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Abstract. – Systems with two species of active molecular motors moving on (cytoskeletal)
filaments into opposite directions are studied theoretically using driven lattice gas models.
The motors can unbind from and rebind to the filaments. Two motors are more likely to
bind on adjacent filament sites if they belong to the same species. These systems exhibit
i) continuous phase transitions towards states with spontaneously broken symmetry, where one
motor species is largely excluded from the filament, ii) hysteresis of the total current upon
varying the relative concentrations of the two motor species, and iii) coexistence of traffic lanes
with opposite directionality in multi-filament systems. These theoretical predictions should be
experimentally accessible.

Cytoskeletal motors which convert chemical free energy into directed movements along
filament tracks have been studied extensively during the last decade. Many different motor
molecules have been identified and much insight has been gained into their motor mechanisms
and their functions within cells [1]. Much of the present knowledge about motor mechanisms
has been obtained from single-molecule experiments, which have been performed under a
variety of different conditions [2].

Cooperative effects, on the other hand, arising from motor-motor interactions have hardly
been explored experimentally so far. Most of the available information about these interactions
is due to decoration experiments where the binding patterns of inactive (non-moving) motors
to immobilized filaments are examined by electron microscopy and X-ray scattering. Decora-
tion experiments clearly demonstrate mutual exclusion from binding sites of the filaments. In
addition, there is evidence for an effectively attractive motor-motor interaction mediated via
the filament. Such an interaction is implied by the coexistence of decorated and bare filaments,
which has been observed both for the decoration of actin filaments by myosin [3,4] and for the
decoration of microtubules by kinesin [5]. In the case of actin decoration, the motor-motor
interaction depends on the internal conformation of the actin filaments [4]. This observation
as well as experimental results on active kinesin in the presence of ATP [6] suggest that a
bound motor leads to a localized deformation of the filament which promotes the binding of
further motors on adjacent binding sites.
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A convenient way to study interacting motors theoretically is to model the motor move-
ments as walks on a lattice [7, 8]. In these models, the directed walks along filaments are
described as biased random walks, whereas the unbound motors undergo symmetric random
walks corresponding to diffusive motion. Interactions can be taken into account by hopping
rates which depend on the presence of motors on adjacent lattice sites. These models are new
variants of driven lattice gas models or exclusion processes, where the driving is localized to
the filaments. Other variants of driven lattice gas models have been previously studied for a
variety of transport processes, see, e.g., [9–11].

In this letter, we will address the cooperative behavior of two species of motors moving
along the same filament, but into opposite directions. In both the kinesin and myosin motor
families, motors moving into opposite direction have been identified, e.g. myosin V and VI or
conventional kinesin and ncd [1]. The directionality of motors can also be engineered by genetic
methods, e.g. [12, 13]. The two species of motors compete for the same binding sites along
the filament [14]. In order to incorporate the effectively attractive motor-motor interactions
as deduced from the decoration experiments [3–6], a bound motor is taken to increase the
adsorption rate onto adjacent binding sites for motors of the same species. We will show
that these models exhibit states of spontaneously broken symmetry, hysteresis of current and
motor densities, and, in multi-filament systems, the coexistence of traffic lanes with opposite
directionality. In contrast to the non-equilibrium phase transitions of the asymmetric simple
exclusion process [9] or the “bridge” model [11], the transitions discussed here are not induced
by the boundaries, but by the binding and unbinding dynamics of the active particles. This
implies that they can be simply controlled by the bulk concentrations of the two motor species.

To proceed, let us consider a one-dimensional lattice representing a filament on which two
species of motor particles move. We will denote the two species by “plus” and “minus”. Plus-
motors attempt to hop to the right with a rate α = vb/�, which depends on the motor velocity
vb in the absence of other motors and on the filament repeat distance �, while minus-motors
move to the left with the same rate α. Backward steps are neglected, because they are rare for
cytoskeletal motors. Hopping attempts are only successful if the target site is not occupied
by another motor. This incorporates the mutual exclusion of the motors and prevents, in
particular, that bound plus- and minus-motors pass each other.

In general, the filament is located within a larger volume such as a tube with a certain
amount of unbound motors which can bind to an empty filament site. Likewise, bound
motors have a small probability to unbind at each step. In order to model this system, we
replace the solution surrounding the filament by a reservoir which is characterized by the two
concentrations ρ+ and ρ− of the unbound plus- and minus-motors. Very similar behavior is
found for a refined model as in [8], where the unbound motors undergo symmetric random
walks within a tube and the number of particles is locally conserved.

The rates for binding and unbinding depend on the state of adjacent lattice sites. If no
other motors are close, an unbound plus- or minus-motor binds to an empty filament site with
rate πadρ±, where πad is the adsorption rate and ρ± are the concentrations of unbound plus-
and minus-motors in the solution, and a bound motor unbinds with rate ε(1). A typical value
for ε is α/100, as follows from the observed walking distances [7](2).

If the motors interact only via their mutual exclusion, no phase transition occurs in the
system as one varies the bulk motor concentrations. Such transitions are found, however, if
one incorporates the previously mentioned filament-mediated interaction which will affect, in

(1)As in [7, 8], we do not scale the detachment/attachment rates with the system size L, in contrast to [15].
(2)For motor complexes or cargo particles with n active motors, one would have ε ∼ εn

1 with the detachment
rate ε1 of a single motor. In addition, the velocity, and thus α, are reduced for such a particle due to the
mutual hindrance of the active motors.
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Fig. 1 – “Plus” and “minus” motors which move on the filament to the right and to the left, respec-
tively. The rates for attachment to and detachment from the filament depend on the state of the
forward neighbor site on the filament. Left: at sites with a vacant forward neighbor, motors unbind
and bind with rates ε and πadρ±. Middle: a motor of the same species at the forward neighbor site
enhances binding and reduces unbinding by factors q > 1 and 1/q, respectively. Right: a motor of
the other species reduces binding and enhances unbinding.

general, both the binding and the unbinding rates, πad and ε, in the direction perpendicular
to the filament and the forward rate α for steps parallel to the filament.

Let us assume that the binding rate πad is increased by a factor q and that the unbinding
rate ε is decreased by a factor 1/q if another motor of the same species already occupies the
forward neighbor site on the filament, see fig. 1(3). These binding and unbinding processes
obey detailed balance [8]. For steps along the filament, on the other hand, detailed balance
is broken since these active steps are coupled to ATP hydrolysis, and the corresponding rate
α will, in general, change to α/q′ with q′ �= q if a motor of the same species is present on the
forward neighbor of the target site. We find that the system undergoes a phase transition for
fixed q′ and sufficiently large values of q. In order to eliminate one parameter, we will focus
in the following on the situation with q′ = 1. For an effectively attractive interaction between
two motors of the same species, we have q > 1. In the presence of a bound motor of the other
species at the forward neighbor site the unbinding rate is enhanced by a factor q, while the
adsorption rate is reduced by a factor 1/q.

In order to suppress all effects arising from the two ends of the filament, we will first
consider periodic boundary conditions in the longitudinal direction parallel to the filament.
Therefore, the phase transitions found here cannot be induced by the boundary conditions
imposed on the system, in contrast to [9, 11].

For large q, motors bound to the filament strongly attract other motors of the same type to
the filament, but repel those of the other type. Now, if the bound concentration of one motor
species is much higher than the one of the other species, the second species is basically excluded
from the binding sites of the filament. On the other hand, the motors of the majority species
on the filament are unlikely to unbind, since they are effectively attracted by their neighbors.
In fact, these interactions lead to a non-equilibrium phase transition induced by the active
movements of the motors with a critical point at q = qc for ρ+ = ρ− = ρ/2, i.e., for equal
bulk concentrations of plus- and minus-motors. We have found these phase transitions both
from Monte Carlo (MC) simulations and analytical mean-field calculations, compare fig. 2.

For ρ+ = ρ− = ρ/2 and q < qc, motors of both species are bound to the filament and the
densities of bound motors, ρb,+ and ρb,−, are equal for both types. The total current vanishes
as the motor currents with opposite directionality, J+ and J−, balance each other. For q > qc,
on the other hand, we observe spontaneous symmetry breaking. Motors of one species are
bound to the filament, while those of the other species are largely excluded from it, resulting
in a non-zero value of the density difference mb ≡ ρb,+ − ρb,− as shown in fig. 2(a) and (c).
Likewise, the total current J ≡ J+ + J− is also finite for q > qc. The current decreases for

(3)Interactions involving nearest neighbors in both forward and backward direction lead to similar results.
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Fig. 2 – Density difference mb = ρb,+ − ρb,− and total current J = J+ + J− as functions of the
interaction parameter q as obtained from MC simulations (a, b) and analytical mean-field calculations
(c, d). In (a, b) the absolute values of mb and J are shown for different filament lengths L = 200 (◦),
L = 400 (�), and L = 1600 (✷), see text. The mean-field solutions (c, d) show a symmetric solution
mb = 0 and J = 0 and two branches with broken symmetry for q > qc. The hopping rates are α = 1,
ε = 0.01, πad = 0.1, and the unbound motor concentrations are ρ = 2ρ+ = 2ρ− = 0.1.

large q as the filament becomes overcrowded. The MC simulations exhibit strong finite-size
effects. We sometimes observe reversal of the direction of the current at q > qc, as the system
flips from one broken-symmetry state to the other. In addition, for values of q close to qc, the
total current J and the difference mb of bound densities exhibit strong fluctuations. Because
of these fluctuations, we plotted the absolute values of mb and J in fig. 2(a) and (b). These
quantities exhibit non-zero values for finite system size L, but decrease to zero for large L.

The critical interaction parameter qc as determined by simulations depends on L, see
fig. 3(a). Extrapolation of these data leads to the estimate qc = 7.9± 0.1 for infinite L and to
qc(∞)− qc(L) ∼ 1/L1/2. In addition, we find that the time between subsequent flips from one
ordered state to the other at q > qc increases exponentially with L [16]. These observations
strongly indicate that symmetry breaking persists in the thermodynamic limit.

We have determined the critical interaction parameter qc as a function of the overall motor
concentration ρ ≡ ρ++ρ− in the solution. The resulting phase diagram as obtained from MC
simulations and mean-field calculations is shown in fig. 3(b).

In systems with several parallel filaments, the symmetry breaking leads to the coexistence
of traffic lanes with opposite directionality. We have performed simulations for the case of two
parallel filaments which are placed within a cylindrical tube, parallel to the cylinder axis [16].
In this case, the particle number is locally conserved. Therefore, if one motor species starts
to decorate one filament, the other motor species attains a larger bulk concentration and
is, thus, more likely to bind to the other filament. Indeed, for q > qc, we observe that
the two filaments are covered by different motor species which then form two traffic lanes
with opposite directionality. Thus, the symmetry breaking provides a simple mechanism for
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Fig. 3 – (a) The inverse critical interaction strength 1/qc as obtained from simulations for different
system sizes L with 20 ≤ L ≤ 1600. The line is a linear fit to the data which leads to qc = 7.9± 0.1
at infinite L. (b) Phase diagram as a function of the interaction parameter q and the concentration
of unbound motors ρ = 2ρ±, as obtained from simulations with L = 400 (data points) and from
mean-field theory (dashed line). Parameters are as in fig. 2.

efficient transport between two reservoirs of cargo particles.
Within mean-field theory, the time evolution of the densities of bound motors ρb,+ and

ρb,− is given by
∂

∂t
ρb,± +

∂

∂x
J± = I±(q), (1)

with the currents

J± ≡ ±vbρb,±(1− ρb)− Db

(
∂ρb,±
∂x

+ ρb,±
∂ρb,∓
∂x

− ρb,∓
∂ρb,±
∂x

)
(2)

and the attachment/detachment terms

I±(q) ≡ − ερb,±(1− ρ)
[
(1− ρb) + qρb,∓ +

1
q
ρb,±

]
+

+ πadρ±(1− ρb)
[
(1− ρb) +

1
q
ρb,∓ + qρb,±

]
. (3)

Here the parameters vb and Db are the velocity and the diffusion coefficient of single bound
motors and ρb ≡ ρb,+ + ρb,−. The factor (1− ρ) in the detachment term describes crowding
of motors in the solution with (1 − ρ) ≈ 1 for typical experimental conditions. It follows
from (1)-(3) that the stationary and spatially homogeneous states satisfy I+ = I− = 0. For
the symmetric case with ρ+ = ρ− = ρ/2, this leads to a critical point at q = qc as given by

qc ≡ η +
√

η2 + 3 with η ≡ ε(1− ρ)
πadρ

. (4)

The corresponding order parameter mb ≡ ρb,+ − ρb,− vanishes for q < qc, but attains the
finite value

mb = ±
√
(q2 − 2ηq − 3)(q2 − 2ηq + 1)

(q − 1)2(q − 2η + 1)2
∼ ±(q − qc)1/2 (5)

for q > qc. Likewise, the total current J = vbmb(1 − ρb) also vanishes as (q − qc)1/2. The
analysis of the MC data indicates that mb ∼ (q − qc)β with β � 0.35.
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Fig. 4 – (a) The density difference mb = ρb,+ − ρb,− and (b) the total current J = J+ + J− as a
function of the fraction of minus-motors ρ−/ρ for fixed overall concentration, ρ = ρ+ + ρ− = 0.1.
The white and black data points correspond to q = 12 > qc � 7.5 and q = 6 < qc, respectively. For
q < qc, no hysteresis is observed. Data points have been obtained by simulating 106 MC steps for
each value of ρ−. The rates are as in fig. 2 and the filament length L = 400.

Linear stability analysis shows that the symmetric solution with mb = 0 is stable for q < qc

and becomes unstable for q > qc, while the solution with broken symmetry is stable in the
range of q where it exists(4).

Varying the difference ρ+ − ρ− of the unbound motor concentrations for constant overall
concentration ρ = ρ+ + ρ−, we observe a discontinuous transition with hysteresis at q > qc,
see fig. 4. It is interesting to note that the total current, J = J+ + J−, increases as the
concentration of minority motors, which are excluded from the filament, is increased, and
thus adopts its maximal value in the region of metastability. To observe hysteresis, it is,
however, not necessary to keep the overall concentration ρ constant. In an experiment, one
could start with ρ− < ρ+, add first minus-motors until ρ− > ρ+ and then add plus-motors,
thereby increasing the overall concentration ρ. Such an experiment will again show hysteresis
since qc decreases with increasing ρ, as shown in fig. 3.

The systems discussed so far were characterized by periodic boundary conditions in the
longitudinal direction parallel to the filament. These boundary conditions are useful from
a theoretical point of view since they suppress all boundary effects which can dominate the
relatively small systems accessible to computer simulations. In principle, one could study such
systems experimentally if one combined several filaments to ring-like arrangement. In practice,
essentially straight filaments of finite length with two “open” ends are simpler to prepare.
Thus, let us finally consider such systems consisting of one or several straight filaments in
contact with a solution of plus- and minus-motors, again with the concentrations ρ+ and ρ−,
respectively. Motors can attach to the filament and unbind from it with the same rates as
before with the exception of the last binding sites at the filament ends, where unbinding occurs
with rate εend. If the filament is sufficiently long with length L 	 vbq/ε and L 	 vbq/εend,
the bound density along the filament will be determined by the bulk dynamics, while the
dynamics at the filament ends leads to the formation of boundary layers, so that the phase
transitions described above for the periodic case also occur for the case with “open” ends.
In order to see whether these phase transitions could be observed in experiments where the
typical filament length is tens of micrometers, we performed simulations for this open case
with L = 1000 and motor parameters as in fig. 2. In these simulations, symmetry breaking

(4)Our mean-field equations also imply a spurious “blocking transition” for small q and large vb which is not
observed in our MC simulations, compare [17].
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and hysteresis are clearly observed for an intermediate range of the unbinding rate at the
filament end εend as given by 0.03 � εend � 0.5, with approximately the same value of qc as
for the periodic case(5). Since εend can be expected to lie within this range for cytoskeletal
motors, this implies that these phase transitions should be accessible in in vitro experiments
with two species of motors and filaments of length L � 10µm.

In summary, we have discussed models for two species of interacting molecular motors.
Binding to a filament is promoted by bound motors of the same, but suppressed by bound
motors of the other species. These systems exhibit active, non-equilibrium phase transitions
with spontaneous symmetry breaking, hysteresis and (in the case of many filaments) the
formation of lanes with opposite directionality. On the one hand, these systems represent
new lattice gas models, which exhibit phase transitions between two ordered states induced
by active particles. On the other hand, these novel phase transitions should also be accessible
to experiments with cytoskeletal motors.
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[11] Evans M. R., Forster D. P., Godrèche C. and Mukamel D., Phys. Rev. Lett., 74 (1995)

208.
[12] Henningsen U. and Schliwa M., Nature, 389 (1997) 93.
[13] Sablin E. P., Case R. B., Dai S. C., Hart C. L., Ruby A., Vale R. D. and Fletterick

R. J., Nature, 395 (1998) 813.
[14] Lockhard A., Crevel I. M.-T. C. and Cross R. A., J. Mol. Biol., 249 (1995) 763.
[15] Parmeggiani A., Franosch T. and Frey E., Phys. Rev. Lett., 90 (2003) 086601; Popkov

V., Rákos A., Willmann R. D., Kolomeisky A. B. and Schütz G. M., Phys. Rev. E, 67
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