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Active Diffusion of Motor Particles
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The movement of motor particles consisting of one or several molecular motors bound to a cargo
particle is studied theoretically. The particles move on patterns of immobilized filaments. Several patterns
are described for which the motor particles undergo nondirected but enhanced diffusion. Depending on the
walking distance of the particles and the mesh size of the patterns, the active diffusion coefficient exhibits
three different regimes. For micrometer-sized motor particles in water, e.g., this diffusion coefficient can
be enhanced by 2 orders of magnitude.
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FIG. 1. Lattice model for the active motor movements along
filaments. Motors make forward and backward steps along the
filament with probabilities � and �, respectively, and no step
with probability �. Unbinding from the filament occurs with
probability �0 � nad�=6, where nad is the number of nonfilament
neighbor sites, and a motor reaching the filament binds to it with
sticking probability �ad.
Introduction.—Biological motor molecules such as the
cytoskeletal motors kinesin and myosin, which convert the
chemical free energy released from the hydrolysis of ad-
enosine triphosphate (ATP) into directed movements along
cytoskeletal filaments, represent powerful nanomachines.
It seems rather promising to construct artificial biomimetic
devices based on these molecular motors and to use them,
e.g., for the transport of cargo particles in the nanometer
and micrometer regimes [1,2]. These approaches are based
on two different in vitro motility assays: the gliding assay,
for which molecular motors are anchored at a substrate
surface and drag filaments along this surface, and the bead
assay, for which the filaments are immobilized on the
surface and the motors pull beads or cargo along these
filaments [3].

In order to obtain spatial control of the movements,
motor molecules or filaments can be bound to the substrate
surface in well-defined patterns by controlling the surface
topography and/or chemistry. Examples are motor-covered
surface channels or grooves which guide the gliding fila-
ments, chemical patterning of a surface to bind filaments or
motors selectively, and combinations of topographic and
chemical patterning; see, e.g., [4–10]. In this way, one can
create ‘‘active stripes’’ along which the active transport
takes place. The directionality of these stripes can be
controlled in a rather direct way for systems based on the
bead assay, since unidirectional movement of motors can
be realized by aligning filaments in parallel with the same
orientation [9,10]. In gliding assays, movement of fila-
ments usually occurs randomly in both directions, but
unidirectional movements can be obtained by constructing
special surface domain patterns [7].

Usually, molecular motors undergo directed movements
which can be used for transport over large distances.
However, the active motion of molecular motors can also
be used to generate effectively diffusive movements by
sequences of active directed movements into random di-
rections. We will call these ATP-dependent and thus
energy-consuming, but effectively nondirected, move-
ments active diffusion. It should be useful under conditions
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where simple diffusion is slow, i.e., for large cargoes or
high viscosity of the fluid. Active diffusion is also present
in vivo, where various motor-driven cargoes such as
vesicles, messenger RNA, and viruses exhibit active
back-and-forth movements [11].

In the following, we will discuss active diffusion in
several simple systems which can be realized experimen-
tally. We present results for several cases where patterns of
active stripes have been created on a surface by immobi-
lizing cytoskeletal filaments in certain well-defined pat-
terns, so that they constitute a system of tracks for the
active movements of particles coated with molecular mo-
tors. Even though we focus on these latter systems derived
from bead assays with mobile motors, our arguments can
be easily extended to mobile filaments gliding in motor-
covered surface grooves.

Model.—In order to study the effective diffusion arising
from active motion along patterns of filaments, we describe
these movements as random walks on a lattice [12,13]. We
consider a cubic lattice with lattice constant ‘ on which
certain lines of lattice sites represent the filaments or active
stripes. If a motor-driven particle occupies such a lattice
site, it makes a forward step (along the orientation of the
filament), a backward step, and no step with probabilities
�, �, and � per time unit �, respectively; see Fig. 1. In
addition, it may escape to each of the nad adjacent nonfila-
ment sites with probability �=6 (nad � 3 and 4 for a
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filament at a wall and in solution, respectively). An un-
bound particle, i.e., a particle at a nonfilament site, per-
forms a symmetric random walk and steps to each neighbor
site with probability 1=6 per time �. An unbound motor
reaching a filament site binds to it with probability �ad.
The parameters of the random walks can be adapted to the
measured transport properties [12]. Confining surfaces are
implemented by rejecting all stepping attempts to lattice
sites of the surfaces.

For the simulations, we chose the basic length scale to be
‘ � 50 nm and the basic time scale to be � � 25 ms.
These values result in a diffusion coefficient Dub �
10�1 �m2=s, as appropriate for a micrometer-sized parti-
cle in water. We take � � 0:5, � � 0, and �ad � 1, cor-
responding to a velocity vb ’ 1 �m=s and a binding rate in
the order of 100 s�1 for motors within a capture range of
50 nm from the filament.

Active diffusion in 1D.—In order to discuss the simplest
case of active diffusion, let us consider two parallel fila-
ments with opposite polarity. We denote the coordinate
axis parallel to the filaments by x and take the filaments to
be sufficiently long, so that the filament ends are not
reached within the observation time. The filaments are
placed within a long and thin tube or channel with a
rectangular cross section (with width L and height H), so
that unbound motors cannot escape but rebind with a finite
mean return time, a situation that mimics the axon of a
nerve cell.

We have studied this case using an analytical Fourier-
Laplace technique as in Ref. [13] and computer simula-
tions. Some results are shown in Fig. 2. Because of the
antiparallel orientation of the filaments, no net movement
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FIG. 2. Active diffusion in a tube with two antiparallel fila-
ments (double-logarithmic plot): The variance �x2 of the parti-
cle position as a function of time t for motor-driven particles
with unbinding probabilities � � 0:01 (solid line), 10�3 (dashed
line), and 10�4 (dotted line) and other parameters as described in
the text. The thin dashed line indicates unbound diffusion which
is much smaller than active diffusion. Here and in the following
figures, lengths and times are expressed in units of ‘ and �,
respectively.
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is obtained in such a system, and the effective velocity is
zero on large scales. The effective diffusion coefficient
D � limt!1�x2�t�=2t, defined via the long-time behavior
of the positional variance �x2 � hx2i � hxi2, is found to be
given by

D � �D�DactPb; (1)

where the first term is the weighted average of the bound
and unbound diffusion coefficient �D � DbPb �Dub�1�
Pb�, with the probability Pb � 1=�1� ��=�ad�LH=‘2	
that the motor is bound to the filament at large times.
The contribution of the bound diffusion coefficient is usu-
ally small, so that �D ’ Dub�1� Pb�. The second term
describes active diffusion, i.e., additional spreading of a
distribution of many motors due to the active directed
movements into both directions with

Dact �
3v2

b

2�
: (2)

The latter contribution can be written as Dact �
1
2 


hL2
si=�tb � �xbvb with the average walking time �tb �

3=�2��, the average walking distance �xb � vb�tb, and
the mean square of the distance Ls traveled actively before
a change of direction via unbinding, as obtained from the
distribution P�Ls� � �1=2�xb�e

�jLsj=�xb of the walking
distances.

This contribution is present even if the diffusive mo-
tion of unbound motors is strongly suppressed, e.g., be-
cause of their large cargoes or because of a high viscosity
of the fluid. In cells, this should apply to the movements
of large organelles such as mitochondria (where, however,
the switching of direction is accomplished via different
types of motors rather than via the orientation of the fila-
ments) [11].

Active diffusion as given by �x2 � 2Dt is valid at large
times with t� t � 2D=v2

b ’ 3Pb=�; see Fig. 2. Note that
the larger the active diffusion coefficient, the larger is also
the crossover time t and, thus, the time necessary to
observe the active diffusion.

An enhancement of diffusion occurs also in rather differ-
ent contexts such as electrophoresis, chromatographic col-
umns, and diffusion in hydrodynamic flow, which can also
be described by multistate random walk models [14,15]. In
all of these cases, however, the directed motion arises from
externally applied fields rather than from the active move-
ments of the motor particles.

Arrays of filaments on a surface.—Let us now consider
filaments which are immobilized on patterned surfaces
with two-dimensional arrays of stripes. We consider four
systems as shown in Fig. 3: (A1) and (A2) consist of arrays
of parallel stripes, whereas (B1) and (B2) correspond to
intersecting stripes which form a two-dimensional square
lattice with lattice constant L. The stripes have a width W;
in our simulations, we used W � ‘. In both cases, we
studied two situations: (i) Each stripe contains filaments
with both possible orientations as in (A1) and (B1), and
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FIG. 3. Substrate surfaces with active stripes which consist of
filaments immobilized onto striped surface domains: For the
system architectures (A1) and (B1), all stripes contain filaments
with both orientations; for (A2) and (B2), the filaments within
one stripe have the same orientation, but filaments on neighbor-
ing stripes have opposite orientation.
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motor particles which bind to a stripe can start to move in
either direction (which is chosen randomly in the simula-
tions); and (ii) neighboring stripes are covered by filaments
with opposite orientation as in (A2) and (B2). Note that all
patterns have no directional bias on large scales.

The motors can change their direction of movement via
unbinding and rebinding to another filament. In the stripe
lattices, they can also change direction at the vertices by
switching to another filament, which is chosen randomly.
Finally, we take the diffusion in the direction perpendicular
to the surface to be restricted to a slab of heightH. To study
the active diffusion for this case, we determined the diffu-
sion coefficient by extensive Monte Carlo simulations for
motor-driven active particles of micrometer size and for a
wide range of the unbinding rate � and the stripe separation
L as shown in Fig. 4.

Arrangements of filaments of this type are accessible to
experiments and can be created using structured surfaces as
FIG. 4. (a) Effective diffusion coefficients Dk (circles) and D?
(triangles) as functions of the stripe separation L. The open and
solid symbols correspond to the two system architectures (A1)
and (A2), respectively; compare Fig. 3. The solid lines indicate
the analytical result for (A1). (b) Effective diffusion coefficient
D as a function of the unbinding probability �. D exhibits three
regimes I–III as discussed in the text. The open and solid
symbols correspond to the two system architectures (B1) and
(B2), respectively, as in Fig. 3. The parameters are as described
in the text; we used � � 0:0025, H � 100‘ in (a) and L � H �
100‘ in (b).
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described above. Lattice patterns of filaments can also be
formed by the self-organization of filaments and motor
complexes [16] or by the assembly of cross-linked net-
works on micropillars [17].

Parallel active stripes.—Arrays of parallel active stripes
which contain filaments with both orientations (A1) exhibit
active diffusion very similar to the one-dimensional case
discussed above. However, in this case, the effective dif-
fusion coefficient depends on the spatial direction. While
the effective diffusion is described by Eq. (1) in the direc-
tion parallel to the stripes, which leads to the parallel
diffusion coefficient Dk � �D�DactPb, the diffusion per-
pendicular to the stripes is characterized by D? �
Dub�1� Pb�; see Fig. 4(a). The latter expression is also
valid if the directionality of the stripes alternates (A2),
where the unbound motors return predominantly to the
same stripe which leads to a higher value of Dk as shown
in Fig. 4(a).

Regular lattices of active stripes.—In the system archi-
tectures (B1) and (B2), the motor-driven active particles
can perform two-dimensional random walks on the stripe
lattice even if they remain bound to the filaments. In
addition, effectively diffusive behavior can arise from the
repeated unbinding from and binding to a filament. Let us
consider case (B1). The diffusion coefficient is given by
D�DactPb�Dub�1�Pb�, with Pb�1=�1���=�ad�LH=
�2W‘�	 for the stripe lattice. Depending on the processivity
of the active particles, i.e., on the value of the unbinding
rate, there are three regimes:

(I) If the unbinding rate is small, so that the walking
distance is large compared to the pattern mesh size, �xb �
2vb=�� L, the particle performs a random walk along the
active stripe lattice and the diffusion coefficient is D �
D�� � 0� � 1

4vbL. This case should be appropriate for
cargo particles driven by many processive motors.

(II) If the average walking distance before unbinding is
smaller than the mesh size, �xb � 2vb=�� L as appro-
priate, e.g., for transport by single processive motors,
changes in direction of movement will be mainly through
unbinding and rebinding to another filament. In that case,
the distance traveled before a change of direction is given
by the walking distance �xb and, similar to the one-
dimensional case discussed before, the diffusion coeffi-
cient is D � 1

2 �xbvbPb [18].
(III) Finally, if motor particles spend most of the time

unbound, i.e., for large � as appropriate for weakly proc-
essive motors, the diffusion coefficient is simply given by
the unbound Brownian motion, D � Dub.

The three regimes can be summarized in one formula by
usingDact � vbLs=4 and defining the interpolated distance
traveled between two changes of direction by Ls �
L2�xb=�L� 2�xb�, which leads to

D �
vb
2

L�xb
L� 2�xb

Pb �Dub�1� Pb�: (3)

The latter expression leads to the solid line in Fig. 4(b),
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which agrees well with the data points (open circles) from
our simulations.

The value of the active diffusion coefficient can be
further enhanced by controlling the orientation of the
filaments along the stripes, i.e., by using filament patterns
such as (B2), for which we obtain an active diffusion
coefficient twice as large as for case (B1). In regime I,
this factor is due to the fact that a fully random choice of
the new direction is completed after a walk over the
distance 2L. However, Eq. (3) with an additional factor
of 2 in the active diffusion term describes rather well our
simulation data also in regime II.

Discussion.—Finally, let us estimate the order of mag-
nitude of the active diffusion in systems that are ex-
perimentally accessible. Free diffusion in a Newtonian
fluid is governed by the Stokes-Einstein relation, from
which the diffusion coefficient is obtained as Dub ’

�100 nm=Rhyd� 
 2:4 �m2=s
 �water=�. In the latter ex-
pression, Rhyd is the effective hydrodynamic radius of the
particle and � the viscosity of the medium. For a
micrometer-sized particle in water, we have Dub �
0:1 �m2=s, for a 100 nm-sized particle Dub � 1 �m2=s.
(The diffusion coefficient of bound motors moving along
filaments is much smaller, typically of the order of Db �
vb‘� 0:01 �m2=s, with vb � 1 �m=s and ‘� 10 nm.)

The active diffusion coefficient, on the other hand, is of
the order of 1

4vbLsPb, with Ls given by the filament length
in regime I and by the walking distance in regime II. With a
typical filament length of a few tens of micrometers, this
means that active diffusion coefficients of the order of
10 �m2=s can be obtained for cargo particles driven by
many motors, for which regime I is appropriate. For
micrometer-sized particles, this is 2 orders of magnitude
larger than the diffusion coefficient of unbound Brownian
motion. For cargo particles driven by a single or a few
motors, regime II applies, and, for a typical unbinding rate
of 1=s, we obtain an active diffusion coefficient of
�1 �m2=s.

These estimates as well as our simulation data are for
diffusion in water. In a more viscous medium with viscos-
ity �> �water, diffusion is even more enhanced due to the
active processes, because active diffusion does not obey the
Einstein relation and is largely independent of � [19]: The
viscous force on a micrometer-sized bead moving with
1 �m=s is of the order of ��=�water 
 10�2 pN, which
is small compared to the piconewton forces required to
slow down the active movements of a single motor.
Unbound diffusion is, however, reduced by the factor
�water=�, so that the ratio D=Dub � � increases with in-
creasing viscosity �.

Active diffusion will, therefore, be useful for particles
which explore surface patterns with linear dimensions of
tens of micrometers or even millimeters, e.g., in order to
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find a specific binding partner or to deliver a cargo, in
particular if the surrounding fluid has a high viscosity. One
potential application is provided by the integration of these
biomimetic transport systems into labs-on-a-chip for ge-
nomics or proteomics.

In summary, we propose here to use chemically or
topographically patterned surfaces to create well-defined
arrangements of active stripes covered by filaments and to
use the random walks arising from the active movements of
motor-covered particles along these stripes to achieve fast
diffusion on the surface.
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