound current jb, it does not lead to the unbound density
1 − rub. Two stationary states with bound densities that are related through
particle hole symmetry are characterized by two unbound densities which
are both smaller than the bound ones and thus break the apparent symmetry.

4.2. Density Profiles

To discuss the concentration profiles of the bound and unbound
motors, we use continuum mean field equations and compare the mean
field results with simulations. In addition, we make a two-state approxi-
mation, i.e., we consider the case of a single unbound channel, so that a
motor can be in only two states, bound to the filament or unbound. The
two-state model is exact for an arbitrary number Nch of equivalent unbound
channels, but it can also serve as an approximation for the original tube
systems: Since the unbound density depends only weakly on the radial
coordinate, we will consider the approximation in which rub is taken to be
independent of r and the unbound channels are taken to be equivalent.
This approximation corresponds to a two-state model in which the bound
motors are described by the density rb(x) and the unbound motors by the
density rub(x). The effective diffusion coefficient for the unbound motors is
given by NchDub.

Using again the mean field approximation, the total current J parallel
to the tube axis is now given by

J=vb rb(1 − rb) − Db
“

“x
rb − NchDub

“

“x
rub (11)

and the equality between incoming and outgoing currents at any lattice site
leads to

“

“x
5vb rb(1 − rb) − Db

“

“x
rb
6=p̃ad rub(1 − rb) − Ẽrb(1 − rub), (12)
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where Db and Dub are the diffusion coefficients of motors in the bound and
unbound state, respectively. In addition, we have introduced the rescaled
binding and unbinding rates, p̃ad=2

3 pad and Ẽ=2
3 E.

In order to determine the density profiles far from the boundaries, we
first calculate the homogeneous, x-independent solutions, r0

b and r0
ub, of

the two mean field equations (11) and (12). The first equation (11) for the
total current J then reduces to the current-density relationship

J=vb r0
b(1 − r0

b) (13)

whereas the second equation (12) becomes

p̃ad r0
ub(1 − r0

b)=Ẽr0
b(1 − r0

ub) (14)

which implies radial equilibrium for the x-independent solutions. We then
decompose the densities according to

rb(x)=r0
b+gb(x) and rub(x)=r0

ub+gub(x), (15)

and expand the mean field equations (11) and (12) in powers of the density
deviations gb and gub. The details of this expansion are described in
Appendix B.

4.2.1. Low Density and High Density Phases

For the high and low density phases with r0
b ] 1/2, the expansion of

the mean field equations up to first order in gb and gub leads to an expo-
nential approach ’ exp(x/t) of the density profiles towards the homoge-
neous solutions r0

b and r0
ub, see Appendix B. The corresponding decay

length t satisfies the cubic equation

− vb(1 − 2r0
b) t3+(Db+NchDub g) t2+NchDub

vb(1 − 2r0
b)

A
t − NchDub

Db

A
=0

(16)
with A as given by (B3) which is solved numerically.

For the ASEP in one dimension, one has Nch=0 and (16) reduces to
−vb(1 − 2r0

b) t3+Dbt2=−t2(t − t0)=0 with

t0 — Db/vb(1 − 2r0
b). (17)

Thus, in this limit, mean field theory leads to the correlation length t=t0.
For Nch > 0, we choose the unique solution of (16) which approaches
(17) as Nch vanishes. This solution behaves as t % t0(1+gNchDub/Db) for
small Nch.
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Fig. 5. Bound and unbound density profiles rb and rub as a function of the spatial coordi-
nate x for the low density phase with boundary conditions (B) and boundary densities
rb, in=0.3 and rb, ex=0.6. The unbound density has been averaged over the tube cross section
and multiplied by a scale factor of 10. All data points are averages over six lattice sites in
direction parallel to the filament. The tube has length L=600 and radius R=10. The random
walk probabilities are b=c=0, E=10−2, a=1 − 2E/3, and pad=1.

In addition to the mean field calculation, we again used Monte Carlo
simulations in order to determine the density profiles as shown in Figs. 5
and 6. As predicted by the mean field calculation, the constant bulk densi-
ties for the bound and unbound states are approached exponentially in the
low and high density phases. The corresponding decay length t is found to
be the same for the bound and the unbound density and to diverge as one
approaches the maximal current phase.
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Fig. 6. Bound and unbound density profiles rb and rub as functions of the spatial coordi-
nate x for the high density phase; boundary conditions (B) with rb, in=0.8 and rb, ex=0.6.
The unbound density has been averaged over the tube cross section and multiplied by a scale
factor of 10. The geometry and the random walk probabilities are the same as in Fig. 5.
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Fig. 7. Localization length t as a function of the tube radius R for boundary conditions (B)
with rb, in=0.38 and rb, ex=0.6. Circles are simulation data, obtained for a tube with length
L=600 and with random walk probabilities as in Fig. 5; lines are the corresponding results of
mean field calculations (dotted: discrete two-state approximation, dashed: continuous two-
state approximation, solid: full diffusion equation, see text). The two crosses and the filled
circle at R=0 represent the mean field results and the exact result for the 1-dimensional
ASEP, respectively.

Some simulation results for the decay length t are displayed in Fig. 7.
In this case, the radius R of the tube was varied while the boundary densi-
ties were kept fixed. The latter densities were chosen to be rb, in=0.38 and
rb, ex=0.6 which lies within the low density phase but is close to the phase
transition line which separates the low from the high density phase. One
surprising feature of the Monte Carlo data for the decay length t is that
they exhibit a pronounced minimum as a function of tube radius R.

For comparison, we also display in Fig. 7 the t-values as obtained
from several mean field approximations corresponding to the dashed,
dotted and solid lines. The dashed line is obtained from the solution of
Eq. (16) which we derived from the continuous mean field approximation
for the two-state model. We also determined this quantity using a lattice
version of this approximation (dotted line) and a more elaborate mean field
approximation (solid line) in which we solved the diffusion equation in the
cylindrical compartment and matched this solution to the directed trans-
port along the filament.

Inspection of Fig. 7 shows that all three mean field approximations are
quite consistent with each other and lead to t ’ R2 as follows from (16).
Such an increase of t for large R is in fair agreement with the Monte Carlo
data displayed in Fig. 7. However, in contrast to the Monte Carlo simula-
tions, all three mean field approximations give a monotonic increase of t

with increasing R.
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The largest discrepancy between the mean field results and the Monte
Carlo data is found in the limit of small R for which one recovers the
1-dimensional ASEP. In this limit, the Monte Carlo data should be quite
reliable as one concludes from the value obtained for R=0 which is in very
good agreement with the exact solution for the 1-dimensional ASEP as
given by (16)

t=: 1
tin

+
1

tex

: −1

with tk — −
1

ln[4rk(1 − rk)]
(18)

for k=in, ex. Thus, we conclude that the decay length t does indeed
exhibit a nonmonotonic dependence on the tube radius R and that this
behavior is not reproduced by the mean field approximation.

Finally, we note that the different behavior of the decay length t for
large and for small R is correlated with a qualitatively different behavior of
the corresponding density profiles as observed in the Monte Carlo simula-
tions. As an example, let us consider the density profiles within the low
density phase as in Fig. 5. In this case, the bound and unbound densities
exhibit plateau regions which are determined by their values rb, in and rub, in

at the left boundary. As one gets closer to the right boundary where the
motors can leave the tube, the densities start to deviate from these constant
values, and these deviations grow exponentially as ’ exp(x/t). For small R,
the corresponding profiles are convex upwards for all values of x. For large R,
on the other hand, the profile exhibits an inflection point close to the right
boundary. This inflection point moves towards the interior of the tube as R
is further increased.
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Fig. 8. Bound and unbound density profiles rb and rub as functions of the spatial coordi-
nate x for the maximal current phase; boundary conditions (B) with rb, in=0.6 and rb, ex=0.1.
The unbound density has been averaged over the tube cross section and multiplied by a scale
factor of 10. The parameters are the same as in Fig. 5.
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4.2.2. Maximal Current Phase

In the maximal current phase, one has r0
b=1/2, and one has to

consider terms up to second order in the density deviations gb and gub, see
Appendix B. One then finds that gb satisfies the nonlinear differential
equation

(Db+gNchDub)
“

“x
gb % − vbg2

b (19)

with

g —
Ẽ(1 − r0

ub)+p̃ad r0
ub

p̃ad(1 − r0
b)+Ẽr0

b

. (20)

This differential equation can be solved by separation of variables. The
solution behaves as

gb %
Db+gNchDub

vb x
for large x (21)

i.e., the deviation of the bound density from its asymptotic bulk value
r0

b=1/2 decays as ’ 1/x within the mean field approximation.
For Nch=0, this becomes identical with the mean field solution for the

ASEP in one dimension as discussed in ref. 15. In this latter case, an exact
solution is available, (16, 17) which shows that the density profile decays as
’ 1/x1/2, i.e., with a different exponent. This is related to the fact that
density fluctuations spread superdiffusively in the 1-dimensional ASEP. (22)

The dispersion O(Dx)2P of an ensemble of particles in such a system
behaves as O(Dx)2P ’ t4/3 for large times t. This superdiffusive spreading
of density fluctuations in one dimension can be taken into account within
a mean field approximation if one considers a scale-dependent diffusion
coefficient as shown in ref. 15. In the following, we will extend this
approach to the tube geometry considered here.

Thus, we now replace Db in the mean field equation (19) by a scale-
dependent diffusion coefficient Db(x) and consider the modified mean field
equation

[Db(x)+gNchDub]
“

“x
gb % − vbg2

b. (22)
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A convenient choice for Db(x) which embodies the correct superdiffusive
behavior for the ASEP in one dimension is

Db(x) — Dsc
11+=x − x0

xsc

2. (23)

The left boundary is located at x=x0, and Dsc and xsc represent two scale
parameters. With this choice, the modified mean field equation (22) can
again be solved by separation of variables. As a result, we obtain

gb(x)=a 5 a
gb(x0)

+`y − b ln(1+`y/b)6
−1

(24)

where we have introduced the abbreviations

y — (x − x0)/xsc, (25)

a — Dsc/2vbxsc, (26)

and

b — 1+gNchDub/Dsc. (27)

The ‘‘initial’’ value gb(x0)=rb, in − 1
2 denotes the density deviation at the left

boundary.
Far from the left boundary, i.e., for large values of y ’ x, the expres-

sion (24) leads to the asymptotic behavior

gb(x) %
a

`y
51+b

ln(`y)

`y
6 . (28)

Thus, the deviation of the bound density from its asymptotic value now
decays as 1/`y ’ 1/`x as for the ASEP in one dimension.

In addition, we also obtain a correction term in (28) which depends
on b=1+gNchDub/Dsc. For large tube radius R, one has Nch ’ R2 and
b ’ Nch ’ R2. Therefore, the correction term becomes large for large R. We
can now define a crossover length y=yg at which the correction term has
the same size as the leading term. This leads to the implicit equation

`yg/ln(`yg)=b (29)

and, thus, to

yg % [b ln(b)]2 ’ [R2 ln(R2)]2 for large b ’ R2. (30)
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Close to the left boundary, i.e., for small values of y ’ x − x0, the
expression (24) for the deviation of the bound density from its asymptotic
value r0

b=1/2 leads to

gb(x) % gb(x0)51 −
1

2ab
gb(x0) y6 . (31)

We may now define a second crossover length or extrapolation length
y=ygg at which the two terms in (31) cancel. This extrapolation length is
given by

ygg=2ab/gb(x0)=2ab/(rb, in − 1
2). (32)

For large tube radius R, the latter length scale grows as ygg ’ b ’ R2. In
general, the extrapolation length can have both signs but, for the maximal
current phase, one always has rb, in > 1/2 and, thus, ygg > 0.

There is also an intermediate range of y-values defined by ygg °

y ° b2 ’ yg. For these y-values, the deviation gb of the bound density
from its asymptotic value as given by (24) simplifies and becomes

gb %
2ab
y

=
Dsc+gNchDub

vbxsc

1
y

. (33)

Thus, for these intermediate y-values the density deviation decays again as
’ 1/y.

In summary, the theory described here indicates (i) that the ‘‘initial’’
value at the left boundary is felt up to an extrapolation length ygg ’

b ’ R2, (ii) that the true asymptotic behavior of the density deviation is
obtained for y > yg ’ R4 as follows from (30), and (iii) that the density
deviation decays as 1/y on intermediate length scales with ygg ° y ° yg.

These conclusions agree with the results of Monte Carlo simulations.
In these simulations, the tube length L is necessarily finite. This implies
that the profiles observed in the simulations may not reach the asymptotic
behavior present in a tube of infinite length. Since both the crossover
length yg and the extrapolation length ygg increase quickly with increasing
tube radius R, we expect to find the true asymptotic behavior only for suf-
ficiently small values of R. This expectation is confirmed by the simulation
results. For sufficiently small R, the density deviation gb is found to decay
as ’ 1/x1/2 for large x, as shown in Fig. 9 for R=3. For sufficiently large
values of R, on the other hand, the observed profiles decay as 1/x, see the
Monte Carlo data in Fig. 9 for R=5 and R=7. In the latter cases, the true
asymptotic behavior is not accessible and is cut off by the finite value of L.
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Fig. 9. Deviation gb of the bound density from its constant value far from the boundaries as
a function of the spatial coordinate x for the 1-dimensional ASEP (solid line) and for motor
traffic in tubes with radius R=3, 5, 7 (dashed lines) and boundary conditions (B) with
rb, in=0.8 and rb, ex=0.5. The curves for the 1-dimensional ASEP and for the tube radii
R=3, 5 have been multiplied by scale factors 0.1, 0.2, and 0.5, respectively. The thin dotted
lines correspond to the decay laws ’ 1/x and ’ 1/`x, respectively. The tube length is
L=2000 and the random walk probabilities are the same as in Fig. 5.

In addition, a more detailed analysis of the Monte Carlo results for
small values of R but large values of L explicitly shows that the decay of
the bound density deviation behaves as ’ 1/`x for large x but decays
faster than 1/`x for smaller values of x. This crossover behavior is shown
in Fig. 10 where the simulation data are compared with the thin dashed
line corresponding to the decay law ’ 1/`x. Furthermore, the data can be
well fitted with a density profile as given by (24) if one makes an appro-
priate choice for the scale parameters Dsc and xsc.

The Monte Carlo data shown in Fig. 10 correspond to a tube of
radius R=3 and length L=6000 with boundary densities rb, in=0.8 and
rb, ex=0.5. In this case, a least-squares fit of the data for x > 20 leads to
the parameter values Dsc 4 0.81 and xsc 4 8.57. The corresponding fitting
curve corresponds to the thick dashed line in Fig. 10. The fit becomes less
reliable close to the left boundary, where the assumption that gb is small is
no longer fulfilled. For fixed boundary densities, both fitting parameters
Dsc and xsc are found to depend on R and to increase with increasing R. In
addition, for R \ 4, it becomes rather difficult to determine these param-
eters since one would have to simulate rather long systems with L ± 6000
in order to observe the true asymptotic behavior.

For the ASEP in one dimension, it has been argued that the power-law
decay of the density profile as given by the asymptotic form % c/`x/a for
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Fig. 10. Deviation gb of the bound density from its constant value far from the boundaries
as a function of the spatial coordinate x for a tube with radius R=3 and length L=6000;
boundary conditions (B) with rb, in=0.8 and rb, ex=0.5. The thin solid line is obtained from
the simulation, the thick dashed line is a fit to Eq. (24) with Dsc 4 0.81 and xsc 4 8.57. The
dotted line indicates the power law ’ 1/`x. Note that the simulation data decay faster than
’ 1/`x for 101 M x M 102. The random walk probabilities are the same as in Fig. 5.

large x is characterized by the universal amplitude c=1/2 `p 4 0.282. (23, 24)

Inspection of the relations (25), (26), and (28) shows that, in the present
situation, c=Dsc/2vb `xsc where the parameters Dsc and xsc depend on the
tube radius R. This implies that the amplitude c will also depend on R.
Using the numerically determined values for Dsc and xsc and the bound
state velocity vb 4 0.99, we obtain the estimates c 4 0.27 for R=0, which
corresponds to the 1-dimensional ASEP and should be compared with the
exact value c=1/2 `p 4 0.282, and c 4 0.14 for R=3. Thus, for small
values of R, the amplitude c is found to decrease with increasing R.

5. DIFFUSIVE INJECTION AND EXTRACTION OF MOTORS

Finally, we consider the second type of open boundary conditions
corresponding to case (C) in Fig. 2. The length of the tube is again denoted
by L. This tube is now longer than the filament which has length LF < L.
The left end of the tube is located at x=0 as before but the left end of the
filament is at x=DL — (L − LF)/2. Likewise, the right end of the filament
is at x=DL+LF whereas the right end of the tube is at x=2DL+LF=L.
Thus, a motor particle which enters the tube on the left must diffuse over
a distance ’ DL before it can come into contact with the filament, and a
motor particle which leaves the filament at its right end must also diffuse
over a distance ’ DL before it can leave the tube.
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At the left and right end of the tube, we now prescribe constant
boundary densities as given by

r(x=0, y, z)=rub, in and r(x=L+1, y, z)=rub, ex (34)

for all values of y and z with y2+z2 [ R2.
As before, the jump probability b to make backward steps on the

filament is taken to be zero. Likewise, the resting probability c to make no
step at all on the filament is also zero with a possible exception at the
‘‘last’’ filament site with (x, y, z)=(DL+LF, 0, 0). Indeed, in order to
define the system in a unique way, we still have to specify the probability
to make a forward step at this ‘‘last’’ filament site. Two possible choices
appear rather natural: (i) Active unbinding from the ‘‘last’’ filament site,
i.e., the motor particle attempts to step forward with probability a and
makes a step if the adjacent nonfilament site is unoccupied. In this case, the
forward step at the last filament site is governed by the same probabilities
as all other forward steps along the filament; and (ii) Thermal unbinding in
which the motor particle unbinds with probability E/6 both in the forward
direction and in the four orthogonal directions. In the latter case, one has
to choose the resting probability c to be nonzero and to be given by
c=1 − 5E/6.

The choice (i) is suggested by the results of recent experiments on
microtubules and kinesin motors (25) which indicate that these motors
unbind quickly at the filament ends. In the following subsections, we will
first consider this choice (i) corresponding to active unbinding from the last
filament site. In Section 5.4, we will show that the choice (ii) leads to rather
similar behavior.

5.1. Diffusive Bottlenecks

In order to understand the behavior found for boundary condition (C),
it is instructive to partition the tube into three compartments which are
defined as follows: (i) A left compartment with 1 [ x < DL where transport
is purely diffusive; (ii) A middle compartment with DL [ x [ DL+LF

where all directed (or active) transport occurs; and (iii) A right compart-
ment with DL+LF < x [ L where the transport is again purely diffusive.

For a stationary state, the total current through the tube must be
constant and, thus, must be the same in all three compartments. The
current through the middle compartment is given by the bound current
jb=vb r0

b(1 − r0
b). Thus, the diffusive currents Jdif, L and Jdif, R in the left and

right tube segment must be equal and must satisfy the simple relation

Jdif, L=Jdif, R=vb r0
b(1 − r0

b). (35)
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The relation as given by (35) is easily checked in the simulations since
the density profile is found to be approximately linear in the left and in the
right compartments provided DL is sufficiently large. For such a linear
density profile in the right compartment, the diffusive current Jdif, R can be
estimated as

Jdif, R 4 (1+Nch) Dub
|rub(x=DL+LF) − rub, ex |

DL
. (36)

Since the maximal density difference is one (in the units used here), the
maximal diffusive current behaves as

max(Jdif, R) ’ (1+Nch) Dub
1

DL
’ R2Dub

1
DL

. (37)

This shows that the maximal diffusive current depends on the tube radius R,
the lateral size DL of the diffusive segments, and the diffusion coefficient
Dub of the unbound motors. Since these parameters can be chosen inde-
pendently from the bound motor velocity vb, the diffusive current Jdif, L can
be made smaller than the maximal bound current vb/4 on the filament. In
the latter case, the diffusive compartments act as diffusive bottlenecks and
the maximal current phase characterized by the current vb/4 is expected to
be absent from the phase diagram. This expectation is indeed confirmed by
the simulations as discussed next.

5.2. Phase Diagram without Maximal Current Phase

One geometry, for which no maximal current phase has been observed
in the simulations, is provided by a tube with radius R=5, length L=600,
and filament length LF=590. The corresponding phase diagram as deter-
mined by the Monte Carlo simulations is shown in Fig. 11. The largest part
of the phase diagram is covered by the high density phase; in addition,
a low density phase is found for small values of the boundary densities
rub, in and rub, ex.

The transition line displayed in Fig. 11 has been determined from the
functional dependence of the bound density in the bulk, r0

b, on the left
boundary density rub, in as shown in Fig. 12. Inspection of this latter figure
shows that the bound bulk density r0

b jumps at a certain value of the left
boundary density rub, in. Since L is finite, this jump occurs over a small but
finite interval of rub, in. Thus, the jump can be characterized by two
rub, in-values, say r <

ub, in and r >
ub, in, which represent the left and the right
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Fig. 11. Phase diagram for tubes with boundary conditions (C) as a function of the left and
right boundary densities rub, in and rub, ex for a set of parameters where no maximal current
phase occurs. The tube has length L=600 and radius R=5, the filament length is LF=590
and the distance between the filament ends and the tube ends is DL=5. The random walk
probabilities are the same as in Fig. 5. Note the different scales of the axes.

‘‘corner’’ of the numerically determined jump. Both rub, in-values have been
included in the phase diagram of Fig. 11.

For r <
ub, in < rub, in < r >

ub, in, the simulations do not reach a stationary
state within two days of computation. Simulations also become very slow
in the high density phase especially when the overall motor concentration
gets so large that the bound density is close to one and the unbound
density is no longer small compared to the bound density.
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Fig. 12. Bound density r0
b as a function of the left boundary density rub, in for boundary

conditions (C) and different values of the right boundary density rub, ex. The parameters are
the same as in Fig. 11. The discontinuity in the functional dependence of r0

b on rub, in corre-
sponds to the transition from the low to the high density phase, compare Fig. 11.
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5.3. Presence of the Maximal Current Phase

In order to estimate the set of parameters, for which the phase
diagram exhibits a maximal current phase, we return to the estimate (36)
for the diffusive current Jdif, R and make the simplifying assumption that
the bound and unbound densities in the middle compartment of the tube
are essentially constant. Thus, we replace the true unbound density
rub(x=DL+LF) at the right end of the filament by its bulk value r0

ub.
The bulk density r0

ub of the unbound motors is related to the bulk
density r0

b of the bound motors via the radial equilibrium relation (3).
For the maximal current phase, one has r0

b=1/2 and (3) leads to r0
ub=

E/pad
1+E/pad

% E/pad for small E. In this way, we arrive at the estimate

Jdif, R 4 (1+Nch) Dub
E

pad DL
for rub, ex=0. (38)

The maximal current phase should be present in the phase diagram if
the diffusive current Jdif, R exceeds the maximal current vb/4 on the fila-
ment. It then follows from (38) that the maximal current phase should be
present for rub, ex=0 provided the tube radius R satisfies

R2 > R2
g —

vb

4p

pad DL
DubE

(39)

where 1+Nch % pR2 has been used. Using the same line of reasoning,
a second, less restrictive condition can be obtained from an estimate for the
diffusive current within the left compartment.

The threshold value Rg for the tube radius as given by (39) has been
confirmed by Monte Carlo simulations for the jump probabilities
a=1 − 2E/3 with E=1/100, the sticking probability pad=1, the com-
partment size DL=5, and the boundary densities rub, in=0.2 and rub, ex=0.
The jump probabilities imply the bound motor velocity vb=1 − 2/300; the
diffusion coefficient Dub of the unbound motors has the value Dub=1/6
(since the resting probability c=0 as mentioned above). When these
parameter values are inserted into (39), one obtains the estimate Rg 4 15.4.

The corresponding Monte Carlo data are displayed in Fig. 13. Inspec-
tion of this figure shows that the current does indeed attain its maximal
value vb/4 for R \ Rg with Rg 4 16. The same Fig. 13 also shows the
transition from the low density to the high density phase which occurs for a
tube radius Rgg which satisfies 4 < Rgg < 5.

A complete phase diagram for a tube with radius R=17 is shown in
Fig. 14. Again, most of the phase diagram is covered by the high density
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Fig. 13. Current J/vb (j) and bound density r0
b (n) as a function of the tube radius R for

boundary conditions (C) with rub, in=0.2, rub, ex=0. The tube length L=600, the filament
length LF=590, and the distance between the filament ends and the tube ends is DL=5. The
random walk probabilities are the same as in Fig. 5.

phase (HD), while a low density phase (LD) is found only for very small
values of rub, in. The maximal current phase (MC) is present now but only
for very small values of rub, ex.

It is interesting to note that similar effects also occur in the purely one-
dimensional system if one considers a driven system which is bounded by
two segments which exhibit only diffusive transport. In this 1-dimensional
case, quantitative predictions can be made using a mean field approxima-
tion as will be discussed elsewhere. (26)
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Fig. 14. Phase diagram for a tube of radius R=17 with boundary conditions (C) as a func-
tion of the left and right boundary densities rub, in and rub, ex. The other parameters are the
same as in Fig. 11. In the inset, which shows the complete phase diagram, the maximal current
phase can be hardly distinguished from the line rub, ex=0.
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5.4. Active Versus Thermal Unbinding from the ‘‘Last’’ Filament

Site

The Monte Carlo data displayed so far have been obtained for active
unbinding of a motor particle which is bound to the ‘‘last’’ filament site. As
mentioned above, another possibility is that the motor particle gets stuck at
the ‘‘last’’ filament site and unbinds only by thermal excitations, i.e., with
unbinding probability E/6. For these two different unbinding mechanisms,
one will, in general, obtain different density profiles. However, this differ-
ence is not dramatic as one can see from Fig. 15 which exhibits density
profiles for both cases. Although the probability for a forward step at the
‘‘last’’ filament site differs by two orders of magnitude for the two cases,
the bulk density exhibits a relatively small difference. The bound density,
on the other hand increases and decreases close to the right end of the
filament for thermal and active unbinding from the ‘‘last’’ site, respectively.

6. SUMMARY AND CONCLUSIONS

Let us summarize the main results and add a few comments. We have
studied a lattice model for the motion of many molecular motors in an
open tube which contains a single filament. When bound to the filament,
the motor particles undergo an asymmetric simple exclusion process
(ASEP). In addition, motors can unbind from the filament and then diffuse
freely in the tube. As for the ASEP in one dimension, the motor traffic in
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Fig. 15. Bound and unbound density profiles rb and rub as functions of the spatial coordi-
nate x for boundary conditions (C) with rub, in=0.2 and rub, ex=0. Two different unbinding
processes of the motor particles at the ‘‘last’’ filament site are compared: (N) Active unbind-
ing for which the motor makes one final step in the forward direction; and (n) Thermal
unbinding with probability E/6 in the forward direction. The geometric parameters are
L=600, LF=590, DL=5, and R=5; the random walk probabilities are as in Fig. 5.
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open tubes can exhibit three different phases: high density and low density
phases which are characterized by an exponential decay of the density
deviations from their bulk values and maximal current phases characterized
by an algebraic decay. Therefore, the molecular motor traffic in open tubes
are promising candidates for the experimental observation of boundary-
induced non-equilibrium phase transitions.

In general, the location of the transition lines is found to depend on
the precise choice of the boundary conditions. Apart from periodic
boundary conditions, case (A), we studied two different boundary condi-
tions (B) and (C) for an open tube. In case (B), the bound and unbound
densities are kept fixed at the boundaries and satisfy radial equilibrium.
For this case, the location of the transition lines is independent of the
model parameters, and the phase diagram of the ASEP in one dimension is
recovered. In case (C), the active compartment of the tube is bounded by
two compartments where the transport is purely diffusive. In this latter
case, the phase diagram depends on the geometry of the tube and on the
transport properties in the bound and unbound motor states. In many
cases, the maximal current phase is completely suppressed by the coupling
to the diffusive compartments which act as bottle necks for the transport.

The theoretical results described here should be accessible to experi-
ments on cytoskeletal filaments and motors. In particular, the motor traffic
through open tubes as discussed here provides new opportunities to study
the transport properties of ASEPs by systematic experiments.

APPENDIX A. RADIAL EQUILIBRIUM FOR PERIODIC BOUNDARY

CONDITIONS

In the following, we show that Eq. (3), the condition for radial equi-
librium, holds exactly in the case of periodic boundary conditions using the
quantum Hamiltonian formalism. (27) The exact stationary master equation
can be written in the form

H |rP=0, (A1)

where H is the ‘‘quantum Hamiltonian’’ of the stochastic process and |rP is
a vector in a product Hilbert space; each lattice site is represented by a two-
state system with the orthogonal vectors |1P for an occupied lattice site
(‘‘spin down’’) and |0P for a vacancy (‘‘spin up’’). Because of translational
invariance in the direction parallel to the filament, there cannot be any
radial currents in our system, and the unbound density is independent of
the radial coordinate; thus we can restrict the analysis to the case of one
unbound channel. We denote by |rPk, b and |rPk, ub the state of site k of the
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bound and unbound channel, respectively. Using the general recipe given in
Chapter 2 of ref. 27 we construct the ‘‘quantum Hamiltonian’’ H of our
system:

H=H1+H2+H3, (A2)

where H1 represents the dynamics of the asymmetric exclusion process
in the bound channel, H2 the symmetric exclusion process in the unbound
channel and H3 the coupling of the two channels. Each term can be written
as a sum Hi=;k h (i)

k with

h (1)
k =vb(nk, bvk+1, b − s+

k, bs−
k+1, b) (A3)

h (2)
k =Dub(nk, ubvk+1, ub − s+

k, ubs−
k+1, ub+vk, ubnk+1, ub − s−

k, ubs+
k+1, ub) (A4)

h (3)
k =

E

6
(nk, bvk, ub − s+

k, bs−
k, ub)+

pad

6
(vk, bnk, ub − s−

k, bs+
k, ub). (A5)

s−
k, b is a creation operator for a particle at site k of the bound channel, and

s+
k, b is the corresponding annihilation operator. nk, b is the particle number

operator at site k of the bound channel and vk, b=1 − nk, b. Operators
for the unbound channel are defined in an analogous manner. The off-
diagonal parts of the operators h (i)

k represent hopping of particles, while
the diagonal parts are determined by conservation of probability, see
Chapter 2 of ref. 27.

We now show that the product measure

|rP=ë
k

([(1 − rb) |0Pk, b+rb |1Pk, b] é [(1 − rub) |0Pk, ub+rub |1Pk, ub]),
(A6)

is a stationary state, if Eq. (3) holds, i.e., that the radial equilibrium condi-
tion implies H |rP=0. The product measure |rP defines a state where the
density is rb at each lattice site of the bound channel and rub at each site of
the unbound channel and spatial correlations vanish.

H1 and H2 do not couple the bound and unbound channel, therefore
we can consider them separately and refer to the result, that for the sym-
metric as well as for the asymmetric exclusion process, the product measure
|rP is stationary in the case of periodic boundary conditions. (14) For a
proof using the quantum Hamiltonian formalism, see Chapter 7.1.2 of
ref. 27: In the case of the ASEP in one dimension, for example, one can
easily check, that h (1)

k |rP=vb(nk, b − nk+1, b) |rP, therefore the summation
gives zero for periodic boundary conditions. Hence H1 |rP=0 and
H2 |rP=0.
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Concerning H3, it is sufficient to consider a single site k in both chan-
nels. Doing some steps, we find

(nk, bvk, ub − s+
k, bs−

k, ub) |rPk, b |rPk, ub=rb(1 − rub)(|1Pk, b |0Pk, ub − |0Pk, b |1Pk, ub)
(A7)

and

(vk, bnk, ub − s−
k, bs+

k, ub) |rPk, b |rPk, ub=rub(1 − rb)(|0Pk, b |1Pk, ub − |1Pk, b |0Pk, ub)
(A8)

for the product measure (A6). Hence from

h (3)
k |rPk, b |rPk, ub

=1 E

6
rb(1 − rub) −

pad

6
rub(1 − rb)2 (|1Pk, b |0Pk, ub − |0Pk, b |1Pk, ub)=0,

(A9)

we obtain Eq. (3), which is the condition for radial equilibrium.

APPENDIX B. CONTINUUM TWO-STATE MEAN FIELD EQUATIONS

FOR OPEN BOUNDARIES

In this appendix, we give the details of the continuum mean field
approximation for the two-state model introduced in Section 4.2. We insert
the decomposition rb=r0

b+gb and rub=r0
ub+gub as introduced in (15)

into the mean field equations (11) and (12) and expand these equations up
to second order in the density deviations gb and gub. As a result, we obtain

Db
“

“x
gb+NchDub

“

“x
gub=vb(1 − 2r0

b) gb − vbg2
b (B1)

and

vb(1 − 2r0
b)

“

“x
gb − 2vbgb

“

“x
gb − Db

“
2

“x2 gb=Agub − Bgb+(Ẽ − p̃ad) gubgb,
(B2)

with

A — p̃ad(1 − r0
b)+Ẽr0

b and B — Ẽ(1 − r0
ub)+p̃ad r0

ub. (B3)
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Note that radial equilibrium for the densities rb and rub would imply that
the right hand side of (B2) vanishes.

Let us first consider the case r0
b ] 1/2 which applies to the high and

low density phases. In this case, we can neglect the second order terms and
obtain two equations which are linear in the density deviations. The second
equation (B2) can then be solved for gub which leads to

gub=ggb+
vb(1 − 2r0

b)
A

“

“x
gb −

Db

A
“

2

“x2 gb (B4)

with

g —
B
A

=
Ẽ(1 − r0

ub)+p̃ad r0
ub

p̃ad(1 − r0
b)+Ẽr0

b

. (B5)

When this expression is inserted into (B1), we obtain the first order relation

(Db+NchDub g)
“

“x
gb+NchDub

vb(1 − 2r0
b)

A
“

2

“x2 gb − NchDub
Db

A
“

3

“x3 gb

=vb(1 − 2r0
b) gb. (B6)

for gb. We now make the Ansatz gb ’ exp(x/t) which leads to the cubic
equation (16) for the decay length t.

Now we consider the maximal current phase, i.e., the case r0
b=1/2. In

this case the linear terms are zero. Furthermore, we neglect terms of order
gb

“gb
“x and “

2gb

“x2 as can be justified a posteriori since gb is found to decay as an
inverse power of x. Thus, up to leading order, we can ignore the left hand
side of (B2), and the right hand side of (B2) vanishes. This implies radial
equilibrium for the asymptotic decay to the homogeneous solution. Up to
this order, we find

gub=
Bgb

A+(Ẽ − p̃ad) gb
% ggb −

B(Ẽ − p̃ad)
A2 g2

b (B7)

for small gb and therefore

“

“x
gub=g

“

“x
gb+O 1gb

“gb

“x
2 . (B8)

If this latter expression is inserted into (B1), we obtain

(Db+gNchDub)
“

“x
gb % − vbg2

b (B9)
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which leads to

gb %
Db+gNchDub

vb x
for large x. (B10)

For Nch=0, this asymptotic behavior is identical to the one found from the
mean field approximation for the ASEP in one dimension. (15)

APPENDIX C. LIST OF SYMBOLS

a abbreviation for Dsc/2vbxsc used in Section 4.2.2
(A) periodic boundary conditions, see Fig. 2
A abbreviation used in Appendix B, defined in Eq. (B3)
a probability for a forward step of the bound motor
b abbreviation for 1+gNchDub/Dsc used in Section 4.2.2
(B) open tube, radial equilibrium at the boundaries, see Fig. 2
B abbreviation used in Appendix B, defined in Eq. (B3)
b probability for a backward step of the bound motor
(C) open tube, diffusive injection and extraction of motors,

see Fig. 2
D diffusion coefficient for the 1-dimensional ASEP
Db diffusion coefficient of the bound motor particle
DL distance between filament end and

tube end for boundary conditions (C)
Dub diffusion coefficient of the unbound motor particle
Dsc scale parameter for the scale-dependent diffusion coefficient
E unbinding probability of a bound motor
Ẽ rescaled unbinding probability 2E/3
gb(x) deviation of the bound density from the constant bulk value
gub(x) deviation of the unbound density from the constant bulk value
g parameter defined by Eq. (20)
c resting probability of a bound motor
J (global) current through the tube
jb local bound current
jub local unbound current
Jdif, L diffusive current in the left diffusive compartment for

boundary conditions (C)
Jdif, R diffusive current in the right diffusive compartment for

boundary conditions (C)
L length of the tube
a lattice constant on filament
LF length of the filament
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Nch number of unbound channels
Nmo number of motors in the tube which is fixed for periodic

boundary conditions (A)
f cross section of the tube
pad sticking probability for a motor hopping to the filament
p̃ad rescaled sticking probability 2pad/3
r radial spatial coordinate
R radius of the tube
Rg minimal tube radius for which a maximal current phase is

found in case (C)
r(x) density in the case of the 1-dimensional ASEP
rb(x) density of motors bound to the filament
rb, ex right boundary density on the filament
rb, in left boundary density on the filament
r0

b constant bulk density on the filament
rex right boundary density for the 1-dimensional ASEP
rin left boundary density for the 1-dimensional ASEP
rmo overall motor concentration
r0 constant bulk density for the 1-dimensional ASEP
rub(x, r) density of unbound motors
rub, ex density of unbound motors at the right boundary
rub, in density of unbound motors at the left boundary
r0

ub unbound constant bulk density
y basic time unit
v velocity for the 1-dimensional ASEP
vb velocity of bound motor
vc velocity of density fluctuations
vs domain wall velocity
x spatial coordinate parallel to the filament
xsc scale parameter for the scale-dependent diffusion

coefficient, see Eq. (23)
xg, xgg crossover lengths
t decay length for the density deviations
t0 localization length for the 1-dimensional ASEP
x0 spatial location of the left tube end
y rescaled and shifted spatial coordinate, y — (x − x0)/xsc

yg, ygg rescaled crossover lengths
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