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Abstract. A semiflexible harmonic chain model with extensible bonds is introduced and applied to the
stretching of semiflexible polymers or filaments. The semiflexible harmonic chain model allows to study
effects from bending rigidity, bond extension, discrete chain structure, and finite length of a semiflexible
polymer in a unified manner. The interplay between bond extension and external force can be described by
an effective inextensible chain with increased stretching force, which leads to apparently reduced persistence
lengths in force-extension relations. We obtain force-extension relations for strong- and weak-stretching
regimes which include the effects of extensible bonds, discrete chain structure, and finite polymer length. We
discuss the associated characteristic force scales and calculate the crossover behaviour of the force-extension
curves. Strong stretching is governed by the discrete chain structure and the bond extensibility. The linear
response for weak stretching depends on the relative size of the contour length and the persistence length
which affects the behaviour of very rigid filaments such as F-actin. The results for the force-extension
relations are corroborated by transfer matrix and variational calculations.

PACS. 87.15.-v Biomolecules: structure and physical properties – 87.15.Aa Theory and modeling; com-
puter simulation – 87.15.La Mechanical properties

1 Introduction

The Kratky-Porod or worm-like chain [1–5] describes
inextensible polymers with positional fluctuations that
are not purely entropic but governed by their bending
energy and characterized by their bending modulus κ
or the persistence length. The worm-like–chain model
has been successfully applied to stretching experiments
on the single-molecule level in order to interpret force-
extension relations for single polymer chains. Experimen-
tal progress in manipulating single polymeric molecules
has been rapid over the past decade and stretching ex-
periments have become possible for a number of bio- and
synthetic polymers such as DNA [6,7], polysaccharides [8],
polyelectrolytes [9], proteins like titin [10,8] and actin fila-
ments [11]. In all of these experiments the force-extension
relation obtained by Marko and Siggia in [12] for a worm-
like chain has been used to interpret the results. The main
characteristic of this relation for an inextensible worm-like
chain of contour length L is an end-to-end extension Lf in
the direction of the stretching force f that is saturating as
1 − Lf/L ∝ 1/

√
f for large stretching forces f = |f | [12].

One assumption underlying the original worm-like–
chain model is the inextensibility of the polymer chain.
This assumption is clearly violated in the limit of a large
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tensile force when the elasticity of molecular bonds is
probed as is also seen in experiments on DNA [13], poly-
electrolytes [9] and F-actin [11] where Lf exceeds L and
a linear force-extension relation Lf/L − 1 ∝ f is seen
at larger forces as compared to the characteristic f−1/2-
saturation of the inextensible worm-like chain. In refer-
ences [3,14–16] the extensibility of the polymer has been
accounted for by correcting the overall relative extension
Lf/L by an additional term f/k, where k is the stretch-
ing modulus of the polymer. In reference [17] microscopic
degrees of freedom for stretchable bond lengths have been
included into a worm-like–chain model to allow for a sys-
tematic statistical-mechanics treatment of the finite ex-
tensibility.

In this paper, we introduce a description of extensi-
ble semiflexible polymers by a semiflexible harmonic chain
(SHC) model which incorporates elastic bonds with non-
zero equilibrium bond length as microscopic degrees of
freedom into a discrete version of the worm-like chain. The
SHC model allows us to study effects of bending rigidity,
bond extension, discrete chain structure, and finite length
of a semiflexible polymer on the force-extension behaviour
in a unified manner. We do not include further internal de-
grees of freedom such as twist as occurs, for example, in
DNA where a transition from B-DNA to overstretched S-
DNA is observed at very large forces following the linear
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force dependence within the B-DNA regime that we want
to address in this work. In calculating the work done by
the stretching force we take into account the thermal fluc-
tuations of the variable bond length. The resulting force-
extension relations for the SHC can be calculated for large
tensile forces by expanding around the stretched configu-
ration, for small forces by an expansion in powers of f ,
and finally we use transfer matrix methods analogous to
reference [12] to obtain force-extension relations applica-
ble also in the intermediate force regime. We find that the
coupling between external force and bond extension gives
rise to an effectively increased stretching force. If experi-
mental force-extension curves are analyzed using the stan-
dard model of an inextensible worm-like chain, this leads
to an apparently reduced persistence length. The correc-
tions calculated within this article for the SHC model can
be used to extract the actual rather than the apparent
bending rigidity or persistence length from experimental
force-extension curves. At very large stretching forces the
correlation length is decreased below the bond length and
we find a different force-extension relation with a f−1-
saturation as for a freely jointed chain due to the dis-
crete chain structure [18]. We explicitly calculate the cor-
responding crossover function for the force-extension rela-
tion of the SHC. Furthermore, we calculate finite-size cor-
rections at small forces which are relevant for experiments
on biopolymers such as F-actin [11] with contour length
comparable to the persistence length. Effects from the ex-
tensibility, corrections due to the discrete chain structure,
and finite-size corrections can all be included in interpo-
lation formulae for the force-extension curves of the SHC
that are accurate within 10%.

2 The semiflexible harmonic chain model

A semiflexible polymer or filament can be modeled by a
discrete chain of N bonds of length b0 with directions de-
scribed by unit tangent vectors t(n) with |t(n)| = 1 that
are indexed by the integer bond number n = 1, . . . , N , see
Figure 1. The contour length of the polymer is L = Nb0.
The bonds can represent either actual chemical bonds in
a polymer or larger segments of a filament, for example
a helical repeat unit in F-actin. The bonds or segments
can be tilted against each other and eventually stretched.
The bond vectors connect N + 1 “particles” indexed by
the integer particle number i = 0, . . . , N at positions
r(i) = r(0) +

∑i
n=1 b0t(n), where r(0) is the position of

the particle at the fixed end of the polymer. Throughout
the article, we will discuss the general case of d spatial
dimensions. Experimentally relevant are the cases d = 2,
corresponding to semiflexible polymers which adhere to a
substrate [19] or are confined in a slab-like geometry, and
d = 3.

2.1 Discrete model

In order to describe an extensible semiflexible chain we
introduce harmonic bonds of variable length b(n) with a

b(n)

f
t(n+1)

t(n) θ (n,n+1)

Fig. 1. The semiflexible harmonic chain (SHC) model. t(n)
are bond directions with |t(n)| = 1, b(n) the bond lengths,
and f the external force applied to one end of the polymer.
The other end is fixed.

stretching energy

Es =
N∑

n=1

k(n)
2

(b(n) − b0)2 =
N∑

n=1

k(n)b20
2

ε2(n) . (1)

Each bond has the equilibrium length b0 and

ε(n) ≡ (b(n) − b0)/b0 (2)

are the relative bond extensions. The bonds act as har-
monic elastic springs characterized by bond stretching
moduli k(n), which we can allow to depend on the bond
index n to model spatial heterogeneity.

For an extensible chain the work done by the external
force f applied to one end r(N) of the chain with the other
end r(0) fixed is

Ef = −f · (r(N)− r(0)) = −
N∑

n=1

b0(1 + ε(n))f · t(n) . (3)

In a semiflexible chain the tilting of neighbouring bonds
costs a bending energy [2,4,5]

Eb =
N−1∑
n=1

κ

2b0
(t(n + 1)) − t(n))2

=
N−1∑
n=1

κ

b0
(1 − cos θ(n, n + 1)) (4)

which only depends on the angles θ(n, n + 1) =
arccos(t(n) · t(n + 1)) enclosed by unit tangent vectors,
see Figure 1, and one material parameter, the bending
rigidity κ. The bending potential is periodic in the tilt
angles θ(n, n + 1) and quadratic for small tilt angles.

The sum of bending and stretching energies (4) and (1)
together with the work (3) of the external force gives the
Hamiltonian for the discrete semiflexible harmonic chain
(SHC):

H{t(n), ε(n)} = Eb + Es + Ef =
N−1∑
n=1

κ

2b0
(t(n + 1)) − t(n))2

+
N∑

n=1

k(n)b20
2

ε2(n) −
N∑

n=1

b0(1 + ε(n))f · t(n) . (5)
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Note that in the absence of a stretching force f = 0 there
is no direct coupling between the bond directions t(n) and
the relative bond extensions ε(n). Within the SHC model
the bending energy (4) is unaffected by bond stretching
or compression and only depends on the angles θ(n, n+1)
between neighbouring bonds and not on their extensions.
This aspect of the SHC model is further justified in Ap-
pendix A on the basis of elasticity theory of thin elastic
rods. In general, a direct coupling between stretching and
bending will lead to additional parameters in the model
as given by (5).

In the SHC model we use use harmonic bonds as we
assume that stretching forces or thermal fluctuations are
not sufficient to probe the regime of anharmonic bond
stretching potentials [17]. Such anharmonic effects in the
bond extensibility have been discussed in reference [17]
where synthetic polymers, i.e., alkane chains, have been
considered in detail. We expect the characteristic force
scales needed to probe such anharmonicities to be compa-
rable to forces that induce structural transitions (such as
overstretching of DNA) or even rupture of the semiflexible
polymer. As the description of such transitions is outside
the scope of the present approach because they require a
more microscopic model, we limit ourselves to the regime
of harmonic bond potentials.

In reference [20] a discrete model for the stretching of a
semiflexible chain has been introduced, which is based on
a Gaussian chain model [21]. A continuum version of the
Gaussian semiflexible chain has also been studied in ref-
erence [22]. In these models the segment lengths are also
variable as in the SHC model but they are Gaussian dis-
tributed corresponding to zero equilibrium chain length,
i.e., b0 = 0. Furthermore, in the Gaussian chain models
the bond stretching moduli k(n) are no material param-
eters but Lagrange multipliers which are adjusted to give
prescribed mean extensions 〈ε(n)〉 appropriate for an in-
extensible chain. Therefore, as opposed to the extensible
SHC model, the Gaussian chains studied in references [22]
and [20] are effectively inextensible chains although they
involve a calculus with variable bond lengths.

In order to study the force-extension behaviour, dis-
crete models of semiflexible polymers have also been used
in references [18] or [23], and bond extension has been
taken into account in references [14] and [17]. The SHC
model (5) includes a discrete chain structure of finite
length with bending energy and extensible bonds within
a single model.

In single-molecule stretching experiments two kinds of
boundary conditions can be realized. Whereas the posi-
tions r(0) and r(N) of the particles at the polymer ends
are always under experimental control and thus fixed, we
can consider clamped ends with fixed tangents t(1) and
t(N) as in [24] or free ends where t(1) and t(N) can fluc-
tuate. In the partition function of the discrete SHC (5) we
sum over all tangent configurations t(n) according to the
boundary conditions of clamped or free ends and subject
to the local constraint |t(n)| = 1 and also over all pos-
sible bond lengths b(n) or relative bond extensions ε(n).
In contrast to [24], we focus on single-molecule stretch-

ing experiments with free ends where all bond directions
fluctuate and the partition sum is given by

Z =
N∏

n=1

∫
dt(n)δ(|t(n)| − 1)

N∏
n=1

∫
dε(n)e−H{t(n),ε(n)}/T

(6)
(we absorb the Boltzmann constant kB in the symbol
T ). The integrations over bond extensions ε(n) in (6) are
Gaussian and can be readily performed to obtain an effec-
tive Hamiltonian only depending on the tangent configu-
rations t(n):

Heff{t(n)} = −T ln

[
N∏

n=1

∫
dε(n)e−H{t(n),ε(n)}/T

]

=
N−1∑
n=1

κ

2b0
(t(n + 1)) − t(n))2

−
N∑

n=1

b0f · t(n) −
N∑

n=1

1
2k(n)

(f · t(n))2

≡ Hi{t(n)} −
N∑

n=1

1
2k(n)

(f · t(n))2 . (7)

The last term in (7) stems from the coupling of fluctuat-
ing elastic bonds to the external force and is absent for
an inextensible discrete worm-like chain with Hamiltonian
Hi{t(n)} that is obtained in the limit of large stretching
moduli k(n). Inspecting the signs in (7) shows that this
term leads to an effectively increased stretching force.

2.2 Continuum model

In the limit of small bond lengths b0 we can switch to
a continuous description using a parameterization by arc
length s = nb0 of the unstretched configuration, in which
the contour r(s) of the extensible semiflexible polymer is
described by r(s)− r(0) =

∫ s

0
ds̃(b(s̃)/b0)t(s̃). The contin-

uous version of the SHC Hamiltonian (5) becomes [3]

H{t(s), ε(s)} =
∫ L

0

ds

[
κ

2
(∂st)2 +

k(s)b0
2

ε2(s)

−(1 + ε(s))f · t(s)

]
(8)

In the inextensible limit of large stretching moduli k(s)
fluctuations in the bond length can be neglected (ε(s) = 0)
and the continuous SHC Hamiltonian (8) reduces to the
inextensible worm-like chain Hamiltonian [1,2]

Hi{t(s)} =
∫ L

0

ds
[κ

2
(∂st)2 − f · t(s)

]
. (9)

In the absence of a stretching force f = 0 the correlation
function of the tangent vectors t(s) of the worm-like chain
fall off exponentially [21,25]

〈t(s) · t(0)〉 =
1
d

exp(−s/L̃p) , (10)
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thereby defining a characteristic length scale, the persis-
tence length Lp [26]

Lp ≡ (d− 1)L̃p ≡ 2κ/T . (11)

As in the discrete SHC model, the Gaussian path in-
tegral over bond extensions ε(s) can be performed also for
the continuous SHC Hamiltonian (8) to give the effective
continuous Hamiltonian

Heff{t(s)} = Hi{t(s)} −
∫ L

0

ds
1

2k(s)b0
(f · t(s))2 (12)

which is the analogon of (7) and has also been derived
in [17].

In the following we will employ different approximate
methods to obtain force-extension relations for the effec-
tive Hamiltonians (7) or (12) describing the SHC. The
extension Lf in force direction is always found from the
dependence of the free energy F (f) = −T lnZ(f) on the
force f = |f | by the thermodynamic relation

Lf ≡
〈

(r(L) − r(0)) · f
f

〉
= −∂fF (f) . (13)

3 Force scales

The SHC models as introduced above contain the fol-
lowing dimensionful parameters: the mean bond length
b0 which represents the basic length scale; the contour
length of the SHC L = Nb0; the bond stretching modulus
k(n) = k which we will take to be position independent
in this section and which has the dimension of energy di-
vided by length squared; the bending rigidity κ which has
the dimension energy times length; and the temperature
T which has the dimension of energy (in the units used
here). These parameters define four different force scales

fcr ≡ T 2/κ , fL ≡ κ/L2 ,

fκ ≡ 4κ/b20 , and fk ≡ kb0, (14)

that govern the stretching of the SHC.

3.1 Crossover force scale fcr

First we consider the limiting case of an inextensible chain
corresponding to the limit of large stretching modulus k
(f � fk). If one further considers the continuum limit of
small segment sizes b0 effects of the discrete chain struc-
ture become irrelevant (f � fκ). Then we consider the
simplest model (9) describing an inextensible worm-like
chain. In the thermodynamic limit of an infinite chain
(fL = 0) we are left with only two parameters, namely
T and κ, which define a single force scale,

fcr ≡ T 2/κ = 2T/Lp = 4κ/L2
p . (15)

To elucidate the significance of fcr as a crossover force
scale from weak to strong stretching we introduce a “blob”
picture of the stretched inextensible worm-like chain.

f f

bb

bb

Fig. 2. Left: weak stretching of a semiflexible polymer for
f < fcr or ξf > Lp. Right: strong stretching for f > fcr or
ξf > Lp.

To introduce the characteristic size of a blob we con-
sider an initially straight segment of length �. Bending the
segment to an angle ∆θ costs an energy ∆Eb 
 κ∆θ2/�.
Additionally, work ∆Ef 
 f�∆θ2 has to be performed to
bend the segment against the external force f . Balancing
both energies sets a blob length � = ξf with

ξf 

√

κ/f 
 Lp

√
fcr/f . (16)

On small scales � < ξf inside each blob, we can neglect
the external force f and find an unstretched (f = 0),
thermally fluctuating inextensible SHC. On larger scales
� > ξf , we can neglect the bending energy, and the blobs
form an effective freely jointed chain of blobs, which is
stretched by the external force f and whose bond length
bb is set by the size of a blob, as shown in Figure 2.

Each blob consists of an unstretched inextensible SHC
segment of length ξf such that the blob size bb = 〈(r(ξf )−
r(0))2〉1/2

0 is given by the end-to-end distance calculated
with respect to the continuum worm-like–chain Hamilto-
nian (9) in the absence of an external force f = 0. Using
the correlation function (10) of the tangent vectors t(s) of
a worm-like chain, this leads to a blob size

bb = ξfL1/2
b

(
L̃p/ξf

)
≈

{
(2ξf L̃p)1/2 , for ξf � L̃p ,

ξf , for ξf � L̃p ,
(17)

with a scaling function Lb(x) ≡ 2x
(
1 − x + xe−1/x

)
. For

ξf � L̃p the blobs essentially consist of rigid rods of length
bb ≈ ξf ; for ξf � L̃p each blob consists of a flexible chain
of size bb ∝ ξ

1/2
f .

The blobs form an effective freely jointed chain un-
der tension by the external force f . This freely jointed
chain of blobs contains L/ξf blobs of size bb. The force-
extension relation of a freely jointed chain is well-known
for d = 3 [27] and discussed in Appendix B for d dimen-
sions. Describing the inextensible SHC as effective freely
jointed chain of blobs we expect a force-extension relation
that is of the form

Lf

Nbbb
= Fd

[
fbb
T

]
, (18)

where Fd(x) is a scaling function that depends only on the
dimensionality d and is similar to the corresponding scal-
ing functions FFJC

d (x) for a freely jointed chain. The ef-
fective freely jointed chain shows a characteristic crossover
from weak to strong stretching at forces f 
 T/bb.
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The result (18), together with the relation (17) for the
effective bond length, gives the scaling form for the force-
extension relation of an inextensible SHC:

Lf

L
=

bb
ξf

Fd

[
fbb
T

]
= Gd

[
f

fcr

]
, (19)

where Gd(x) is another scaling function related to Fd(x)
and Lb(x) by

Gd(x2) = L1/2
b (x/(d− 1))Fd

[
2xL1/2

b (x/(d− 1))
]

. (20)

The scaling form (19) is governed by the force-dependent
ratios Lp/ξf 
 (f/fcr)1/2 and fξf/T 
 (f/fcr)1/2. Thus,
fcr is the only crossover force scale in the scaling result
(19) marking the crossover from weak to strong stretch-
ing of the inextensible SHC. At the force scale f = fcr,
the blob size bb 
 ξf 
 Lp matches both the persistence
length Lp and the crossover length ξf . The force scale fcr

itself then matches fcr 
 T/ξf 
 T/bb, and the effective
freely jointed chain of blobs undergoes a crossover from
weak to strong stretching.

For strong-stretching forces f � fcr with ξf � Lp

rigid polymer segments of blob length bb 
 ξf form an
effective freely jointed chain that is strongly aligned by
the stretching force f , see Figure 2. Using the asymptotic
behaviour Fd(x) ≈ 1− (d− 1)x/2 and Lb(x) ≈ 1 for large
x, we find the well-known result 1 − Lf/L 
 √

fcr/f for
a worm-like chain close to full stretching [12]. For weak-
stretching forces f � fcr with ξf � Lp, on the other
hand, the blob length ξf exceeds the persistence length
Lp such that the chain starts to become flexible within
each blob. Furthermore, the freely jointed chain of blobs
is only weakly aligned, see Figure 2. Using Fd(x) 
 x and
Lb(x) 
 x for small x we obtain linear-response behaviour
Lf/L 
 f/fcr as expected at low tensile forces.

The force scale fcr is solely determined by the rigid-
ity of the semiflexible polymer. For a rather stiff filament
such as F-actin with a persistence length L̃p 
 10µm [28]
or Lp 
 20µm [26] the crossover force fcr = T 2/κ =
2T/Lp between weak and strong stretching is estimated
as fcr = 2T/Lp ∼ 4 × 10−4 pN. Such small forces are not
experimentally accessible as optical traps or tweezers can
be used in order to study forces in the regime of 1pN and
magnetic tweezers down to 0.01pN. For less rigid semiflex-
ible biopolymers such as DNA with Lp 
 100 nm [29] one
finds fcr = 2T/Lp ∼ 8 × 10−2 pN and the force regime of
weak stretching is accessible by magnetic tweezers [6].

3.2 Discrete chains and force scale fκ

The discrete chain structure of the SHC model (7) with a
bond length b0 introduces the force scale

fκ ≡ 4κ/b20 , (21)

where a factor 4 has been included in the definition for
later convenience. Effects from the segment size b0 can
be neglected for small forces f � fκ or ξf � b0 where

we can use the continuous model (12). For large forces
f � fκ the crossover length ξf becomes smaller than the
size b0 of individual segments of the SHC, and the discrete
structure of the SHC becomes relevant. Within the blob
scaling picture, the blob length ξf has to be replaced then
by the segment length b0 in the scaling result (19) for the
force-extension relation.

The force scale fκ is related to the force scale fcr by

fκ/fcr = (Lp/b0)2 � 1 (22)

as we will focus on semiflexible polymers, for which the
persistence length Lp is large compared to the bond length
b0. Thus, fκ is always within the strong-stretching regime.
Lp � b0 is generally fulfilled for semiflexible biopolymers
such as DNA or actin but might be violated for syn-
thetic polyelectrolytes at sufficiently high salt concentra-
tion [9]. For typical semiflexible filaments such as F-actin
we find fκ/fcr = (Lp/b0)2 ∼ 4×106 with Lp 
 20µm [28]
and a segment size b0 
 10 nm [30] that we estimate by
the size of a G-actin monomer. This gives rise to large
values fκ ∼ 1.6 nN. For DNA at high salt concentra-
tions one finds values fκ/fcr = (Lp/b0)2 ∼ 105 with
Lp 
 100 nm [29] and a segment size b0 
 0.34 nm set
by the distance between base pairs. Accordingly we find
an even higher value fκ ∼ 7 nN.

3.3 Finite chains and force scale fL

The contour length L of the semiflexible polymer intro-
duces another force scale

fL ≡ κ/L2 . (23)

So far we have considered the thermodynamic limit of a
long chain such that f � fL or ξf � L and we can neglect
finite-size effects. If L < ξf , corresponding to small forces
f < fL, we expect finite-size effects and a crossover in
the force-extension relation. Within the blob picture these
finite-size effects can be taken into account by replacing
ξf by L in the scaling result (19) for the force-extension
relation.

The force scale fL is related to the crossover force scale
fcr by fL/fcr = Lp/2L. For L > Lp/2 or fL < fcr finite-
size effects will occur only in the weak-stretching regime
for f < fL < fcr, whereas for semiflexible polymers with
a short contour length, L < Lp/2 or fL > fcr, e.g. typical
actin filaments, finite-size effects will also affect the strong-
stretching regime within the force window fcr < f < fL.

The force scale fL is related to the force scale fκ by

fL/fκ = (b0/4L)2 � 1 (24)

as the contour length L is always large compared to the
segment size b0, i.e., finite-size effects occuring for f < fL

and effects from the discrete chain structure occuring at
f � fκ exclude each other.
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3.4 Extensibility and force scale fk

In the SHC model (7) we also allow for extensible segments
or bonds with stretching modulus k which introduces the
force scale

fk ≡ kb0 . (25)

Individual bonds of the discrete SHC as described by (5)
have relative extensions 〈ε〉 = f/fk. Thus they can be con-
sidered inextensible for small forces f � fk. By definition
this force scale also depends on the segment size b0 which
is a consequence of the fact that the introduction of ex-
tensible bonds requires a discrete chain structure. Within
the model (7), this force scale is independent of the other
scales since we can choose an arbitrary value of k. How-
ever, we can consider the SHC as a “discretized elastic
rod” consisting of circular segments of length b0 and ra-
dius a as is done in Appendix A. For such a model we
find kb0 
 Ea2, see (A.2), i.e., the force scale fk is deter-
mined by Young’s modulus of the material and the radius
a of the rod and thus independent of b0. This implies that
k ∝ b−1

0 depends on the segment size, and the force scale
fk does not necessarily vanish in the continuum limit of
small b0.

If we consider the SHC as a discretized elastic rod,
also the bending rigidity κ and the stretching modulus k
are no longer independent but related by elasticity theory
according to kb0/κ 
 1/a2, see (A.2), and thus

fk/fκ 
 (b0/a)2 . (26)

This suggests that for long elongated segments with b0 �
a we have fk � fκ, whereas disc-like segments with b0 �
a lead to fk � fκ. Experimental values for the force scale
fk have been obtained for F-actin in reference [11] where
fk ∼ 35 nN is found such that fk � fκ.

Using the discretized elastic-rod model we also find

fk/fcr 
 (Lp/a)2 � 1 and fk/fL 
 (L/a)2 � 1 (27)

(which holds regardless of the value of b0 within the dis-
cretized elastic-rod model) as we can assume Lp � a and
L � a in general, which is well fulfilled for F-actin with
a 
 4 nm or DNA with a 
 0.8 nm. Therefore, fk rep-
resents a force scale that lies always within the strong-
stretching regime. Also, the relative extension of the SHC
is insensitive to finite-size effects.

4 Strong stretching f � fcr

For large stretching forces f � fcr, the tangent vectors
t deviate only little from the direction set by the force.
Therefore we choose our coordinate system such that the
direction of the force is the x-direction f = fex and de-
compose tangent vectors according to t = (tx, t⊥) into
one component tx parallel to the force and a d⊥ = (d−1)-
dimensional vector t⊥ describing the perpendicular devi-
ations [12]. The local constraint |t(n| = 1 eliminates tx(n)
as a degree of freedom by using tx = (1 − t2

⊥)1/2. For
strong stretching 〈t2⊥〉 � 1 is small, and we can expand

the effective Hamiltonian (7) of the weakly bent SHC up
to second-order terms in t⊥:

Heff{t⊥(n)} =
N−1∑
n=1

κ

2b0
(t⊥(n) − t⊥(n + 1))2

+
N∑

n=1

fb0
2

(
1 +

f

k(n)b0

)
t2
⊥(n)

−Nfb0 −
N∑

n=1

f2

2k(n)
. (28)

−Nfb0 is the potential energy of the fully stretched chain
and the last term in (28) represents the overall elastic
energy of the bonds which has been used by Odijk [14] to
describe an extensible worm-like chain.

However, we find further effects from extensional fluc-
tuations of elastic bonds that couple both to the external
force and the bond directions. Comparing the second term
in (28) with the corresponding term in the expansion for
the Hamiltonian (9) of the inextensible worm-like chain
we read off that corrections due to the coupling of elastic
bonds with the external force term lead to an effectively
increased force [17]

feff(n) = f

(
1 +

f

k(n)b0

)
= f

(
1 +

f

fk

)
, (29)

where the last equality holds for homogeneous bonds
k(n) = k. Note that, for a spatially inhomogeneous, i.e.,
n-dependent stretching modulus k(n), the effective force
and effective bending rigidity become spatially inhomoge-
neous.

The partition sum of the effective Hamiltonian (28) for
free ends is obtained by performing the path integral over
the remaining degrees of freedom t⊥(n) [31,32]

Z(f) =
N∏

n=1

∫
dt⊥(n)e−Heff{t⊥(n)}/T . (30)

For the case of homogeneous bonds k(n) = k, this path
integral can be directly evaluated. We first perform the
path integral for boundary conditions of clamped ends,
i.e., with fixed t⊥(1) and t⊥(N) before we integrate
in the end over t⊥(1) and t⊥(N) to obtain the result
for free ends. In order to perform the path integral for
clamped ends we consider the “classical path” t0

⊥(n) that
minimizes the Hamiltonian (28) for boundary conditions
t0
⊥(1) = t⊥(1) and t0

⊥(N) = t⊥(N) and integrate over
fluctuations δt⊥(n) = t⊥(n) − t0

⊥(n), which then fulfill
boundary conditions δt⊥(1) = δt⊥(N) = 0 As the Hamil-
tonian (28) is quadratic, contributions from the classical
path t0

⊥(n) and fluctuations δt⊥(n) separate exactly, and
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the partition function factorizes into

Z(f) = Z0(f)Zδ(f)eLf/T+Lf2/2Tfk , (31)

Z0(f) ≡

 ∏

n=1,N

∫
dt⊥(n)e−H̃eff{t0⊥(n)}/T


 , (32)

Zδ(f) ≡
(

N−1∏
n=2

∫
dδt⊥(n)e−H̃eff{δt⊥(n)}/T

)
, (33)

where we split off the last two terms of (28) and used
H̃eff{t⊥(n)} ≡ Heff{t⊥(n)} + Lf + Lf2/2fk. Z0(f) is
the contribution from the integration over the tangents
t⊥(1) and t⊥(N) at the free ends weighted with the en-
ergy H̃eff{t0

⊥(n)} for the classical path, and Zδ(f) is the
partition function of the fluctuations δt⊥(n) around the
classical path which are weighted with the same Hamilto-
nian H̃eff .

The path integral in the fluctuation contribution Zδ(f)
can be calculated by using Fourier modes δt⊥(n) =
sin(qn) with wave vectors q = mπ/N with 0 < m < N .
For the corresponding contribution Fδ(f) = −T lnZδ(f)
to the free energy we find

1
L

[Fδ(f) − Fδ(0)] ≈

d⊥T

∫ π/b0

0

dq
2π

ln
(

1 − cos(qb0) + feffb
2
0/2κ

1 − cos(qb0)

)
=

d⊥T

b0
arcsinh

[(
feff

fκ

)1/2
]

, (34)

where we approximated the discrete sum over Fourier
modes by an integral as N � 1.

To calculate the classical path we can use the contin-
uum approximation x = nb0 for small b0 and find that
t0
⊥(x) fulfills the equation

∂2
xt

0
⊥ = ξ−2

f t0
⊥ (35)

with the crossover length ξf ≡ √
κ/feff set by the stretch-

ing force, cf. (16). In the limit L � ξf or f � fL the
solution of (35) is approximately t0

⊥(x) ≈ t⊥(1)e−x/ξf +
t⊥(N)e−(L−x)/ξf , and approaches the straight, force-
aligned configuration t0

⊥(x) = 0 over the characteristic
distance ξf away from the ends. The corresponding en-
ergy is

H̃eff{t0
⊥(n)} ≈ (

t2
⊥(1) + t2

⊥(N)
) 1

2
(κfeff)1/2 . (36)

Then we can perform the resulting Gaussian integrals in
the expression for Z0(f) to obtain for the corresponding
free-energy contribution F0(f) = −T lnZ0(f) in the limit
L � ξf or f � fL

1
L
F0(f) =

d⊥T

2L
ln

[
4π2 feff

fcr

]
. (37)

In the opposite limit L � ξf or f � fL, we can neglect
the r.h.s. in (35), and the solution is approximately linear

t0
⊥(x) ≈ t⊥(1)+ x

L∆t⊥, where ∆t⊥ ≡ t⊥(N)−t⊥(1) with
an energy

H̃eff{t0
⊥(n)} ≈ κ

2L
∆t2

⊥ +
Lfeff

2

×
(
t2
⊥(1) − t⊥(1) ·∆t⊥ +

1
3
∆t2

⊥
)

. (38)

Performing the resulting Gaussian integrations in the ex-
pression for Z0(f), we obtain the same result (37) also in
the limit L � ξf or f � fL. Together with (34) and the
contribution from the remaining factor in (31), we finally
obtain the free energy at strong stretching:

1
L

[F (f) − F (0)] =

−f − f2

2fk
+ 2d⊥ (fcrfκ)1/2 arcsinh

[(
feff

fκ

)1/2
]

+
d⊥
2

(fcrfL)1/2 ln
[
feff

fcr

]
, (39)

where we used T/b0 = 2(fcrfκ)1/2 and T/L = (fcrfL)1/2.
Effects from the extensibility enter this result through the
force scale fk which also occurs in expression (29) for
the effective stretching force feff ; effects from the discrete
chain structure and the finite chain length enter through
the force scales fκ and fL, respectively.

Using the thermodynamic relation (13), we arrive at
the main result of this section, the force-extension relation
for strong stretching:

Lf

L
=

f

fk
+ 1

−d⊥
4

(
fcr

f

)1/2 1 + 2f/fk

(1 + f/fk)1/2

1
(1 + feff/fκ)1/2

−d⊥
2

(fcrfL)1/2

f

1 + 2f/fk

1 + f/fk
. (40)

This strong-stretching result with its limiting cases will be
discussed in detail in Section 6.

The expansion in t⊥ for a weakly bent SHC is valid
as long as 〈t2

⊥〉 � 1. For the mean-square fluctuations of
tangents t⊥(n) for the quadratic Hamiltonian (28) we find

〈t2
⊥〉 ≈ 2d⊥

∫ π/b0

0

dq
2π

T

2κ(1 − cos(qb0))/b20 + feff

=
d⊥
2

(
fcr

feff

)1/2 1
(1 + feff/fκ)1/2

, (41)

where we approximated the discrete sum over Fourier
modes by an integral as N � 1. Thus, the strong-
stretching calculation applies to the force regime feff �
fcr above the crossover force scale fcr. This confirms the
conclusion from the scaling argument in Section 3.1, that
fcr is the relevant force scale for the crossover to strong
stretching. It also follows that higher-order corrections to
(40) will be O(fcr/feff).
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5 Weak stretching f � fcr

For small stretching forces, we can obtain the free energy
for the effective Hamiltonian (7) of the SHC by expanding
the free energy in the force f up to second order. In the
absence of an external force, the correlation function of
the tangent vectors t(n) can be calculated using angular
representations of the Boltzmann weights that have been
obtained in the context of path integrals for a quantum
particle on the unit sphere in d dimensions in [25]:

〈ti(n)tj(n′)〉0 = d−1 (A (Lp/b0))|n−n′|
δij

≈
{

d−1e−|n−n′|b0/L̃pδij , for Lp � b0 ,

d−1(Lp/4b0)|n−n′|δij , for Lp � b0

(42)

with a function

A(x) ≡ Id/2(x/2)
Id/2−1(x/2)

≈
{

exp (−(d− 1)/x) , for x � 1 ,
x/4 , for x � 1 ,

(43)
where Iν(x) is the Bessel function of order ν [33] and L̃p

is defined in (11). The brackets 〈. . .〉0 indicate an expecta-
tion value with respect to the SHC Hamiltonian at f = 0
given by the bending energy (4), H0 = Eb. In the presence
of the external force f , the effective Hamiltonian (7) is di-
vided up according to Heff = H0+Hf , and the free energy
satisfies the relation F (f)−F (0) = −T ln〈e−Hf /T 〉0. Per-
forming a cumulant expansion up to second order in Hf

for homogeneous bonds k(n) = k and keeping only terms
up to second order in f leads to

1
L

[F (f) − F (0)] ≈ − 1
N

N∑
n=1

1
2kb0

〈(f · t(n))2〉0

− b0
2NT

N∑
n=1

N∑
n′=1

〈(f ·t(n))(f ·t(n′))〉0.

(44)

In deriving (44) we used that 〈f ·t(n)〉0 = 0 as we consider
free ends and have to integrate over rotations of t(0) giving
rise to rotations of the entire polymer, in contrast to the
situation of clamped ends studied in reference [24]. Both
expectation values in the right hand side of this equation
involve the correlation function of the tangent vectors t
as given by (42). If the latter expression is inserted, the
sums can be performed, and one obtains

1
L

[F (f) − F (0)] ≈

− f2

2dkb0
− f2b0

2dT

(
1 + A

1 −A
− 2A

N

1 −AN+1

(1 −A)2

)
(45)

with A ≡ A(Lp/b0).
Focusing on the limit Lp � b0 or fκ � fcr, see (22),

we insert the asymptotic expression A ≈ exp(−b0/L̃p), see
(43), to obtain

1
L

[F (f) − F (0)] ≈ − f2

2dfk
− 2

d(d− 1)
f2

fcr
L

(
L̃p

L

)
(46)

and the function L(x) ≡ Lb(x)/2x or

L(x) ≡ 1 − x + xe−1/x ≈
{

1 − x , for small x ,
1/2x , for large x .

(47)

This function describes finite-size corrections in the free
energy which have to be taken into account for poly-
mer contour lengths L ≤ L̃p comparable or smaller than
the persistence length. Using the thermodynamic relation
(13), the free energy for weak stretching as given by (46)
leads to the force-extension relation

Lf

L
≈

[
1
dfk

+
4

d(d− 1)
1
fcr

L
(

L̃p

L

)]
f , (48)

which is the main result of this section, limiting cases of
which will be discussed in Section 6. The extension ex-
hibits a linear-response behaviour as expected for low ten-
sile forces. The first term in (48) represents the effect from
the response of the thermally fluctuating extensible bonds
and differs by the factor 1/d from what has been suggested
in reference [15]. The second term represents the contri-
bution from entropic elasticity and bending energy. Rela-
tion (48) shows that semiflexible polymers exhibit strong
finite-size effects at weak stretching depending on the ra-
tio L̃p/L = (2/(d− 1))(fL/fcr)1/2. As already mentioned
the force scale fκ does not occur in (48) as we work in the
continuum limit f � fκ assuming that fκ is inaccessible.
Therefore we implicitly assumed fk � fκ in (48).

The cumulant expansion in Hf for weak stretching
is valid for 〈H2

f 〉0/T 2 � 1 which is equivalent to f �
T/〈(r(L) − r(0))2〉1/2

0 where the mean-square end-to-end
distance is obtained as 〈(r(L) − r(0))2〉0 = LL̃pL(L̃p/L).
On the other hand, we have argued above that the strong-
stretching approximation is valid for 〈t2

⊥〉 � 1 or f � fcr.
In general, these conditions of validity are not complemen-
tary, i.e., the weak-coupling expansion is not valid in the
entire force range f � fcr complementary to the strong-
stretching force range f � fcr. The reason for this dis-
crepancy is that the external force f can be treated by
perturbation theory only for polymer lengths L < ξf .
For larger polymer lengths the integrals over the con-
tour length in (44) will be cut off at the crossover scale
ξf by non-perturbative corrections. The resulting condi-
tion for the validity of the weak-stretching expansion is
f � T/〈(r(ξf ) − r(0))2〉1/2

0 which is indeed equivalent to
f � fcr. This condition is also equivalent to ξf � Lp and
in this limit our above result (48) is still correct also if L
is replaced by ξf .

For vanishing κ, the SHC model (7) reduces to an
extensible freely jointed chain. This limit corresponds to
Lp � b0 or A � 1 according to (43). The relation (45)
then gives

1
L

[F (f) − F (0)] ≈ − f2

2dkb0
− f2b0

2dT
(49)

and, using the thermodynamic relation (13), we obtain the
force-extension relation of a weakly stretched extensible
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freely jointed chain

Lf

L
≈

[
1
dfk

+
b0
dT

]
f . (50)

6 Discussion and limiting cases

In this section we will discuss our main results, the force-
extension relations (40) for strong stretching f � fcr and
(48) for weak stretching f � fcr, and consider various
limiting cases along with finite-size effects. These results
can also be used to obtain useful interpolation formulae
for the whole force range which are derived in Appendix C.

6.1 Extensibility crossover force fk,cr

The force-extension relation (40) for strong stretching in-
cludes various effects from the bond extensibility of the
SHC model (7). Individual bonds of the discrete SHC have
relative extensions 〈ε〉 = f/fk which give rise to the first
term in (40). In the force regime f � fk they are the
leading contribution to Lf/L and the SHC is clearly ex-
tensible.

In the regime f � fk individual bonds can be con-
sidered inextensible, and the first term can be neglected
against the second term in (40), which represents the ex-
tension of the fully stretched inextensible chain, Lf/L = 1.
However, as opposed to the extension of individual bonds,
the extension of the entire SHC is also governed by much
smaller entropic contributions, which give rise to the last
two terms in (40). Therefore, the extensibility of the SHC
can become already relevant if the bond extension con-
tribution f/fk exceeds the entropic terms in (40). This
happens for forces fk,cr � f � fk where the new force
scale fk,cr is defined by the condition Lf/L = 1 in (40).
The force scale fk,cr describes the crossover from an inex-
tensible to an extensible chain within the regime f � fk.

Depending on the bond stiffness and thus fk three dif-
ferent situations (a)-c)) are possible. a) For fL � fk,cr �
fκ (note that fL � fκ, see (24)), effects from the discrete
chain structure and finite-size effects can be neglected, and
we find [14]

fk,cr =
(
d⊥
4

)2/3(
f2

kfcr

)1/3
, for fL � fk,cr � fκ . (51)

As we want to consider the situation fcr � fk, see (27),
this force scale is indeed much smaller than fk, i.e., fk,cr �
fk. b) If the bond stiffness is increased such that fL �
fκ � fk,cr, the discrete chain structure becomes relevant,
and we obtain

fk,cr =
(
d⊥
4

)1/2(
f2

kfcrfκ

)1/4
, for fL � fκ � fk,cr � fk,

(52)
which is again much smaller than fk because we consider
fκ � fk and fcr � fk. c) Finally, for a very small bond

stiffness or very short polymers with fk,cr � fL � fκ, we
find

fk,cr =
(
d⊥
2

)1/2 (
f2

kfcrfL

)1/4
, for fk,cr � fL . (53)

Also this result for fk,cr is much smaller than fk as fL �
fk, see (27), and fcr � fk.

The discrete SHC as described by (7) can be considered
inextensible only for small forces f � fk,cr � fk. The
continuous model (12) applies to forces f � fκ, and thus
describes an extensible continuous chain for fk,cr � f �
fκ but an inextensible continuous chain for f � fk,cr and
f � fκ. For the inextensible continuous chain we can use
the simplest model (9) of an inextensible worm-like chain.
For very stiff bonds with fκ � fk,cr we thus have to use
the discrete SHC model if we want to consider effects from
the extensibility, i.e., the force range f � fk,cr or even
f � fk.

In logarithmic plots of force-extension curves for the
extensible SHC, i.e., plots of ln (f/fcr) as a function of
Lf/L, there is a point of inversion around Lf/L ∼ 1 or
f ∼ fk,cr within the strong-stretching regime, which sig-
nals the onset of extensibility effects.

6.2 Inextensible, continuous SHC (worm-like chain)

In the limit of f � fk,cr � fk and f � fκ we are left with
an inextensible, continuous SHC described by the worm-
like–chain model (9). In this limit our result (40) for strong
stretching f � fcr reduces to

Lf

L
= 1 − d⊥

4

(
fcr

f

)1/2

− d⊥
2

(fcrfL)1/2

f
. (54)

For f � fL, finite-size effects are irrelevant, the last term
can be neglected, and it remains the well-known result of
Marko and Siggia [12]

Lf

L
≈ 1 − d⊥

4
T√
fκ

, for f � fL . (55)

For fL > fcr or contour lengths small compared to the
persistence length L < Lp/2, however, there are also
finite-size effects for strong stretching in the force range
fcr < f < fL. For f � fL the last term dominates

Lf

L
≈ 1 − d⊥

2
T

fL
, for f � fL . (56)

Then we find a force-extension relation 1 − Lf/L ∝ 1/f
for large f that is reminiscent of force-extension relations
of freely jointed chains. The condition fcr < f < fL is
equivalent to Lp > ξf > L. In terms of the blob picture
it means that the entire polymer behaves essentially as
a rigid rod that is contained in a single blob. Therefore
the force effectively stretches a single bond of length L
leading to the result (56).
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For weak stretching f � fcr we find from (48) a linear-
response behaviour:

Lf

L
≈ 4

d(d− 1)
L

(
L̃p

L

)
f

fcr
, (57)

which has also pronounced finite size effects as described
by the function L(x) (47) and depending on the ratio
L̃p/L = (2/(d−1))(fL/fcr)1/2. This might explain difficul-
ties in fitting experimental results for actin filaments [11],
which typically have contour lengths comparable to or
smaller than the persistence length Lp. The asymptotic
behaviour of L(x) for small and large x then implies

Lf

L
≈ 4

d(d− 1)
f

fcr
, for L � Lp (58)

and
Lf

L
≈ 1

d

f

(fcrfL)1/2
, for L � Lp . (59)

6.3 Inextensible SHC

Next we take into account effects from the discrete struc-
ture of the SHC, i.e., the force scale fκ becomes ac-
cessible but we still consider an inextensible chain with
f � fk,cr � fk. In particular this implies fκ � fk,cr and
thus fk,cr is given by (52). Then we can use the SHC model
(7) without the last term. For strong stretching f � fcr

the result (40) gives additional corrections leading to

Lf

L
= 1 − d⊥

4

(
fcr

f

)1/2 1
(1 + f/fκ)1/2

− d⊥
2

(fcrfL)1/2

f
.

(60)

In the limit f � fκ the result reduces to the above formula
(54) for the inextensible, continuous SHC but for f � fκ

the behaviour changes, and we find

Lf

L
= 1 − d⊥

4
(fcrfκ)1/2

f
= 1 − d⊥

2
T

fb0
for f � fκ ,

(61)

where we can neglect finite-size effects as f � fκ entails
f � fL according to (24). Thus, we obtain 1−Lf/L ∝ 1/f
for large f which is reminiscent of force-extension rela-
tions for freely jointed-chain models. The limit f � fκ

can be realized for small bending rigidities κ. For vanish-
ing κ, it is obvious that the inextensible SHC model (7)
without the last term indeed reduces to a freely jointed
chain. Note that (61) is identical to the strong-stretching
limit of the corresponding force-extension relation (B.3)
for a freely jointed chain as derived in Appendix B. In
terms of the blob picture, this is due to the fact that for
f � fκ the crossover or blob length becomes smaller than
the bond length ξf � b0 such that the force effectively
stretches independent discrete bonds as in a freely jointed-
chain model [18].

As effects from the discrete chain structure are only rel-
evant for f � fκ, but we consider the situation Lp � b0
or fκ � fcr, see (22), the weak-stretching regime f � fcr

displays the same behaviour as for the inextensible, con-
tinuous SHC that we discussed in the previous section. If
we allow for fκ � fcr or b0 � Lp, on the other hand, we
obtain the freely jointed-chain result (50) for weak stretch-
ing fκ � f � fcr.

6.4 Extensible SHC

Now we want to consider the situation where the exten-
sibility of the SHC becomes relevant, i.e., the force range
f � fk,cr or even f � fk. Then we use the full Hamil-
tonian (7) of the extensible SHC. For strong stretching
feff � fcr (or f � fcr if fk � fcr, see (27), holds), we then
have to use the full result (40) for the force-extension rela-
tion as well. The full result (40) has various limits depend-
ing on the relative size of fκ, fk, and the stretching force f
or feff . They all have in common that for fk,cr � f � fk

the elastic response of the stretched bonds can no longer
be neglected and for f � fk it becomes the leading term,
Lf/L 
 f/fk. The subleading terms can display different
behaviour.

In the previous section we have already discussed the
inextensible limit of a discrete chain in the force regime
fκ � f � fk,cr, where we found a crossover to a freely
jointed-chain behaviour resulting in (61). If the chain is
extensible and f/fk is no longer a small parameter, a
freely jointed-chain behaviour sets in already for feff � fκ,
which is equivalent to f � (fκfk)1/2 if f � fk, and rela-
tion (61) is modified to

Lf

L
=

f

fk
+ 1 − d⊥

4
(fcrfκ)1/2

f

1 + 2f/fk

1 + f/fk
, for feff � fκ .

(62)
The subleading terms f/fk + 1 − Lf/L ∝ 1/f still show
force-extension behaviour reminiscent of freely jointed-
chain models but with a modified prefactor. The modi-
fication of the prefactor leads to an apparently reduced
bond length

bapp = b0
1 + f/fk

1 + 2f/fk
≈ b0

(
1 − f

fk

)
(63)

of the freely jointed chain as compared to the inextensible
case. The force-extension curve as described by (62) has a
point of inversion if plotted logarithmically, i.e., ln (f/fcr)
as a function of Lf/L. The point of inversion is located at
a force f ≈ fk,cr, where fk,cr is given by (52) in this force
regime.

Also in the weak-stretching regime f � fcr we have to
use the full result (48) for an extensible SHC. However, the
differences to the results for inextensible chains are small
if fcr � fk, see (27), as for weak stretching we consider
forces f � fcr and thus f � fk. If we allow for fκ � fcr or
b0 � Lp, we obtain the result (50) for a weakly stretched
extensible freely jointed chain in the range fκ � f � fcr.
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6.5 Extensible, continuous SHC

Finally, we want to consider the extensible, continuous
limit of the SHC. This means we consider forces feff � fκ

but f/fk,cr or even f/fk are no longer small. Then we
can use the continuous SHC model (12). In particular, we
will consider the situation f � fk,cr, otherwise the chain
becomes effectively inextensible again, and our above re-
sults for the worm-like chain apply. For strong stretching
feff � fcr (or f � fcr if fk � fcr, see (27), holds), our
result (40) becomes

Lf

L
=

f

fk
+ 1 − d⊥

4

(
fcr

f

)1/2 1 + 2f/fk

(1 + f/fk)1/2
,

for f � fk,cr, fL , (64)

where we have also neglected finite-size corrections as we
want to focus on forces f � fL. This limiting case has also
been obtained in reference [17] and has to be compared to
the force-extension relation (55) of Marko and Siggia [12]
for the worm-like chain. The first term in (64) is equiv-
alent to the correction introduced already by Odijk [14]
and describes the overall elastic response of a chain with
stretch modulus k. However, there is an additional correc-
tion due to the extensibility in the third term, which gives
an apparently reduced bending rigidity

κapp = κ
1 + f/fk

(1 + 2f/fk)2
≈ κ

(
1 − 3f

fk

)
(65)

as compared to the inextensible worm-like chain. The ap-
parent reduction of κ stems from the coupling of thermally
fluctuating bond extensions to both the external force and
the bond directions. Fits of experimental force-extension
curves using the inextensible worm-like–chain model re-
sult (55) will thus measure the apparent parameter κapp

rather than the actual parameter κ.
Only in the force range fk,cr � f � fk, we can neglect

the correction terms such that κapp ≈ κ and we find the
force-extension relation proposed by Odijk [14]

Lf

L
=

f

fk
+ 1 − d⊥

4

(
fcr

f

)1/2

, for fk � f � fk,cr, fL.

(66)
In the absence of finite-size effects, i.e., focusing on forces
f � fL, the force-extension curves as described by (64)
or (66) have a point of inversion if plotted logarithmically,
i.e., ln (f/fcr) as a function of Lf/L. The point of inver-
sion is located at a force f ≈ 4−2/3fk,cr [14], where fk,cr

is given by (51) and fk,cr � fk.

6.6 Application: F-actin

In Appendix C, we derive interpolation formulae which
interpolate between the weak-stretching and strong-
stretching results and are demonstrated to be accurate
within 10%. The interpolation formulae can be used to il-
lustrate and apply our results to F-actin (see Fig. 3) whose
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1

106

104

102

10-2

10-4

f/
f cr

L  /Lf 

Fig. 3. Logarithmic plots of the force-extension relations
(f/fcr as a function of Lf/L) for SHCs in d = 3. The thick
dashed curve shows the interpolation formulae (C.7) for an
extensible SHC with parameters B = 10−6, L̃p/L = 1, and
fk/fcr = 108 appropriate for F-actin. The dashed and dot-
ted curves show the limiting cases B = 0, L̃p/L = 1 as
described by (C.8) and B = L̃p/L = 0 as described by
(C.9), respectively. The dash-dotted curve shows an inextensi-
ble SHC (f/fk = 0) according to (C.4) for the same parameters

B = 10−6, L̃p/L = 1.

force-extension relation has been experimentally studied
in [11] in d = 3.

With a measured persistence length Lp 
 20µm [11,
26], the crossover force fcr = 2T/Lp between weak and
strong stretching is estimated as fcr = 2T/Lp ∼ 4 ×
10−5 pN for F-actin. In the experiments in [11] stretch-
ing was performed with forces up to f ∼ 300 pN, corre-
sponding to f/fcr ∼ 106. The bond length b0 for actin
can be estimated by the size of a G-actin monomer as
b0 
 10 nm [30] such that b0/Lp ∼ 10−3 or fκ/fcr ∼ 106.
For the characteristic stretching force fk = kb0 a value
fk ∼ 35 nN has been obtained in reference [11] corre-
sponding to fk/fcr ∼ 108. This leads to an extensibil-
ity crossover force scale fk,cr 
 (f2

kfcr)1/3 ∼ 40 pN or
fk,cr/fcr ∼ 105, which determines the point of inversion in
the logarithmic plots in Figure 3 at f ≈ 4−2/3fk,cr. In ref-
erence [11] the persistence length of F-actin is comparable
to the contour length, L ∼ L̃p. This leads to rather large
corrections at low forces with L(L̃p/L) ≈ 0.4. For L ∼ L̃p,
the force scale fL is comparable to fcr, i.e., fL ∼ fcr.

In Figure 3 we visualize the effects from extensibility,
discrete chain structure, and finite-size effects. We show
the full interpolation formula (C.7) that includes all three
effects in comparison to limiting cases that neglect one of
these effects. It is clearly seen that for F-actin finite-size ef-
fects have a more pronounced effect on the force-extension
curve than effects from the discrete chain structure. Also
effects from the extensibility are noticeable at the high-
est forces [11]. In particular, the point of inversion is well
observable in the experiment, although the relative bond
extensions are rather small with 〈ε〉 = f/fk ∼ 10−2 for
high stretching forces f ∼ 300 pN.
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7 Transfer matrix

The partition sum for the effective continuum Hamilto-
nian (12) of the extensible SHC can be treated also by
the transfer matrix method, which maps the calculation
of the partition sum to the diagonalization of a corre-
sponding Hamiltonian operator. On the one hand, we can
treat the Hamiltonian operator analytically by an ap-
proximate variational calculation to obtain approximate
force-extension relations that are more accurate than the
interpolation formulae. On the other hand, we can use
the transfer matrix method to calculate the exact force-
extension curves numerically by diagonalizing the Hamil-
tonian operator. This also allows to determine the accu-
racy of the approximate interpolation formulae obtained
in Appendix C and the variational calculation.

In the transfer matrix approach we consider first the
restricted partition sum Z(t, t0;L) of the extensible SHC.
In the restricted partition sum we apply boundary condi-
tions of clamped polymer ends t(0) = t0 and t(L) = t,
and we can write

Z(t, t0;L) =
∫ (t;L)

(t0;0)

Dt(s)δ(|t(s)| − 1)e−Heff{t(s)}/T (67)

with the effective Hamiltonian (12) after integrating over
bond extensions ε(s). It is advantageous to include a con-
stant factor such that the unrestricted partition sum of the
unstretched (f = 0) chain is set to unity which is equiva-
lent to shifting the energy scale such that the free energy
of the unrestricted, unstretched chain is set to zero. As a
function of the final tangent t and the polymer length L,
the restricted partition sum Z(t, t0;L) of the extensible
SHC fulfills a Schrödinger-like differential transfer matrix
equation [12] in the continuum limit b0 → 0:

∂LZ(t, t0;L) =[
TL2

2κ
+

f · t
T

+
1

2k(L)b0T
(f · t(s))2

]
Z(t, t0;L) ,

(68)

where L̂ ≡ t × ∇t is the angular-momentum operator.
The solution satisfies a boundary condition Z(t, t0; 0) =
δ(t−t0). To solve (68) for homogeneous bonds k(s) = k we
make an Ansatz Z(t, t0;L) = ψE(t) exp(−EL/T ), where
the energy eigenfunction ψE(t) for the energy level E ful-
fills the stationary version of the Schrödinger-like differ-
ential transfer matrix equation

−EψE(t) =

[
L̂2

2fcr
+ (f · t) +

1
2fk

(f · t(s))2
]
ψE(t)

≡ −ĤψE(t) , (69)

where Ĥ is the “Hamiltonian” operator of the correspond-
ing quantum problem. The solution satisfying the bound-
ary condition Z(t, t0; 0) = δ(t − t0) is obtained by sum-
ming over all energy levels En

Z(t, t0;L) =
∑

n

ψEn
(t)ψEn

(t0)e−EnL/T

≈ ψE0(t)ψE0(t0)e−E0L/T , (70)

where the ground-state E0 dominates in the thermody-
namic limit L � T/|E0−E1|. In order to study finite-size
effects we have to include sufficiently many terms of the
sum over eigenstates in (70).

The result (70) applies to clamped boundary condi-
tions. In order to switch to the free boundary conditions
that we have used in the previous sections, we integrate
over all configurations of initial and final unit tangents
and obtain for the partition sum of a SHC of length L

Z(L) ≈
(∫

dtψE0(t)
)2

e−E0L/T , (71)

where the last line holds in the thermodynamic limit
L � T/|E0 − E1|, where the ground-state E0 dominates.
In the thermodynamic limit the ground-state energy E0

determines the free energy

1
L

[F (f) − F (0)] = E0 (72)

of the stretched semiflexible polymer. Note that in the
thermodynamic limit effects from the boundary conditions
can be neglected and equation (72) holds both for free and
clamped boundary conditions. This changes for a finite
system where we have to keep sufficiently many terms in
the sums over eigenstates and find

1
L

[F (f) − F (0)] = −T

L
ln

[∑
n

ψEn
(t)ψEn

(t0)e−EnL/T

]

(73)
for clamped boundary conditions and

1
L

[F (f) − F (0)] = −T

L
ln

[∑
n

(∫
dtψEn

(t)
)2

e−EnL/T

]

(74)
for free boundary conditions. The extension as a function
of the stretching force f can be found by differentiation
of the free energies with respect to f using the thermody-
namic relation (13).

8 Variational calculation

In this section we study effects of the coupling between ex-
ternal force and extensible bonds for the continuous model
of an extensible SHC in the thermodynamic limit by em-
ploying the transfer matrix treatment combined with a
variational calculation analogous to reference [12]. We re-
produce our results for strong and weak stretching but
the variational treatment allows to obtain the crossover
between the two regimes more accurately than the inter-
polation formulae presented in Appendix C, also in the
presence of the correction term in the effective Hamilto-
nian (12).

In order to obtain the ground-state energy E0 of the
Schrödinger-like differential transfer matrix equation (69)
we apply a variational principle using an Ansatz

ψa(t) ∝ exp
(a

2
(f · t)

)
(75)
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Fig. 4. (a), (c): Force-extension curves (f/fcr as a function of Lf/L) for an extensible, infinite, and continuous SHC (fk = 108fcr,
L̃p/L = 0, and b0 = 0) in (a) d = 2 and (c) d = 3 according to the variational calculation (solid line) and the interpolation
formula (C.9) (dotted line) in comparison with the exact numerical force-extension curve (thick dashed line). (b), (d): Force
f/fcr versus the ratios Lf,var/Lf,exact (solid line) and Lf,inter/Lf,exact (dotted line) of the extensions Lf,var according to the
variational calculation and Lf,inter according to the interpolation formula (C.9) and the exact numerical extension Lf,exact for
(b) d = 2 and (d) d = 3.

with a variational parameter a [12]. Minimization of the
expectation value of the operator Ĥ with respect to a gives
the variational result for the ground-state energy

E0 = min
a

{
〈ψa|Ĥψa〉
〈ψa|ψa〉

}

= min
a

{
1

I(af)

[
1

2fcr

(
1
4

(af)2(I ′′(af) − I(af))

+
d−1

2
afI ′(af)

)
− fI ′(af)− f2

2fk
I ′′(af)

]}
. (76)

The scalar product is defined as 〈f |g〉 ≡∫
Sd−1 dd−1tf(t)g(t), where Sd−1 is the surface of

the d-dimensional unit sphere, and we calculated the
r.h.s. in terms of the integral I(af) ≡ 〈ψa|ψa〉. The
force-extension relation is obtained using (13) which gives

Lf

L
= −∂fE0(f) . (77)

We will perform the variational calculation both for d = 2
and d = 3 corresponding to the most important exper-
imental situations of a semiflexible polymer adhered to
a substrate or freely suspended in three spatial dimen-
sions. We compare the results from the variational ap-
proach with exact numerical diagonalization studies of the
Hamiltonian operator Ĥ.

In d = 2 we have I(af) = 〈ψa|ψa〉 = 2πI0(af) with
the Bessel function I0(x) [33]. Using this in (76) we find

the variational free energy

E0 = min
a

{
I1(af)
I0(af)

(
1

8fcr
af − f +

f2

2fk

1
af

)
− f2

2fk

}
.

(78)

In d = 3 we find I(af) = 〈ψa|ψa〉 = 4π(af)−1 sinh (af)
and thus according to (76) the variational free energy

E0 = min
a

{(
coth af− 1

af

)(
1

4fcr
af−f +

f2

fk

1
af

)
− f2

2fk

}
.

(79)
In the limit of weak stretching we can expand in af � 1
and the results for E0 agree to leading order with equa-
tion (44) in the thermodynamic limit L/L̃p � 1. In the
limit of strong stretching af � 1 the results for E0 agree
with equation (39) in the continuous limit b0 → 0 or feff �
fκ and for an infinite chain L → ∞ or fL = 0. Therefore,
we also recover the corresponding force-extension relations
(48) for weak and (64) for strong stretching, respectively.

In the intermediate regime we can find the minimum
in (78) or (79) by numerical minimization. The resulting
force-extension curves are shown in Figure 4 in comparison
with the corresponding interpolation formula (C.9), and
the exact numerical force-extension curves that we obtain
from the numerical diagonalization of the Hamiltonian op-
erator Ĥ as explained in Section 9. The interpolation for-
mula (C.9) gives an accurate fit within 10%, whereas the
variational calculation is accurate within 1% due to the
increased accuracy at intermediate forces f ∼ fcr.



30 The European Physical Journal E

9 Numerical diagonalization

In order to obtain force-extension curves numerically, we
first have to diagonalize the Hamiltonian operator Ĥ from
(69) in a suitable representation to find the energy states
En and wave functions ψEn

(t). To study the thermody-
namic limit it is sufficient to obtain the ground-state en-
ergy E0.

In d = 2 we use a representation

ψE(t) =
∞∑

m=−∞
ψE,meimφ (80)

by Fourier decomposition on the unit sphere with expan-
sion coefficients ψE,m and where φ is the angle between f
and the unit vector t. In this representation the eigenvalue
equation (69) becomes

EψE,m =
∞∑

m′=−∞
ψE,m′

[
1

2fcr
m2δmm′ − f

2
(δm,m′+1 + δm+1,m′)

− f2

4fk
δmm′ − f2

8fk
(δm,m′+2 + δm+2,m′)

]
. (81)

In d = 3 we use a representation

ψE(t) =
∞∑

l=0

ψE,lYl0(t) (82)

by spherical harmonics Yl0(t), where ψE,l are expansion
coefficients and where we have anticipated that the ground
state must have axial symmetry such that there are no
components m �= 0. Finally, this leads to the matrix eigen-
value equation

EψE,l =
∞∑

l′=0

ψE,l′

[
1

2fcr
l(l + 1)δl,l′

− f

(2l′ + 1)1/2(2l + 1)1/2
[lδl,l′+1 + l′δl,l′−1]

− f2

2fk

2l2 + 2l − 1
(2l − 1)(2l + 3)

δl,l′

− f2

2fk(2l′ + 1)1/2(2l + 1)1/2

×
(

(l′ + 1)(l′ + 2)
2l′ + 3

δl,l′+2 +
(l + 1)(l + 2)

2l + 3
δl,l′−2

) ]
.

(83)

The matrix operators on the r.h.s. of (81) and (83) can be
numerically diagonalized on any finite-dimensional sub-
space |m| < mmax in d = 2 or 0 ≤ l < lmax in d = 3.

For an infinite, continuous SHC we only need to com-
pute numerically the lowest eigenvalue E0 of the matrix
operators for a given force f in order to find the free en-
ergy according to (72). Doing so for two forces f + ∆f

and f − ∆f , we can perform a numerical differentiation
with respect to f to obtain the force-extension relation
according to the thermodynamic relation (13). Choosing
mmax or lmax sufficiently large and ∆f sufficiently small
any desired accuracy can be reached, and we obtain exact
numerical force-extension curves. Force-extension curves
obtained by this procedure using subspaces mmax = 30 in
d = 2 and lmax = 30 in d = 3 are shown in Figures 4(a)
and (c) in comparison with the corresponding interpola-
tion formula (C.9) for an infinite, continuous SHC and
with the corresponding result from the variational calcu-
lation.

For a finite, continuous SHC with free boundary condi-
tions we compute all energy levels En and all correspond-
ing eigenstates ψEn,m in d = 2 or ψEn,l in d = 3 by nu-
merical diagonalization of the matrix operators. Then we
use (74) to calculate the free energy for a given force f :

1
L

[F (f) − F (0)] = −T

L
ln

[∑
n

ψ2
En,0e

−EnL/T

]
. (84)

In (74) we used that the integral
∫

dtψEn
(t) gives the

projection to the m = 0 and l = 0 state in d = 2 and
d = 3, respectively. After calculating (84) numerically for
two forces f + ∆f and f − ∆f , we perform the numeri-
cal differentiation with respect to f to obtain the force-
extension relation according to the thermodynamic rela-
tion (13). The exact numerical force-extension curves for
a finite, continuous SHC that are shown in Figure 5 in
comparison with the corresponding interpolation formula
(C.8) have been obtained by this procedure using sub-
spaces mmax = 30 in d = 2 and lmax = 30 in d = 3.

10 Conclusion

We have studied the stretching of extensible semiflexible
polymers using the discrete extensible SHC model that
additionally contains microscopic degrees of freedom de-
scribing elastic bonds. The bond stretching depends on
the bond direction such that thermal fluctuations of the
bonds length lead to an effectively increased stretching
of the bond directions. This manifests as an additional
forcing term in the effective Hamiltonian (7) that is ob-
tained after performing the partial trace over thermally
fluctuating extensions of the elastic bonds. We derived
force-extension relations (40) and (48) for the SHC model
for strong and weak stretching, respectively, which took
into account effects from the extensibility and the discrete
chain structure as well as finite-size effects. The result can
be used to discuss various important limiting cases. In
the limit of strong stretching the discrete chain structure
can lead to behaviour reminiscent of a freely jointed chain
at very large tensile forces, whereas for weak stretching
a continuous description is fully justified. On the other
hand, we have to consider finite-size corrections for weak
stretching if the contour length becomes comparable to the
persistence length as is typically the case for filamentous
semiflexible polymers such as F-actin. The results can be
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combined into the interpolation formulae (C.4) and (C.7)
for the force-extension relations of extensible semiflexible
polymers. A complementary transfer matrix treatment of
the SHC model allows to analyze the crossover at interme-
diate forces using a variational calculation. The numeri-
cal transfer matrix diagonalization provides exact numeri-
cal force-extension curves which we used to determine the
accuracy of interpolation formulae and variational calcu-
lation. For the interpolation formulae the agreement is
within 10% accuracy, even in the presence of finite-size
corrections. Our results are relevant to experiments on
DNA or F-actin and we have illustrated our results with
explicit estimates for F-actin using the experimental re-
sults of reference [11].

One of us (O.N.) thanks the Thai Government for support.

Appendix A. Bending and stretching of
elastic rods

In this appendix we want to discuss the possibility of
a coupling between bending modes and bond extension
based on elasticity theory of thin elastic rods [34] which
is the basis of the worm-like–chain model and describes
many semiflexible polymers and filaments such as DNA
(at high salinity such that non-local effects from electro-
static forces can be neglected) and F-actin surprisingly
well [30]. Stretching a thin cylindrical elastic rod of radius
a and length L by a factor ε and simultaneously bend-
ing its center line to a curvature radius R induces strains
uxx = (1 + ε)(z/R) + ε where we chose coordinates such
that the rod is oriented along the x-axis and z describes
the coordinate perpendicular to the rod and the “neutral
plane” that stays undeformed. The origin z = 0 is chosen
within this neutral plane, e.g. in the center of the cylinder.
If E is Young’s modulus of the polymer material, stresses
are σxx = Euxx and the elastic energy density is Eu2

xx/2.
Integrating over the spherical cross-section of the rod gives
the elastic energy per length

Eel

L
=

EI

2
(1 + ε)2

1
R2

+
EA

2
ε2 (A.1)

with I = πa4/4 and A = πa2. The bending rigidity and
the stretching modulus of the rod are

κ = EI 
 Ea4 and kb0 = EA 
 Ea2 . (A.2)

The coupling between bending and stretching leads to a
bending contribution to the elastic energy which is in-
creased by a factor (1 + ε)2 in the presence of stretching.

The result (A.1) for an elastic rod can be applied to a
semiflexible polymer with a local bond length b(s), where
s is the arc length s of the unstretched chain. Stretching
gives rise to local bond extensions ε(s) = (b(s) − b0)/b0
and a local radius of curvature R(s) = 1/c(s), where c(s)
is the curvature of the polymer. The elastic energy of

the stretched and bent semiflexible polymer with bend-
ing rigidity κ and stretching modulus k(s) is thus

Eel =
∫ L

0

ds
{
κ

2
(1 + ε(s))2c(s)2 +

k(s)
2

ε(s)2
}

. (A.3)

We want to compare stretched configurations with identi-
cal bond directions as described by the unit vectors t(s).
Then the polymer contour r(s) is given by r(s) − r(0) =∫ s

0
ds̃(b(s̃)/b0)t(s̃) and the local curvature c(s) for fixed

bond directions t(s) changes by stretching to

c(s) =
b0
b(s)

|∂st(s)| = (1 + ε(s))−1|∂st(s)| , (A.4)

i.e., the curvature is reduced for a locally stretched chain
with ε(s) > 0. Using this in expression (A.3) for the elastic
energy, we obtain

Eel =
∫ L

0

ds
{
κ

2
(∂st)2 +

k(s)
2

ε(s)2
}

(A.5)

and bending and stretching degrees of freedom decouple
in the parameterization by bond extensions ε(s) = (b(s)−
b0)/b0 and bond directions t(s) as described by the unit
vectors t(s).

Appendix B. Force-extension relation for a
freely jointed chain

The force-extension relation for a freely jointed chain with
N bonds b(n) of fixed length |b(n)| = b in d spatial di-
mensions can be obtained analytically, see, for example,
reference [27] for d = 3. For a freely jointed chain the only
energy is the work done by the external force f applied to
one end of the chain with the other end fixed

Ef = −
N∑

n=1

f · b(n) . (B.1)

As for the SHC the extension Lf in force direction is found
from the dependence of the free energy F (f) = −T lnZ(f)
on the force f = |f | by the thermodynamic relation
Lf = −∂fF (f), see (13). The integration over the N in-
dependent bonds can be performed in angular variables
with θ = arccos(f̂ · b̂) as angle enclosed by a bond vector
b and the force vector f which gives

Z(f) =
[
c(d)

∫ π

0

dθ(sin θ)d−2efb cos θ/T

]N

(B.2)

with c(d) ≡ 2πd/2/Γ (d/2) as surface area of the d-
dimensional unit sphere. It is evident that after the re-
maining θ-integration expression (B.2) depends on the
force f only through the combination fb/T . Using F (f) =
−T lnZ(f) and Lf = −∂fF (f) this leads to force-
extension relations of the form

Lf

Nb
= FFJC

d

(
fb

T

)
, (B.3)
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Fig. 5. (a), (c): Force-extension curves (f/fcr as a function of Lf/L) for a continuous (B = 0) and (a) inextensible (f/fk = 0)
or (c) extensible (f/fk = 108) SHC in d = 3 according to the interpolation formulae (C.5) and (C.8), respectively (solid lines)
and comparison with exact numerical force-extension curves (thick dashed lines) for three different lengths L̃p/L = 0.1, 1, 10
(bottom to top). (b), (d): Force f/fcr versus the ratio Lf,inter/Lf,exact of the extension Lf,inter according to the interpolation

formulae (C.5) and (C.8), respectively, and the exact numerical extension Lf,exact for L̃p/L = 0.1, 1, 10 (bottom to top).

where FFJC
d (x) is a scaling function that is obtained by

explicitly performing the remaining θ-integration and de-
pends only on the dimensionality d.

In d = 3 dimensions we find

Z(f) =
[
4π sinh

(
fb

T

)]N

. (B.4)

Using F (f) = −T lnZ(f) and Lf = −∂fF (f) we obtain
the result

FFJC
3 (x) = 1/ tanhx− 1/x (B.5)

for the scaling function.
In d = 2 dimensions we find

Z(f) =
[
2πI0

(
fb

T

)]N

(B.6)

which leads to the scaling function

FFJC
2 (x) = I1(x)/I0(x) . (B.7)

I0(x) and I1(x) are Bessel functions [33].
The freely jointed chain shows a crossover from weak

to strong stretching for forces f 
 T/b. This is seen in the
asymptotics of the scaling function FFJC

d (x). The scaling
function approaches unity or full stretching as FFJC

d (x) ≈
1 − (d − 1)/2x for large x corresponding to large forces
f � T/b, and a linear response FFJC

d (x) ≈ x/d for small
x or small forces f � T/b.

Appendix C. Interpolation formulae

Our force-extension relation (40) for strong stretching f �
fcr of the SHC, and (48) for weak stretching can be used
to obtain interpolation formulae for the whole force range
which also account for the corrections due to extensible
bonds, discrete chain structure, and finite length of the
polymer.

Appendix C.1. Inextensible SHC

For the inextensible SHC, we start the construction of in-
terpolation formulae from the strong-stretching result (60)
for the inextensible SHC valid for f � fk,cr. If the last
term in (60) containing finite-size corrections is neglected
we can solve for the force f and find

f

fcr
= − 1

2B
+

1
2B

(
1 +

d2
⊥
4

B

(1 − �f )2

)1/2

, (C.1)

where �f ≡ Lf/L is the relative extension and

B ≡ fcr/fκ = (b0/Lp)2 (C.2)

a dimensionless parameter characterizing the discrete
chain structure. For f/fcr � 1/B or f � fκ this formula
gives the crossover from the worm-like–chain behaviour
f ∝ (1 − �f )−2 for f � fκ to the freely jointed-chain
behaviour f ∝ (1 − �f )−1 for f � fκ due the discrete
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chain structure, see (55) and (61). The additional finite-
size corrections for strong stretching in (60) can be taken
into account to a good approximation by adding another
term

f

fcr
= − 1

2B
+

1
2B

(
1 +

d2
⊥
4

B

(1 − �f )2

)1/2

+
d⊥
4

Lp

L

1
1 − �f

(C.3)

which gives the correct crossover between the worm-like–
chain behaviour f ∝ (1 − �f )2 for f � fL to the effec-
tive rigid-rod result f ∝ (1 − �f ) for f � fL, see (55)
and (56). Now we add constants and terms linear in �f to
correctly reproduce the linear-response behaviour (48) at
weak stretching. This gives the interpolation formula

f

fcr
=

1
2B

[(
1 +

d2
⊥
4

B

(1 − �f )2

)1/2

−
(

1 +
d2
⊥
4

B

)1/2
]

+
d⊥
4

Lp

L

(
1

1 − �f
− 1

)

+

(
− d2

⊥
8

(
1 +

d2
⊥
4

B

)−1/2

− d⊥
4

Lp

L

+
d(d− 1)

4
1

L(
L̃p/L

)
)
�f (C.4)

with L̃p = Lp/(d− 1) and L(x) as in (47). Finite-size cor-
rections for L < L̃p at weak stretching are included by
the factor L(L̃p/L), cf. (48). For B � 1 effects from the
discrete chain structure become negligible and the inter-
polation formula (C.4) reduces to

f

fcr
=

d2
⊥

16

(
1

(1 − �f )2
− 1

)
+

d⊥
4

Lp

L

(
1

1 − �f
− 1

)

+

(
−d2

⊥
8

− d⊥
4

Lp

L
+

d(d− 1)
4

1
L(

L̃p/L
)
)

�f .

(C.5)

If we also consider the limit of an infinite chain Lp � L
we obtain

f

fcr
=

d2
⊥

16

(
1

(1 − �f )2
− 1

)
+

d2 − 1
8

�f (C.6)

which agrees with the well-known interpolation formula of
reference [12] for d = 3.

The finite-size effects described by (C.4) or (C.5) lead
to pronounced corrections in the force-extension curves
of rigid biopolymers such as F-actin with contour length
comparable to the persistence length as illustrated by Fig-
ure 5. In particular, they affect the force regime f < fL.
The interpolation formula (C.5) can be compared with ex-
act numerical force-extension curves from transfer matrix
calculations for the continuous SHC as described in Sec-
tion 9. The accuracy of (C.5) is within 10% of the exact
curves for a wide range of values L̃p/L as demonstrated
in Figure 5.

Appendix C.2. Extensible SHC

For an extensible SHC for forces f � fk,cr we have fur-
ther corrections arising from the overall elastic response
of a chain with finite stretching modulus k [14] at strong
stretching and from the coupling of thermally fluctuat-
ing elastic bonds to the external force. It is no longer
possible to include these corrections, as given in (40) for
strong stretching and (48) for weak stretching, in reason-
ably simple explicit interpolation formulae. Starting from
our above interpolation formula (C.4) for the inextensible
SHC we can only construct an implicit interpolation for-
mula that has to be solved for forces f numerically. The
corrections due to extensibility can be incorporated into
(C.4) in the following way:

f

fcr
=

1
2B

[ (
1 +

d2
⊥
4

Bf2(εf )
(1 − �f + εf )2

)1/2

−
(

1 +
d2
⊥
4

Bf2(εf )
(1 + εf )2

)1/2
]

+
d⊥
4

Lp

L
f1(εf )

(
1

1 − �f + εf
− 1

1 + εf

)

+

(
− d2

⊥
8

(
1 +

d2
⊥
4

B

)−1/2

− d⊥
4

Lp

L

+
d(d− 1)

4
1

L
(
L̃p/L

)
)
�f (C.7)

with εf ≡ f/fk as the relative extension of an individ-
ual bond stretched with a force f and functions f1(x) ≡
(1 + 2x)/(1 + x) and f2(x) ≡ (1 + 2x)2/(1 + x). To
keep expression (C.7) reasonably simple we assumed that
fk � fcr, see (27), and neglected all extensibility effects in
the weak-stretching regime where f is linear in �f . Again
we can consider two limiting cases. For B � 1 effects from
the discrete chain structure can be neglected and (C.7) re-
duces to

f

fcr
=

d2
⊥

16
f2(εf )

(
1

(1 − �f + εf )2
− 1

(1 + εf )2

)

+
d⊥
4

Lp

L
f1(εf )

(
1

1 − �f + εf
− 1

1 + εf

)

+


−d2

⊥
8

− d⊥
4

Lp

L
+

d(d− 1)
4

1

L
(
L̃p/L

)

 �f .

(C.8)

If we also consider the limit of an infinite chain Lp � L
we obtain

f

fcr
=

d2
⊥

16
f2(εf )

(
1

(1 − �f + εf )2
− 1

(1 + εf )2

)

+
d2 − 1

8
�f . (C.9)
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The interpolation formulae (C.7), (C.8), and (C.9) for the
extensible SHC are of the form f = F (f, Lf ) with a func-
tion F that contains all force scales as fitting parameters.
Although they are implicit as the force f appears also
on the r.h.s., the following procedure can be used to fit
experimental force-extension curves. The implicit or self-
consistent force-extension relation f = F (f, Lf ) can be
formally converted into an explicit formula by replacing
f by a formally independent force f̃ on the r.h.s., i.e.,
f = F (f̃ , Lf ). Then we have to fulfill an additional self-
consistency condition f̃ = f(Lf ) along the actual force-
extension curve f(Lf ). In this form the interpolation for-
mulae can be used to fit force-extension data, that also has
to be extended to include data for f̃ . Using identical data
for f and f̃ , i.e., setting f̃ ≡ f in the experimental data,
we will obtain fits that fulfill the required self-consistency
condition f̃ = f(Lf ) to a good approximation along the
actual force-extension curve.

The effects of the extensibility on the force-extension
curves are illustrated in Figure 5 Also for the extensible
SHC the finite-size effects described by (C.7) or (C.8) lead
to pronounced corrections in the force-extension curves
in the whole regime Lf/L < 1. The interpolation for-
mula (C.8) can be compared with exact numerical force-
extension curves from transfer matrix calculations for the
continuous SHC as described in Section 9. The accuracy
of (C.8) is within 10% of the exact curves for a wide range
of values L̃p/L as demonstrated in Figure 5.
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