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Free fluid vesicles are not exactly spherical
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At finite temperature, vesicles perform small fluctuations around an average shape. In the limit of low
temperature or high bending rigidity, the fluctuations vanish and the vesicle approaches the energetically
favored configuration. In the absence of a volume constraint the configuration of lowest energy is a perfect
sphere. It is often assumed that the spherical shape is also the most probable shape for finite temperatures.
Consequently, a force would have to be applied to make the average shape of the vesicle anisotropic. In this
article it is shown that these assumptions are incorrect. At finite temperature, the most probable shapes of a
vesicle without volume constraint are prolate or oblate, where the probability for prolate shapes is slightly
larger. For larger deviations from the sphere the vesicle behaves as expected. The behavior at small deforma-
tions that is found for vesicles without volume constraint as well as in the presence of a finite osmotic pressure
is basically an entropic effect. It already occurs in a three-dimensional crossed dumbbells model system. In two
dimensions the same model favors the isotropic state.
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I. INTRODUCTION pipet[13,14]. For free vesiclex can be measured by pulling

Vesicles are closed membranes that can perform shaggthers out of the vesicle surfaf®5—17 or by doing Fourier
fluctuations on roughly all length scales between the mem@nalysis of shape fluctuatioi$8—21. For adhered vesicles

brane thickness and the vesicle diameter. In the simplest cageMethod for obtaining: by measuring the temperature de-
the bending energy of the vesicle can be writteriag] pendenc_e of fthe adheS|or_1 area has recently. been proposed
[5]. In this article we restrict ourselves to vesicles of genus

zero, which have the same topology as a sphere.

For vesicles with a fixed reduced volume, smaller than
) o ) that of a sphere, vesicle shapes are preferentially prolate or
where « denotes the bending rigidity anlll is the mean  gp|ate[22]. The vesicle can change from prolate to oblate via
curvature. The shapes of free and adhering vesicles thitiermediate biaxial configurations. In addition, it was also
minimize the free energyl) have been studied systemati- ghown that, in the spherical limit, nontrivial shape transfor-
cally [3,4]. These minimal free energy shapes do not includénations occur at constant elastic enefgg]. On the other
the effects of thermally excited fluctuations which arepang, previous studies on vesicles with free volume and large
present for any finite temperatufe>0. The influence of ¢n6ugh bending rigidity have tacitly assumed that the corre-
temperature on adhered vesicles has recently been studigfonding vesicle shapes oscillate around the spherical shape,
[5]. ) ) . which has the lowest potential energy. Therefore, the shape

With standard optical microscopy, only structures that argy g,ch vesicles is typically expanded in spherical harmonics
larger than about 0.am can be resolved. The shape analysisi4 24, |n contrast, we show in this article that such vesicles
of vesicles is therefore typically applied to the visible, s0-5re not preferentially spherical. Instead, prolate and oblate
called projected membrane surfe@7], which is an aver-  ghanes are preferred. This anisotropy is of entropic origin. A
aged, coarse-grained image of the true, microscopic vesiclgmijar effect of entropy-driven spontaneous anisotropy has
shapes. While the total microscopic surface area is approxiziso peen found for closed random walk polymers without
mately fixed, one finds a finite area fluctuation for the Pro-hending stiffnes§25].
jected surface. Further, the bending rigidiyin Eq. (1) de- In Sec. Il we define a measure for the deviation of a
pends on the length scale on which the integral is evaluateqyesicle’s shape from a sphere. Some simulation details for
Fluctuations of a planar membrane can be expanded in garforming Monte Carlo simulations in order to measure
Fourier series. In this case the average area fluctu@bn gch deformations are given in Sec. Ill; the results are pre-
and the renormalized bending rigiditg,9] can be calculated  gented in Sec. IV. Subsequently, a minimal model for this

exactly. system is introduced in Sec. V and compared with a similar
Several methods have been developed to measure thg el in two dimensiongSec. V).

bending rigidity of a vesicle. For a vesicle sucked into a
micropipet the bending rigidity can be determined from a Il. MEASURING THE DEVIATIONS FROM A SPHERE

comparison with m'”'”?'zed energy shapEéED—lZ or t?y In order to quantify the deviation of the vesicle from a
considering the fluctuations of the vesicle surface outside thgpherical shape, a suitable order parameter is needed. Aniso-
tropy of nonpolar media is typically measured by a second-
rank tensor. A good choice turns out to be the inertia tensor
*Electronic address: linke@mpikg-golm.mpg.de of the compartment of the vesicle,

Eo= ggﬁ (2M)%dA (1)
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. o 1 for oF/9d atd,=d. The free energ¥(d) is then obtained by
Iy = _f d3r(rirj -5 rkrk) with T; = Vf &*r'(ri=r{),  integration ofdF/4dd, where it is implicitly assumed th&(d)
v k v is smooth betweed,, and dp, 1.

(2 In our Monte Carlo simulations, the fluid vesicle is repre-
ented by a closed, dynamically triangulated surface with
00 vertices and edge lengths according to the tethered-

beads mod€l29-32. Three types of Monte Carlo moves are
applied:(i) independent moves of single vertices make 39%
h of the attempted movesj) bond flips[32] in which an edge
etween two triangles is relocated to connect the formerly
nconnected vertices of the two triangles make 59% of all
moves, and(iii) changes of the deformation parameter
within the intervald,-Ad<d=<d,+Ad are the remaining

which is almost constant with respect to small-wavelengt
fluctuations of the vesicle surface.

If the vesicle is approximately a sphere, the lowest defor
mation mode transforms this sphere into an ellipsoid.d.et
i=1,2,3, be theeigenvalues of the tensor of inertia wit
respect to the center of mass, which we order in such a wa
that e; and e, have the smallest difference, i.de;—¢,|
<|e—¢gj (i#]j). We then introduce the deformation param-

eter
2%.
e The bond flips ensure membrane fluidity. Moves of type
= 3 oy . . .
d=1- 2e1 te, () (iii ) distinctly improve the simulation performance. In moves

of type (iii ), the vesicle can be stretched or compressed with
as a measure for the anisotropy of the vesicle shape. In thespect to the center of mass and a principal axis of inertia,
case of an ellipsoid of revolution the eigenvectoregfis  which is chosen randomly with equal probability. Under this
parallel with the symmetry axis; the parameteranishes for  procedure the eigenvectors remain unchanged. Thus, only
a sphere and converges to +1 for the maximum prolate anthe detailed balance for stretching and compression parallel
to -1 for the maximum oblate configuration. Note that Oto the chosen principal axis of inertia must be ensured. Let
<e3<g +e, and thus -k d=1 by definition of the inertia  m andm’ denote the maximum distance of the vesicle sur-
tensor. face from the center in the direction of the chosen principal
axis of inertia before and after a trial transformation, and let
Ill. MONTE CARLO SIMULATIONS p(m —my) be the conditional probability density for accept-
ing this deformation. With a probabilitg(m’ |m;) for choos-
ing a stretching factom//m; (given m), detailed balance
demands

With the help of Monte Carlo simulations, we estimate the
probability distributionp(d) of the anisotropy of a vesicle at
finite temperaturel.* For a given value ofi we define the

restricted partition sum p(mi _ mi,) q(mir|m) ~ EX[{— E(el’)/T]

p(m/ — m) q(m|m/) ~ exd~ E(g)/T]’

(8)
Z(d) = f dr eXp<— @) 8d'(T') - d), (4)

With the probability density of the standard Metropolis algo-
where the integration takes place over the whole configurarithm [33]

tion space. With
1 . E(m) - E(m)
Zorar= f A\ Z(V), 5 p(mi*mi)‘m'”{l’e%‘ T )} ©
1

detailed balance is achievedjfm’ |m;)=qg(m;|n/). The sim-

and the restricted free ener¢g6] . .
plest choice for is

F(d)=-TIn Zz(d), (6)
the probability density(d) reads k] ifm-osm sm+35,
q(my|my) =4 26 (10
p() = XA FAT] @) 0 else,

Ztotal
with a maximal deviations> 0. Due to the elastic energy of

Previous algorithms were based on overlapping intervalﬁhe vesicle, configurations with negatisé do not occur. We

[27’2.8]' This algorithm turns out to be impractical _and €OM- |;sed5=0.03 which gives a sufficiently large acceptance rate
putationally too demanding for the systems concidered herﬁ/hen applied to the tethered-beads model

e e i o Hore Catl sieps ifses ol n general, h ot ener of a vesice i v by
y 9 pace. ' =E¢+Eysm WhereEg is the bending energy as given in Eq.

_oped a modified algorithm which _is based on n(_)noverla_ppinql) andEg, is the osmotic pressure contribution. The spon-
intervals. For each valud,, the size Ad of the interval is {aneous ((J:Sun;vature is taken to be zero '
a .

chosen in such a way that one can obtain a reliable estimale’ £, "o giscretized vesicle surface, an adequate discreti-
zation of the local mean curvature is require#,35. We

For simplicity, we set the Boltzmann constant to one. All simu- have applied a triangle-based calculation scheme as used by
lations were done af=1. Kumar et al. [36]
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FIG. 1. Generalized forc&(d)=—¢F/ad in units of the thermal
energyT for k=10T (+) and k=30T (X). The lines are guides to
the eye.

FIG. 2. Free energy(d) in units of the thermal energy for
k=10T (+) and k=30T (X). The lines are guides to the eye.

vanish with df/9d<0. Further, we havef(d=0)=0 with
The fluid inside and outside the vesicle may contain large?f/dd>0 (Fig. 1). This means, we have local minima in the
molecules or particles which cannot diffuse through thedssociated free energy dt=+0.1 and a local maximum at
vesicle membrane. In this case the vesicle is affected by afi=0 (Fig. 2). Thus, fluid vesicles tend to be either prolate or

osmotic pressure that leads to the osmotic free erfgrgy] ~ opPlate with deformation parametei~+0.1 rather than
spherical. Integration of the force shows that the minimum at

\Y d=0.1 is slightly deeper than that d&=-0.1 (Fig. 2), i.e.,
Eosm= CexT(V‘Vosm'” v) (1) the vesicles are preferentially prolate. This effect does not
0 depend on the number of vertices used in the triangulation as

wherec,, is the concentration of such molecules outside theshown in Fig. 3.
vesicle,V is the vesicle volumey, is some reference volume One should note that a prolate shape can be transformed
which depends on the number of degrees of freedom of theontinuously into an oblate one via biaxial shapes in such a
osmotically active particles, and,s, is the osmotically pre- way that no intermediate shape corresponds to a sphere. Dur-
ferred volume, defined a%,s,=N/c, Here,Nis the number ing this process, the asphericity paramat@hanges its sign
of osmotically active particles inside the vesicle. Typical ex-discontinuously as the order of eigenvaleeshanges. For
perimental osmolarities are so large that the vesicle volumexample, if we haves;=4, e,=5+¢, ande;=6 and varye

is almost constant. continuously around zero, then we observe a jumg from
-1 to 3 ate=0. Thus, the maximum d¥(d) atd=0 is not a
IV SIMULATION RESULTS barrier that the vesicle must overcome in order to change

from prolate to oblate.
The global elastic properties of vesicles depend sensi- _
tively on the bending rigidityc and the osmotic pressure that B. Nonzero osmotic pressure
acts on the vesicle. In the following the influence of the two In the presence of osmotically active particles the vesicle
parameters on the average vesicle deformatida studied is exposed to an osmotic pressure
separately. All energies are given in unitsTofhile lengths

are in units ofyA/4s whereA is the total area of the mem- 20

brane. 10

0

A. Zero osmotic pressure -10

For zero temperature, the vesicle surface that minimizes & -20

the elastic energy is a sphere. Since this minimal elastic en- -30

ergy is a smooth function of the deformatiak) it can be 40
expanded around=0 for a spherical shape giving a gener-

alized forcef(d)=-dE/dd~d for small values ofl. Usu- -50

ally, it is assumed that this relation holds also for finite tem- -60

perature.

The generalized force has been obtained in a sequence of
Monte Carlo simulations. Results are shown in Fig. 1. One
finds that in the range of 02|d|<0.5 the curves of(d) FIG. 3. Free energf(d) (with arbitrary offse} in units of the
are approximately proportional td, but for |[d|<0.2 the thermal energyr for different numbers of vertices=300(+), 400
forces show a surprising behavior. At=+0.1 the forces (X), and 500(x), k=15T. The lines are guides to the eye.
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FIG. 4. Free energy(d) in units of the thermal energy for FIG. 6. Free energy(d) in units of the thermal energy for
N=10000 andVygmw Vmax=0.8 (+), N=15000 andVsn/Vmax x=15T and different homogeneous fields 5T (+), 50T (X), and
=1.2 (X), N=30000 andVysp/Vimax=2.4 (*), Cex=3000, k=15T. 500T (). The lines are guides to the eye.

The lines are guides to the eye.

In summary, we have found that if a vesicle is exactly
spherical, it must be stabilized by a sufficiently strong os-
' (12) motic pressure. Otherwise the stable shape of a vesicle at

V,
Posm: CexT< =1
finite temperature is slightly prolate or oblate.

\Y,

which would vanish a¥V=V,s,,=N/c,. For a vesicle with a
surface aread=4xR? the volume cannot be larger than
=Vma= (47/3)R3, which corresponds to a spherical vesicle.  In many vesicle experiments the influence of the gravita-
For V e/ Vinax< 1 the osmotic pressure favors a nonsphericafional force cannot be neglected. Thus, it is of great interest
vesicle shape. FOV g™ Ve it favors shapes of low aniso- to study the influence of gravity on the asphericity of vesicle

tropy. If N is increased while/.., is kept constant, the av- shapes. _ _ _
erage vesicle volume approachés,, We have simulated a fluid vesicle on a hard wait z

In F|g 4, the restricted free energg/(d) is shown for :0) without the influence of osmotic effects but in a homo-

Vosm! Vinax=0.8, 1.2, and 2.4. FOV g/ Vinax=0.8 minima are  9eneous field_with an ass_ociated energy qontribuﬁg,rgvi
found atd= +0.5 (see Fig. 5 for typical conformationand ~ =9b, wherew is the potential strength artg} is the z coor-
for Vosm/ Vinax=2.4 there is one minimum at=0, as ex- dinate of the center of mass of the vesicle shell. The vesicle

pected from the considerations above. W/ Vinax=1.2, shell is assumed to have constant mass and spatial mass den-
however, minima are found alt=+0.05. Apparently, in this ~ Sity. For the small valug=>5T the total minimum ofF(d) is
case the entropy-induced asphericity is not compensated Bgcated atd=0.1, corresponding to a prolate vesi¢ieg. 6).

the bending rigidity and the osmotic pressure, which bothThis is in accordance with calculations by Kraessal. for
favord=0. reduced volumes af =0.8 in the stationary cag&8]. For a

strong fieldg=500T the free energy(d) has its minimum at
d=-0.5 so that the vesicles are preferentially ob(&ig. 6).

C. Gravity effects

V. CROSSED DUMBBELLS MODEL

The spontaneous asphericity of the vesicles appears to be
an entropic effect. This is tested by considering a rather
simple model system where all degrees of freedom of the
vesicle membrane are removed apart from the lowest fluc-
tuation mode in three dimensions. Let us consider six mass
points with equal masses located on the tHsErwise per-

\ pendiculay coordinate axes. The distancks of the mass

’ points from the origin are equal for the two points on each
axis (Fig. 7), and the six mass points form three crossed
dumbbells which have their centers of mass always at the
origin. The values of the distancés are independently dis-
tributed according to the same probability density function

FIG. 5. Typical conformations fai=-0.5(left) and 0.47(right)y ~ Wwith q(x)=0 for x<0. This functionq is chosen in such a
with N=10 000,c,,=3000, x=15T. way that it is centered around=1 with a half-width\.
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FIG. 7. crossed dumbbells model in three dimensions. Descrip- 0 by A 1 A -
tion in the text. 0.1 -0.05 0 0.05 0.1
d
With the definitiona; = L?, the inertia tensof of Eq. (2) FIG. 8. Probability density functiop for the deformation pa-
is given by rameterd as in Eq.(14).
+
4t a3 0 0 VI. DIFFERENT RESULTS IN TWO AND THREE
Z=| 0 ay+tag 0 | (13 DIMENSIONS
0 0 ata

. In the previous section spontaneous anisotropy is found in
Obviously, we havee —g|=|a—aj|. For symmetry reasons a simple three-dimensional model. The question is whether
we restrict ourselves to the case where & <a,<az. The  the same effect can also be obtained in two dimensions.

remaining cases are found by permutations, which gives an | et us consider a two-dimensional anal@gg. 9) to the
extra factor of 6 in the partition function. As shown in the minimized model in the previous section.

Appendix the probability density(d) is approximately In two dimensions, the ratio of the square roots of the two
given by eigenvaluesa? and b? of the inertia tensor characterizes the
1dl(3 - 2d) deformation state. In order to have a deformation meadure
(d) ~ pp———"— ford<\ (14)  Which does not depend on the order of the eigenvalues we
P = Pog ~ a1 - a2 ' Gefine
with a normalization constam, which depends oq. Focus-
ing on almost isotropic configurations with very smallwe ab
make a linear approximation qif{(d) aroundd=0, d, =ma bal”> 1. (16)
p(d) = &)|d| (15) Let us assume that is the joint probability density func-
4" tion of a and b. By definition, it is symmetric in its argu-

ments. LetP denote the distribution function af, andp its

Obviously the probability density fod=0 is zero while it jensity. Doing the same procedure as in the last section, we
increases with the same slope tbr0 andd<0. From Eq.  finq

(14 it follows that for larger|d| the prolate branch of(d)

with d>0 grows faster than the oblate one. This is shown in o,

Fig. 8. *

The probability densityp(d) is related to the restricted P(dy) = pOJ db(f da q(a,b)), 17

free energy byF(d)=-TIn p(d)+F, with a deformation- b=0 =

independent offsefy and to the associated generalized force

by f(d)=Tp’(d)/p(d). Thus, for the minimized model the Q

amplitude of the generalized forééd) = T/d goes to infinity

asd goes to zero. b
The crossed dumbbells model has three degrees of free-

dom which are completely independent and do not experi- I o

ence any crumpling. Nevertheless, the system exhibits some

spontaneous anisotropy which therefore appears to be a

purely entropic effect. In fact, for the crossed dumbbell sys- b

tem, the avoidance of the isotropic state is extremely strong.

For vesicles, this effect is weakened by the mutual interac- O

tions of the deformation modes. Furthermore, an additional

constraint arising, e.g., from a sufficiently strong osmotic FIG. 9. crossed dumbbells model in two dimensions. Descrip-

pressure can destroy the spontaneous anisotropy. tion in the text.
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* Let us first assume thak—a,=a,—a; which means
p(dy) = P"(dy) = po f db bgbd,,b) (18)
b=0 az=2a,—a; = a,. (A1)
with the normalization constant Furthermore, the integration range is restricted by
2 2a;—a; — a
pO: o0 [ . (19) = 2 . : 2 < do’
az+a;+ay
f da J db g(a,b) ) ]
0 0 which gives
If we assumeq to be a Gaussian centered arowreb=u _ 1+dy N A2
with half-width \ in the a=b direction, we get the intuitive 8= 5 —gy T (A2)
result
Since the inequalitie$Al) and (A2) have to be satisfied
p(dy) = po(2 —dy) (20)  simultaneously, we find
with a finite probability for symmetric configuration&, 3-5d,
i intuiti i L=a = a (A3)
=1) in contrast to the counterintuitive result for three dimen- 27917 5_ do 2
sions.
Assumingq to be a Gaussian is not the only choice, but it This is only possible idy<0. _
is easy to see than(d,) is positive and continuous at, Let us now assume the opposite cagea,<a,-a; and
=1 for any reasonable choice qgf thus
O<aqy<2p-az<ay (A4)

VII. DISCUSSION
and

The conformation of fluid three-dimensional vesicles has
been studied. Using Monte Carlo simulations, we have
shown that for these vesicles anisotropic configurations argh addition we have
preferred to spherical shapes while oblate and prolate con-
figurations are almost equiprobable for preset reduced vol- - <
umes close to 1. This effect seems to be an entropic one since 2a;+a,+ag
it is found in a minimized model where all but entropic ef- and equivalentl
fects are removed. It depends on the dimension as it does nar¢ € y
exist in two dimensions. 1+dy

=50 —dy)

Depending on the value d, either(A4) or (A5) defines the
upper boundary foa,: Since|d| <1 it follows from (A6) that

In Sec. V the three-dimensional crossed dumbbells modeds=<[(3—5dy)/(3—do)]a, which contradicts;=a, for posi-
was introduced. We derive the distribution functi®fd,), tive dy. The integration range for arbitrary positiag is thus
which gives the probability that the anisotropy parameter given by
of the minimized model introduced in Sec. V is smaller than

a < 2a,. (A5)

_2a1—a2—a3< X

(ap+ ag). (AB)

APPENDIX: CALCULATIONS FOR THE CROSSED
DUMBBELLS MODEL IN THREE DIMENSIONS

<ags< <a, <?2a,-
do. For symmetry reasons we restrict ourselves to the case B=8=28 and 0=a=2s-3 (A7)
O<ay say=aj for 0<dy=<1. For —-1=dy=<0 we get
|
3- ajo 1+ dO
p<=ag=< a and Osa s ——(apta
2=8=3 g, 2 1 2(1—d0)(2 3)
or . (A8)
3 - 5d0
3.d a,<az<Z2a, and O<a; <2a,-a3
~— Y

Having determined the integration ranges for @] a,, assumeal= 0. Referring to the above determined integration
and a; with 0<a;<a,<az, we are now able to give an ranges(A3) and (A7), we find
expression for the distribution functioR of d. Let us first

051602-6
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P(d) =50f

a,=0

a

dayq(ay) f dayq(ay)

a,=[(3-5d)/(3-d)]a,

[(1+d)/(2(1-d))](as+ap)
X f dagq(ay)
ag=2a,-a;
2ay 2ay,-ag
+ J dagq(as) daq(ay) (A9)
ag=a, a,=0
with the normalization constant
% -3
Po= 6(f da qa)> . (A10)
0

If we assume thad is small compared to the half-wid#h of
g, we find for its derivative, i.e., the probability density af

8d(3 - 2d)

@-ar-ar MY

p(d) = P'(d) = Pora*(1)

In the second case, we hadtez 0 and find according t6A8)

PHYSICAL REVIEW H1, 051602(2005
w [(3-5d)/(3-d)]ay

daxq(ay) J dagq(ag)

ag=ap

P(d) =5of

a,=0
[(1+d)/(2(1-d))](ay+ag)

>< J
a,=0

2a,

dayq(ay)

2ay-ag

dagq(ag) dayq(ay)

a,;=0

g
az=[(3-5d)/(3-d)]a,
(A12)
and with the same approximation as above,
- 8d(3-2d)
B-d)*(1-d)?

Obviously, the results for both cases can be written in a
unified expression

p(d) = P'(d) =~ Borq*(1)

|d|(3-2d)
— D/ —~ 3 7
p(d) = P’ (d) ~ 8PoAa(1) B-dA1-d? (A13)
or with py=8poAg3(1)
di(3-2d
p(d) = po Ll ) (A14)

B-d)*1-d)*
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