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Asymmetric simple exclusion processes with diffusive bottlenecks
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One-dimensional asymmetric simple exclusion proceg58&P9 that are coupled to external reservoirs via
diffusive transport are studied. These ASEPs consist of active compartments characterized by directed move-
ments of the particles and diffusive compartments in which the particles undergo unbiased diffusion. Phase
diagrams are obtained by a self-consistent mean field approach and by Monte Carlo simulations. The diffusive
compartments act as diffusive bottlenecks if the velocity of the driven compartments or ASEPs is sufficiently
large. A diffusive bottleneck at the boundary of the system leads to the absence of a maximal current phase,
while a diffusive bottleneck in the interior of the system leads to a new phase characterized by different
densities in the two active compartments adjacent to the diffusive one and to a maximal current defined by the

bottleneck.
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I. INTRODUCTION motors can attach to and detach from the track.

o ] For open tube systems with a single filament and fixed
Asymmetric simple exclusion processeASEP9 are  motor concentrations at the tube ends, the same types of
simple one-dimensional driven lattice gases with hard corg@hases are found as for the usual one-dimensional ASEP
exclusion. They were originally introduced in the context of If the filament is shorter than the tube and motors have to
protein synthesi§l] and have attracted much interest during diffuse over a certain distance to reach one end of the fila-
recent years as simple models for boundary-induced phaseent from the left boundary and again to reach the right
transitions[2], for which many rigorous results have beenboundary from the other end of the filament, the phase
obtained[3-5]. In the open system, different stationary statesboundaries of the system can be shifted by changing geo-
are found, which depend on the rates of injection and extragetrical tube parameters or motor parameters. In particular, a
tion of particles at the ends. By varying the injection andmaximal current phase, in which the current attains its maxi-
extraction rates, or equivalently the densities at the left andnally possible value, can only be found if the diffusive cur-
right boundary, both continuous and discontinuous phaséents from the left end of the tube to the filament and from
transitions are observed. The actual stationary state is s&€ filament to the right end of the tube can be as large as this
lected via the dynamics of domain walls and density fluctuaMaximal current. These diffusive currents, however, are re-
tions [6]. stricted by the (;ilffu5|on coefficient of the unbound motors
Promising candidates for the experimental observation ofmd r?y lgeomeﬁrlc parameteld). : d . h
these phase transitions are systems of cytoskeletal motog% (-erciﬁcattljke):apgggl?qrgtergolnnIsth%e?(fl[locw?r?g nv(j‘ta rgfl}g;tes(é\tgrtale
which move unidirectionally alor_lg cytoskelgtal mamemsone—dimensional systems which consist of compartments
[7—-9). However, these motors unbind from their track after a

characterized by active or diffusive transport. We will dis-

few seconds, since their binding energy can be overcome chuss four simple geometries as shown schematically in Fig.

thermal fluctuations. Observed over sufficiently long times1 While particles move only to the right in the active com-

which ‘exceed a few seconds, they alternate between t rtments, forward and backward steps occur with the same
bound and the unpound states af‘d perfor_m pecuhqr rand_o obability in the diffusive compartments. For these models,
walks. If a motor is bc_)und toa flllament, It moves in a di- we determine the phase diagram analytically using a mean
rected way along the filament, while unbound mqtors dI1qusq‘ield approach to calculate effective boundary densities or
freely. As motors are strongly attracted by the filament, theeffective injection and extraction rates for the active com-

motor density along the filament can be large even if the;iments. The method is based on the constraint that the
overall motor concentration is rather small, which implies

: ) . (?tationary current must be equal in all compartments.
that hard core exclusion pla}ys an important role in the boun The article is organized as follows. After introducing the
state. To study these combined movements, we have recent[lx

introduced | £ latti dels wh bound and odel in Sec. Il, we discusdiffusive injection and extrac-
Introduced a class of lattice models where bound and Ungqn of particles into/from an active compartment in Sec. Il

bound motor movements are described as biased and SyRye siart with only diffusive injection in Sec. Il A which

metric random walks on a lattice, respecnv[a?fg]. In these corresponds to case A in Fig. 1, proceed with only diffusive
models, the traffic of motors along a filament is an asymmet-

S . ) " extraction in Sec. lll B(see case B in Fig.)land then study
ric simple exclusion process with the additional property thatthe case C, for which particles are both injected and ex-

tracted via diffusive compartmengSec. Ill ©. We compare

the mean field results with Monte Carlo simulation in Sec.
*Electronic address: klumpp@mpikg-golm.mpg.de Il D. Finally, we discuss the case ofdiffusive compartment
TURL: http://www.mpikg-golm.mpg.de/lipowsky between two active compartmeats shown as case D in Fig.
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D \Y Li+1<x=<L,+L, and diffusive in the left and right ones.
i A Finally, in case D, transport is directed in two compartments,
[Pt 001 EEEEEEEE " the left and the right one, but diffusive in the middle com-
0 1 L L L+ partment. In all cases, we will assume that the extensions of
@) the active compartments are sufficiently large, so that we can
v D neglect finite-size effects.
oy MR I~ In the following, we will take the active transport to be
—— — always directed to the right and to be totally asymmetric, i.e.,
Poi & 000 08 b e we do not allow backward steps in the compartments with
01 Ly L L+1 active transport. At lattice sites that belong to such an active
(b) compartment, particles attempt to hop to the adjacent lattice
D v D site to their right with a certain probability per unit time
I A R~ We denote this probability by since it is equal to the ve-
|pmi o | I | Pl Py locity of a particle in the active compartmednd in the
0 1 L L L absence of other particlgsmeasured in units of/7. The
1 . . . . . .
© Lo h_oppmg attempt is re_jected if the target 5|te_ is z_;\Iready occu-
v D v pied by anothgr partlc!e. In summary, motion in the a_ct|ve
P % I~ A compartment is described by a totally asymmetric simple
—— — . — exclusion process.
Poi & 00 ] ¢ IR In contrast, motion in the diffusive compartments is de-
0 1 L L L+1 scribed by a symmetric exclusion process. A particle at a
@ L2 lattice site which belongs to a diffusive compartment at-

tempts to make a forward and a backward step with equal
probability D, which corresponds to the diffusion coefficient
. measured in units of?/ . Note that we could eliminate one

FIG. 1. (a)—«(d) Four geometries A-D of one-dimensional lattices
which consist of active compartmen(@ray) where transport is de-

compa_rtmentsﬁwhﬂe) Where transport is described by a symmetric diffusive steps of sizef by choosing=¢/(2D) (for this
exclusion process. The linear extensions of the compartments ar

denoted by 4, L, andLs. The total length of the system is given by c‘?‘nowe, the _dlfoSlon coefﬂmen; meas_ured in unitséf
L=L,+L, in cases Aand B and by=L,+L,+L5 in cases C and D. Wo_uld be given l:_)yD:1/2). Thls |m_pI|es that the results
In the active compartments, motion is completely biased and pat/hich we derive in the following will depend only on the
ticles hop to the right with probability, while in the diffusive  fatio v/D. All hopping attempts in the diffusive compart-
compartments, particles hop both to the left and to the right withments are again rejected if the target site is occupied by
probability D. In addition, we do not allow particles to enter the another particle. In order to simplify the following calcula-
active compartments from the right. The densities at the boundar$ions, we do not allow particles to enter the active compart-
sitesx=0 andx=L+1 are fixed top;, and pe,, respectively. ments from the right, i.e., all hopping attempts from the first
site of a diffusive compartment to the last site of the active
1in Sec. IV. This case corresponds to a defect that must bePMpartment to its right—frorh, +1 toL, in cases B and D
overcome by unbiased diffusion. and fromL,;+L,+1 toL;+L, in case C—are rejected.
Finally, the densities at the boundary sitesO andx=L

+1 have the fixed values
Il. THE MODEL

In the following, we will discuss transport on one-
dimensional lattices. The coordinate along the lattice is de- p(x=0)=p;; and p(x=L+1)=pe. (1)
noted byx and will be measured in units of the lattice con-
stant¢.

We consider Systems that can be decomposed into two a}hese sites are taken to have the same dynamiCS as the ad-
three different compartments in which transport is either difjacent compartments of the system. Particles thus attempt to
fusive or directed. The four cases that will be discussed irgnter the system from the left with probabiliyp;, if the
the following are shown schematically in Fig. 1. The total first compartment is diffusive and with probability, if it is
length of the system is taken to hein all cases. The linear an active compartment. Particles at the last lattice site with
extensions of the compartments are denoted pyL,, and X=L leave the system to the right with probability(1
L, compare Fig. 1. In case A, the system consists of a left pex) if the sitex=L belongs to an active compartment and
compartment with &£x<L,, where transport is diffusive, with probability D(1-pe,) if it belongs to a diffusive one. In
and a right compartment with;+1<x<L;+L,=L, where the latter case, particles also try to enter the system from the
transport is active or directed. In case B, transport is directedght atx=L with probability Dpe,. Likewise, particles at site
in the left compartment and diffusive in the right compart-x=1 can leave the system with probabilB(1-p;,) if x=1
ment. The cases C and D correspond to situations where theelongs to a diffusive compartment. As before, particles can
systems consist of three compartments withL,+L,+L3.  only enter the system at=1 or x=L if these sites are not
In case C, transport is driven in the middle compartment withoccupied.
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1 ' ‘ ‘ A. Diffusive injection of particles

First we consider case A, a system with only diffusive
HD injection of particles. Particles leave the system at the right
boundary with rate/(1-pe,) and no particles enter the sys-
tem at the right end. In the stationary state, the curdentist

be the same in both compartments. In the left compartment
with 1=x=<VL,; where transport is diffusive, the density is
then given byp(x)=p;,—xJ/D. Within the mean field ap-
proximation, the right compartment with, +1<x=<L cor-

|

|

|

Lb i mc responds to the usual ASEP with the effective left boundary

! density

|

: Dp(L;) Dpi, LyJ

%0 05 1 Pine= — o =~ = == (2
1% 1% 1%

pin
i o _as follows fromvp, = Dp(L1). The quantityv py, ¢ corre-
FIG. 2. P'hase dlagram of Fhe usua_l asymmedric simple eXCIUS'Qg onds to the rate with which particles attempt to enter the
D i toecribes & smole active compartmen, as & FNCUSEP at its left boundary. Note the this effective bound-
Pex ary density depends on the currehéind (ii) pj, e Can be
[l. DIFFUSIVE INJECTION AND EXTRACTION OF larger than 1. The right boundary density is givendy.
PARTICLES The phase diagram can now be determined in a self-
In this section, we consider the cases A—C, where transQOnSiStent way. As in the tube system studied in F.the

port is driven or active in one compartment, but particles aredme phases are found as for the one-dimensional ASEP, but

diffusively injected and/or extracted from the system andthe location of the transition lines depends on the values of

have to diffuse over a certain distance before they reach th&€ model parameters/D andL,, and the maximal current
active compartment and/or before they can leave the systeRpase may be shifted out of the physically accessible range
at the right end. of the parameters.

As mentioned before, the active compartment is described The system is in the maximal current phasedf<1/2
by an asymmetric simple exclusion process. Let us thereforand pin er=>1/2. In this case the current &=v/4, and the
briefly summarize what is known about the phase diagram ofondition
this processgsee, e.g., Ref6]). In an open system, where the
densities are fixed tp;, and pe, at the left and right bound- Pin eft = D . L = 1 (3)

. ! . . in, eff Pin
aries of the ASEP, respectively, the stationary state is deter- v 4 2
g;:;f:ct2¥i;2§ E;L:Egagﬁlfzgﬂgg'a-[]gethséag& rt]i%rgaf;aéii ariﬁwplies that the system is in the maximal current phase for
rentJ. v L,

For the ASEP with open boundaries, three different Pin = 5(1 +E> (4)
phases can be distinguished as shown in Fig. 2. If the density
at the left boundary is relatively small and satisfigs<1/2  For largev/D, the latter value of the left boundary density is
and p;, < 1-pe,, the system is in the low densitiD) phase larger than 1 and therefore not physically accessible. This
for which the bulk density is equal to the left boundary den-implies that a maximal current phase is present only for
sity and the current id=vp;,(1-p;,). If the density at the small velocities withv/D <2/(1+L4/2). If the velocity were
right boundary is relatively large withe,>1/2 andpe,>1  larger, unphysically high densities would be necessary at the
- pin, the system is in the high densitfiD) phase, the bulk left boundary in order to establish a sufficiently large density
density is equal to the right boundary density, and the currergradient which could generate a diffusive current with the
is J=vpey(1—pey- At the transition from the low density to valuev/4, the maximal current defined by the driven com-
the high density phase, the current is continuous, but the bulgartment. In this situation, the diffusive compartments acts as
density is discontinuous. Finally, fer,>1/2 andps,<1/2, a diffusive bottleneck: If the maximally possible diffusive
the system is in the maximal currefMC) phase, where the current through the diffusive compartment is smaller than
current is maximalJ=v/4, and the bulk density is 1/2. The v/4, a maximal current phase cannot occur, because the dif-
transitions to the maximal current phase are continuous. fusive compartment cannot maintain the maximal current.

In contrast to the simple ASEPs just described, our sys- A simpler estimate comparing the maximal diffusive cur-
tems are characterized by the property that at least one of thientD/L,, which is restricted by the maximal density differ-
boundary densities of the active compartments is not fixedence of 1, with the maximal driven current4 yields the
but adjusted by the dynamics of the system. In the followingconditionv/D <4/L,, which agrees with the previous one
we will determine the phase diagrams of these systems usirfgr large L;, but is less restrictive for small;. The latter
a mean field approach. We proceed in three steps and codiscrepancy reflects the fact that the maximal density differ-
sider first diffusive injection and extraction of particles sepa-ence in the diffusive compartment is actually smaller than 1
rately, combining them in the last step. since the density at=L, must be larger than zero.
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HD
HD

FIG. 3. Phase diagrams for the
ASEP with diffusive injection of
particles at the left boundary, i.e.,

Sost b—— e § 05 | ] for case A as shown in Fig. 1, as a
a . .
function of the left and right
LD : boundary densitiesp;, and pey.
I LD The parameters ar@) v=0.1, D
| =1/2, andL,=10; and(b) v=0.2,
| Mc D=1/2, andL,=10.
0 " I o 1
0 0.5 1 0 0.5 1
@ Pin (b) Pin

In addition, a low density phase is found faf .<<1/2 L, before they can leave the system at the right end. This
and pi,e<1—pex and a high density phase fgr, +>1  case can be treated in the same way as the one with diffusive
—pex @Nd p,>1/2. Along the transition line between the injection. Note, however, that it cannot simply be derived
high density and low density phases we can disep,(1  from the the latter using particle-hole symmetry, because a

- pey) and obtain particle at the site left of the driven compartment attempts to
enter it with rateD, while a hole at the site right of the driven
_v 2 compartment does so with rate
n=—[1+(Ly— Dpex—L 5
Pin D[ (b1~ Dpex= Laped © The density profile in the diffusive compartment is given

by p(X)=pex+(L+1-x)3/D for L;+1sx<L;+L,=L.

for the transition line between the low density and the hlghTherefore the effective rate with which particles attempt to

density phases. This line extends from the right upper corer " the active compartment gL is v(1—pa—L,J/D)

of the phase diagram to the right upper corner of the maxi- . . .
mal cuprrent phage region. If ?herepiF; no maximal currentEU(l._pere“) corlrespondmg to an effectlve right boundary
phase, it ends at a point with,=1 andpg,>1/2. density of the driven compartment given by

Phase diagrams for two cases are shown in Fig. 3. We Pex et = Pex+ LoJ/D. (8)
have chosemh;=10 andD=1/2 inboth cases. The condition ) ' .
for the presence of a maximal current phase is therl/6.  The maximal current phase is now found fg¢>1/2 and

In Fig. 3(a), the velocity isv=0.1<1/6 and all three phases 1 Lo
are present, while in Fig.(B), v=0.2>1/6 and the maximal Pox < = — -z (9)
current phase is absent. In the latter case the largest part of 2 4D

the phase diagram is covered by the low density phase. \yhich is always<1/2. Again the maximal current phase is
_In the maximal current phase the curreniisv/4. Inthe  present only if the range of boundary densities defined by
high density phase, it is determined by the right boundary=q_ (9) is physically accessible. Here the corresponding con-
density pey and has the valué=vpe,(1-pey. Finally, in the gjtion is p,, >0, which is valid foru/D<2/L,. The latter
low density phase, the current is given by the self-condition expresses again the fact that the diffusive compart-
consistency condition ment must also support this maximal current. The diffusive
- current is, however, restricted by the maximally possible
I=0Pin (DL = pinerl(I)], ©®  Value of the density gradient in thgrigauﬁffusive) coymgart-
which leads to a quadratic equation for the current. The soment, 1{2L,), which leads to a maximal diffusive current of
lution is uniquely determined by the limit$=0 for p;,=0 D/(2L,). If the latter current is smaller than'4, a stationary

andJ=v/4 for pj,=(v/2D)(1+L,/2) and is given by maximal current phase is absent; therefore, the presence of
the maximal current phase requires that the maximal diffu-
J= L{_ 1-L,+ ZELlp- sive current is =v/4 which leads to the condition
212 v " vID<2/L,.
5 75 5 The condition 1 pey ef= pin With J=vp;n(1—pjn) yields the
+ \/(1 +ly - Z_Llpin> + 4—L§Pin(1 - _Pin> _ transition line between the low density and the high density
v v v phases:
(7) v v,
Pex=1 _Pin(l + BLZ) + BLZPin- (10

B. Diffusive extraction of particles For velocities larger thanl2/L,, which is the maximal value

Next we consider case B, in which particles that reach thdor the occurrence of a maximal current phase, this line ends
end of the active compartment have to diffuse over a distancat a point in the phase diagram with,=0 andpe,<1/2. In
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this case the high density phase covers most of the phase 1
diagram.
The current isJ=v/4 in the maximal current phase and HD

J=vpin(1-p;iy) in the low density phase. In the high density
phase, it is again given by a self-consistency condition
=UPex el 1 —Pexefs WhETre pey o i @ function of J, from
which we obtain Lost

U U
= -1+ —Ly(1-
J 2(L2v/D)2{ *plall=2e) b

2
+ \/1—2%L2+43L2pex+(3L2) ] (11)

D D

0 0.5 1
P
C. Both diffusive injection and extraction of particles "
Now we consider case C, i.e., we combine the two pre- FIG. 4. Phase diagram for the ASEP with diffusive injection and

. . . . - raction of particl i.e., for th hown in Fig. 1. Th
ceding cases. Transport is now driven in the middle compar extraction of particles, i.e., for the case C shown in Fig €

. . . arameters are=0.1,D=1/2, andL;=L5=6.
ment for which we have the effective boundary densities P 1=

Dpi,  LyJ active compartments in Fig. 5, where we have chosgn
Pineff= " — and peyeff=pext L3d/D. (12) =0 andpe,=0.5. In the first case, the system is in the low
density phase for all values qf,,; in the second case, a

The phase boundary between the low density phase and tf@nsition to the high density phase is founghgt=0.54. The
maximal current phase is not affected by adding anothemean field resultglines) and the simulation datesymbol9
compartment at the right end; thus we can use the result frordgree well.
case A. Likewise the phase boundary between the high den- If @ maximal current phase is present, i.e., for small ve-
sity phase and the maximal current phase is unaffected by tHecities, the agreement is less good, although the phase dia-
left diffusive compartment, so that we can use the result frongram is still in qualitative agreement with the mean field
case B upon substituting, with Ls. The maximal current predictions. Figure 6 shows again results for the case

phase is therefore found for =0. Close to the transition to the maximal current phase the
current is smaller than predicted by the mean field calcula-
v, b 1 Lyw tion. Therefore the transition to the maximal current phase is
Pin > 1+ and peyx < . (13 . .
2D 2 2 4D shifted toward a larger value @i, and the increase of the

bulk density near the transition is less steep. Far from the
transition, however, agreement is again good. Likewise, the
transition line between the low density and the high density

It is present ifu/D<2/(1+L,/2) andv/D<2/Ls. In addi-
tion, the current is given by Eq$7) and (11) in the low
density and the high density phases, respectively.
Finally, the transition line between these two phases is 1 .
obtained from the conditiopy, =1 —pex e Which leads to

Ipe
pm=§[1—pex+ (i*)(Ll—gLsﬂ, (14)

=3

right boundary density., as given by Eq(11). The com- S 05+
plete phase diagram is shown in Fig. 4, where we have cho-
sen parameters for which a maximal current phase is present.

U

|

|

|

|

i

|

whereJ(pg,) is the current in the high density phase for the |
|

|

|

|

|

|

|

:

D. Comparison with simulations i
|

In addition to the self-consistency calculations presented oy
above, we performed Monte Carlo simulations. In this sec- 0 5 - 0'5 . ]
tion, we compare the simulation results with the mean field p

in

predictions for case C.
~ In the case where the maximal current phase is absent, g 5. Bulk densitypd in the active compartment of a system
i.e., for large velocities, we find quantitative agreement ofyiih geometry C as a function of the left boundary density

the measured current and bulk density with the predictions ofines are the mean field results and symbols are simulation data.
the mean field calculation. The transition from the low den-The right boundary density is fixed te,,=0 (solid line) and pey

sity to the high density phase occurs at the predicted density:0.5 (dashed ling Parameters have been chosen so that no maxi-
As an example, we show results for the bulk denﬁﬁjn the  mal current phase is found=1,D=1/2,L;=L3;=6, andL,=388.
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0.6 ' MC, respectively. If the densities are not equal, we hadre
:1—pg, and there are two additional possible phases, where
—————— one compartment is in the high density and the other in the
P, low density phase. These phases will be denoted by HD-LD
and LD-HD if pi is larger or smaller thap3, respectively.

1 A. Phases with equal densities in the active
T A= —— 0= compartments

5 Jv In the MC-MC phasethe current isJ=v/4 and we have
e four conditions for the boundary densitieg;,>1/2,
Yl Pex<1/2, pinefr>1/2, andpey << 1/2. The first two condi-
tions are the same as for an ASEP without the diffusive com-
0 . | . partment and the latter two conditions yieldD <2/(1
0 0.5 1 +L,). The maximal current phase is found only for small
Pin velocities; for larger velocities in the active compartments,
FIG. 6. Current) (dashed lingand bulk density? (solid liney ~ the diffusive section acts again as a diffusive bottleneck.
in the active compartment of a system with geometry C as a func- 1he LD-LD phaseis characterized byl=vpis(1-pin)
tion of the left boundary density,, for a case with transition to the  =vpine(1 —piner)- AS both pi, and pj, ¢ must be smaller
maximal current phase. The lines are the predictions of the meathan 1/2, this impliepj, = pi, ¢f. TOgether with the condition
field calculation, the symbols simulation data. The parameters arpe,<<1-pj, ot fOr the right active compartment, this implies
v=0.1,D=1/2,L,=L3=6, L,=388, andpe,=0. that the LD-LD phase is found within the region of the phase
diagram where the low density phase of the usual ASEP is
phases is also shifted toward larggy, as this transition line located. An additional condition is given byey er=p(L1
ends on the phase boundary of the maximal current phasé.l) <1-pj,. Thus, with the condition;,=pj, e, We obtain
Agreement becomes again better far from the maximal curp(L;+1) as a function ofpy,,
rent phase, since the other end point of the lipg=0,pey

=1) is exact. p(Li+1)= %[pm + (L2~ Dpin(1 = pin)] 17

IV. DIFFUSIVE BOTTLENECK IN THE MIDDLE which leads to the inequality
. Finally, let us cpns@er case D, where active transport is —[pin+ (Lo = Dpin(1 = pi)] + pin < 1. (18)
interrupted by a diffusive compartment. In the case of mo- D

lecular motors, this_ can b(_e realized by a gap in the ﬁlamenéecausepm<1/2, the left hand side of this inequality is
network, along which active transport takes place. MOtorﬁncreasing monotonically and the solution is given by

thgfc’ getve tcf).loverc?me dth's %ap b}{/hdl.ffus?n before theyt Cal?)in< pins» Wherep;, « is the solution of the equation which is
trﬁ n 'd(zila ramen tan tcon mget e]:r acl lve mol\/t?[tmen S'.t obtained upon substituting<” with “=" in Eq. (18). This
€ middle compartment consists of only oné fatlice Sitegq g jg uniquely determined by the limiting cdsg=1, in

L,=1, this system reduces to the case of an ASEP with : : i + :
single defect which has been discussed previo(ss#g Refs. ?:gi%ggﬁ%? yieldspyp <1/(1+v/D). As a result we obtain

[10,11).
The effective right boundary density for the left active p, < p;, .
compartment is

pexeri=p(Ly+1) (15 _ /D)Ly +1 ~\[(/D)Ly + 1P~ 4w/D) (L~ 1)

and the effective left boundary density for the right active 2v/D) (L2 ~1)

compartment is (19
Dp(L;+L,) Dp(Ly+1)—(L,—1)J If pin+ is larger than 1/2, this condition does not further
Pin,eff = = (16) restrict the occurrence of the LD-LD phase, since fgr

v v =1/2 thetransition to the maximal current phase takes place.

In this case, there are five possible phases. Because thedeed, pj,->1/2 implies the simpler condition
current is the same in both active compartments, the bulik/D <2/(L,+1), which is exactly the condition we derived
densities in the left and right compartmenp@,and pg, re- above as a condition for the presence of the MC-MC phase.
spectively, are either equal or related p§=1-p3. If the On the other hand, ip;,»<1/2, condition(18) yields a
bulk densities in both active compartments are equdl, restriction of the LD-LD phase to the region in the phase
:pg, there are three possibilities. Both compartments can bdiagram withp;, < p, ~. Therefore we conclude that for large
in the low density, high density, or maximal current phasevelocities with v/D>2/(L,+1), the transition to the
We denote these three cases by LD-LD, HD-HD, and MC-MC-MC phase ap;,=1/2 isreplaced by a transition to an-
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1 which increases linearlj6]. The same can be expected for
‘ our case with the exception of the regions close to the diffu-
0.8 - , sive compartment. This behavior has previously been ob-
] served in simulations for the case of an ASEP with a defect
06 | l[ : | [11] which correspond to our case with=1 and we find the
' J same behavior in Monte Carlo simulations for largignsee
a | ] Fig. 7).
04 r ! . Finally, let us consider the possibility ofldD-LD phase
‘ | 1 In this case the current i9=vpj, e(1—pinef) =UPex e 1
0.2 L ‘ 1 — pex.efd Which, together with the conditiong, .<<1/2 and
Pex.efi> 112, Implies pi, of=1—pexerr  Substituting the ex-
o | ‘ ‘ pression for the effective boundary densities, we obtain a
0 100 200 guadratic equation fop(L,+1) with the solution

X

p(L1+1) = pex =1~ pins (20
FIG. 7. Density profile for the LD-HD phase or coexistence of . .
the LD-LD and HD-HD phases for a system with a diffusive defectWith pin» @s given by Eq(19). ForL,=1 we recover again
[case D). As discussed in the text, the profile is essentially linearthe corresponding result for the ASEP with a defect.
rather than consisting of two plateaus. The parameters afe D
=1/2,L=205,L,=L3=101,L,=3, p;,=0.05, andpey,=0.95. C. Phase diagrams

We can now summarize the results into phase diagrams as
other phase agti,=pj,». The only possibility for this phase is shown in Fig. 8. There are two different cases. If
the HD-LD phase which will be discussed below. v/D<2/(1+L,), the phase diagram corresponds to the one

Finally, note that forL,=1 our result recovers the condi- of the ASEP without the diffusive compartmefgee Fig.
tion for the ASEP with a defeqtl1], where forv/D<1the  g(a)]. The bulk density is equal in both active compartments.
phase diagram is the same as without the defect, while quf’ on the other hand’ the Ve|ocity is |arger with
v/D>1 a phase dominated by the defect is found. v/D>2/(1+L,), the diffusive compartment acts as a bottle-

The HD-HD phasecan be treated in the same way andpeck and the phase diagram is modifjsée Fig. 80)]. We
gives corresponding results. A HD-HD phase can be founging the LD-LD phase fop;, < p;,~ and pi;,<1-pe, and the
for pex™>1-pi, and pe,>1/2 for small velocities which sat- Hp-HD phase forpe,™ pey+ and bex> 1-pin. FOT pin> pin«
isfy again the conditiorv/D <2/(L,+1), while for larger and pex< pey - the system exhibits the HD-LD phase. While
velocities an additional restricting condition is found, in the LD-LD and HD-HD phases the bulk densities in the
namely, pex™ pex,» With pey «=1—pj, «. active compartments and the current are determined by the
boundary densities, these quantities are independent of the
boundary densities in the HD-LD phase and depend only on
the ratiov/D and the lengtlt, of the diffusive compartment.

For aLD-HD phase the current must bé=vp;,(1-pin) The HD-LD phase has some similarities to a maximal
Zvped1—pey- This implies that the densities apg=1—pe,, current phase. The current is constant throughout this phase
i.e., a stationary state with a low density in the left, but aand attains its maximal value compared to all other phases,
high density in the right active compartment can only beJ=vpjn «(1=pj,+) =vpex (1 —pex»). This maximal value,
expected along the line where the low density and high denhowever, is not determined by the active compartments, but
sity phases coexist in the ASEP without a diffusive compart-corresponds to the maximal current that can be supported by
ment. In this case, however, a domain wall diffuses througtihe diffusive compartment. Correspondingly, the density pro-
the system in the usual ASEP resulting in a density profildiles in the HD-LD phaséshown in Fig. 9 do not exhibit the

B. Phases with different densities in the active compartments

1 T 1

HD-HD | | T T T T TTTTTTT Pex FIG. 8. Phase diagrams for
case D, i.e., for a diffusive com-
partment between two active com-
partments, as a function of the left

|
1
[
i
05 T — &£05 | HD-LD y and right boundary densities;,
[ 3 ! and pey.. (@) Small velocity, v
LD-LD I g ! =0.1 and(b) large velocity,v=1.
|  MC-MC [ The diffusive section has length
: i L,=3 and the diffusion coefficient
! isD=1/2.
. | . | .
0 0 0.5 1 0 0 Pin,» 0.5 1
(@ Pin {b) Pin
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1 ' compartments to be approached exponentially from the left
and right boundaries, respectively. This is the case in the
0.8 - _ simulation data; however, in addition, an excess density
7 , I close to the diffusive compartment is observed, which is not

06 ST | expected from the mean field approaciee Fig. 9. As re-

ported previously for the case of an ASEP with a single

e defect site[10], this excess density decays as a power law
04 | ] ~x71, so that some kind of long-range order is also present in
s this phase which plays the role of a maximal current phase
0.2 L ‘ for the system with a diffusive bottleneck.
0 . ‘ V. SUMMARY AND CONCLUSIONS
0 100 200

X We have discussed transport in one-dimensional lattices
which consist of two or three compartments where transport
FIG. 9. Density profile for the HD-LD phase in case D with is either driven or diffusive, a situation that is inspired by the
pin=0.5, pex=0, v=0.25, andD=1/2. Thegeometrical parameters motion of molecular motors which diffuse until they reach a
are as in Fig. 7. filament and then move along that filament in a directed
manner[9]. Mutual exclusion from lattice sites is important,
power-law behavior known from the usual maximal currentas many particles can be injected into the system from res-
phase. The bulk densities in the left and right active compartervoirs of fixed density at both ends. This is again realistic
ments are constant in this phase as well and are given bigr molecular motors, which are strongly attracted by the
Pex.» andpy, +, respectively. Note, however, the following dif- filaments, so that the density of motors along the filaments
ference compared to the usual maximal current phase. Thean become large, even if the motor concentration in solution
transitions to the maximal current phase in the usual ASERs relatively small. Traffic in the compartments where trans-
are continuous. The transitions to the HD-LD phase in oumport is active or driven is described by an asymmetric simple
case are somewhat peculiar in the sense that they are coexclusion process.
tinuous in one compartment, but discontinuous in the other. We have studied four different geometries. In the cases
For example, at the transition from the LD-LD phase to theA—C, particles are injected into an active compartment
HD-LD phase, the density} in the right active compartment and/or extracted from it via diffusive compartments. In case
is continuous, but the bulk densin? in the left active com- D, active transport is interrupted by a diffusive compartment
partment exhibits a jump fromy, « to0 1—pj, «. in the middle. The latter case is a generalization of the ASEP
We performed again Monte Carlo simulations and com-with a point defect.
pared the results with the mean field predictions. As a result, In all cases, the diffusive compartments can act as diffu-
we find that the phase diagram obtained by the selfsive bottlenecks. If the velocity of the particles in the driven
consistent mean field approach is recovered for small velocieompartment is sufficiently small, the phase diagram is es-
ties. For large velocities, on the other hand, the qualitativesentially the same as for the usual one-dimensional ASEP. In
behavior is correctly predicted by the mean field calculationthe cases A—C, the locations of the transition lines depend on
but the transition lines for the transition to the HD-LD phasethe model parameters. For large velocities, on the other hand,
are shifted. For example far=1, D=1/2, andL,=3, we transport through the lattice is limited by the diffusive com-
find the transition from the LD-LD phase to the HD-LD partments which cannot support arbitrarily large currents. In
phase afp;,=0.08 in the simulations, while our mean field the cases A-C, this situation implies the absence of the maxi-
calculation predicts a transition a,=p;,»=0.13. Corre- mal current phase.
spondingly, there are also differences in the values for the In contrast, in case D, this leads to a peculiar new phase,
current in the HD-LD phase and the critical value of thethe HD-LD phase, where the density is high in the left but
velocity is found to be smaller than predicted by the mearlow in the right active compartment. As in a maximal current
field calculation. Fot.,=3 andD=1/2, weobserve the usual phase, the current is constant in the HD-LD phase and has
maximal current phase far<0.15 in the simulations while the maximal possible value. In contrast to the usual maximal
the mean field approach yields<0.25. current phase, this value of the currrent is determined by the
Finally, let us add a remark concerning the density pro-diffusive compartment, and the transitions to the HD-LD
files in the HD-LD phase. From our mean field approach, wephase are continuous in one, but discontinuous in the other
expect the constant bulk densities in the left and right activeactive compartment.
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