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Biomimetic membranes that adhere to a solid substrate or another interface via switchable crosslinker
molecules are studied theoretically using analytical methods and Monte Carlo simulations. The flexible
crosslinkers exhibit two conformations which have a different end-to-end distance and, thus, lead to different
local separations of the membrane from the substrate surface. Transitions between the molecular conformations
can be induced by light, electric potential, or changes in pH and lead to active shape fluctuations of the
membrane and, thus, to an increased membrane roughness. The forward and backward transitions are charac-
terized by two transition rates, �+ and �−, respectively, which define the average fraction X=�+ / ��++�−� of
+ �or on� states and the mean switching rate �= ��++�−� /2. The membrane roughness is explicitly calculated
as a function of X and �. It is shown that the interplay of active and thermal fluctuations is subtle and that it
is, in general, not possible to describe the active fluctuations in terms of an effective temperature.
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I. INTRODUCTION

Biomimetic membranes such as lipid bilayers can be an-
chored to solid or fluid interfaces via a thin layer of polymers
that act as flexible crosslinkers �1�. These polymers may
form soft “cushions” of flexible tethers which are firmly at-
tached both to the membrane and to the supporting interface
�2,3�. In this paper, we theoretically consider such systems
with the additional feature that the polymer layer contains
switchable or stimulus-responsive molecular groups. These
molecules exhibit several conformations and undergo transi-
tions between these conformations which can be induced by
light, electric potential, or changes in pH. Examples for such
switchable molecules are provided by azobenzenes �4–6�,
pyrimidine-terminated molecules �7�, �16-Mercapto� hexade-
canoic acid �8�, rotaxanes �9,10�, and copolymers with poly-
ethylene glycol side chains �11�. All of these molecules have
been used to construct monolayers on solid substrates. In
some cases, the changes in the hydrophobicity of the mono-
layers were studied by deposition of water droplets on top of
these layers, in other cases, the monolayers were in contact
with an aqueous solution; a recent review about these experi-
ments is given in Ref. �12�.

It is important to note that the induced transitions of a
molecule between two possible conformations, say + and −
or “on” and “off,” represent a stochastic process. This pro-
cess is governed by two transition rates, �+ and �−, for the
forward and backward transition, respectively. In general,
neighboring molecules will undergo these transitions in an
asynchronous manner. Thus if we made several snapshots of
the switchable surface, we would observe different patterns
of “on” states. In a stationary state, these patterns evolve
with time in such a way that the average fraction of “on”
states remains constant and equal to X��+ / ��−+�+�.

Next, let us consider a biomimetic membrane that adheres
to a solid substrate via a thin layer of polymers. We now
imagine to integrate molecular switches into this layer and,
in this way, obtain the ability to locally change the layer
thickness. The “off” and “on” states now correspond to two

different thicknesses, loff and lon, of the layer of crosslinkers,
respectively. Thus if the crosslinker molecules undergo a
transition from the “off” to the “on” state, the local mem-
brane separation changes from loff to lon and back to loff for
the reverse transition. The membrane as a whole then under-
goes active shape fluctuations that are induced by the con-
formational transitions of the flexible crosslinkers. In this
paper, we address these active shape fluctuations and their
interplay with thermally excited fluctuations from a theoret-
ical point of view.

The flexible crosslinker molecules considered here differ
from the relatively rigid stickers or adhesion molecules that
we considered in a recent letter �13�. This latter study ad-
dressed the adhesion of membranes via stickers that are
coupled to active processes such as ATP hydrolysis which
switch the molecules between two conformational states. The
sticker can bind the membrane only if it is in one of these
conformational states. Therefore the effective membrane po-
tential is switched locally between an attractive potential
well and a repulsive potential. In the present case, the switch-
ing process leads to two different potential wells and, thus, to
two different bound states depending on the extension of the
crosslinkers. Switching between two bound membrane states
is also relevant for biological membranes that are confined
by external constraints such as the cytoskeleton and experi-
ence local time-dependent forces. One example is provided
by the flickering of red blood cells �14,15�. In addition, the
coupling of active processes to membranes has also been
studied in the context of ion pumps, both theoretically
�16–19� and experimentally �20�, and for inclusions that act
to change the local thickness �21� or curvature �22–24� of the
membranes.

From the theoretical point of view, the systems studied
here are interesting since they lead to a Langevin-type equa-
tion that involves both additive and multiplicative noise. The
general distinction between these two types of noise is dis-
cussed in many textbooks of stochastic processes such as,
e.g., �25–27�. For the systems considered here, the additive
noise corresponds to the thermal motion of the membrane
whereas the multiplicative noise describes the coupling of
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the membrane to the active switching process. As we will
show below, it is useful to distinguish two different cases: �i�
The symmetric case for which the thermal roughness of the
membrane has the same value for X=0, i.e., if all molecules
are in the “off” state, and for X=1, i.e., if all molecules are in
the “on” state; and �ii� the asymmetric case for which the
membrane roughness differs in the two limiting cases X=0
and X=1. Case �ii� is certainly more realistic but case �i� is
also useful since the corresponding theoretical model can be
solved exactly.

In the symmetric case �i�, the membrane roughness can be
decomposed into a thermal and an active contribution. In the
asymmetric case �ii�, such a decomposition is no longer pos-
sible. We also show that the concept of an effective tempera-
ture is, in general, not applicable. For the membrane rough-
ness, it only applies to the symmetric case. In addition, the
probability distribution for the membrane separation has a
single peak for high switching rates and two peaks for low
switching rates. It thus exhibits a noise-induced transition
�25� as a function of switching rate. Even in the symmetric
case, such a transition cannot be understood in terms of the
effective temperature for the membrane roughness.

Our paper is organized as follows. In Sec. II, we introduce
our model for a fluctuating membrane that is crosslinked to a
substrate surface covered by switchable molecules. The
movement of such a membrane is described by a Langevin-
type equation with both additive and multiplicative noise. In
Sec. III, we discuss our Monte Carlo simulation method,
which corresponds to the usual Metropolis algorithm, and
provide an explicit mapping between the latter algorithm and
the Langevin-type equation. In Sec. IV, we study the inter-
play between thermal motion and active switching between
two molecular conformations. For the symmetric case, the
Langevin-type equation is solved exactly. Using our explicit
mapping, the exact solution provides a quantitative check on
the accuracy of the computer simulations. For the asymmet-
ric case, we describe a mean field approximation which re-
produces the qualitative features of the simulation data.

II. MODEL

We consider a course-grained model that describes mem-
branes as elastic sheets which form deformable but, on aver-
age, flat surfaces. The membrane shape is described by the
local displacements from a planar reference state. Since we
want, eventually, to study our model by computer simula-
tions, the reference plane is divided into a square lattice with
lattice constant a. Each lattice site is labeled by a pair of
integer numbers i= �x ,y� with 1�x�N, 1�y�N and peri-
odic boundary conditions in both directions. The membrane
displacement for lattice site i is denoted by li. The set �l� of
all N2 local displacements thus specifies the membrane con-
figuration. For any such configuration, the elastic energy of
the membrane has the form �28,30�

Hel�l� = �
i

�

2a2 ��dli�2, �1�

where the parameter � is the bending rigidity of the mem-
brane, and the discretized Laplace operator �dli, which is
defined via

�dlx,y � lx+1,y + lx−1,y + lx,y+1 + lx,y−1 − 4lx,y , �2�

is equal to twice the local mean curvature of the membrane
surface times a2.

The membranes are taken to experience local and time-
dependent forces which arise from active, i.e., energy-
consuming processes in the environment of the membrane.
In the systems considered here, the forces are generated by
switchable molecules which bind the membrane to the planar
substrate. In biological systems, such forces can be gener-
ated, for example, if the membrane interacts with cytoskel-
etal filaments or with adhesion molecules that undergo con-
formational changes �13�.

These forces will be described by activity variables si�t�,
which are defined locally at each lattice site i and change
with time t. Therefore the potential energy of the membrane
segment at site i, V�li ,si�, depends both on the membrane
displacement field li and on the local activity si�t�. It will also
be useful to consider the potential energy per unit area,
Vme�li ,si�, which is defined by

V�li,si� � a2Vme�li,si� . �3�

In the limit of small a, the potential energy density Vme stays
finite whereas the potential energy V goes to zero.

If we combine the elastic energy of the membrane with its
potential energy, we obtain the configuration energy �or ef-
fective Hamiltonian�

H�l,s� = Hel�l� + �
i

V�li,si� = Hel�l� + a2�
i

Vme�li,si� .

�4�

For a given activity pattern �s�, the statistical weight for
membrane configuration �l� at temperature T is then propor-
tional to the Boltzmann factor exp�−H�l ,s� /kBT�.

A. Thermal motion

The membrane is embedded in an aqueous solution and is,
thus, subject to thermal collisions with the water molecules.
This leads to thermally excited deformations of the mem-
brane shape �31–33�. In the framework of the geometric
membrane models considered here, these deformations are
described by changes in the membrane displacement field l.
In general, there can be several mechanisms that contribute
to the dissipation of the shape fluctuations of the membranes
such as Stokes friction arising from the coupling to the sur-
rounding liquid and interbilayer dissipation arising from the
friction between the two adjacent monolayers �34�. We will
consider the simplest type of dynamics which corresponds to
the relaxation of the displacement variables along the gradi-
ents of the configuration energy H�l� of the membrane
�28,30�. In the context of polymers and critical phenomena,
this corresponds to Rouse dynamics �35� and to the so-called
model A dynamics �36�, respectively.

The corresponding Langevin equation is given by
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�
�li

�t
= −

�H
�li

+ �i = −
�

a2�d
2li −

�V�li,si�
�li

+ �i, �5�

which depends on the friction coefficient � and describes the
overdamped motion of the displacement variable li as a result
of three types of forces: �i� the elastic restoring force
−�Hel /�li=−�� /a2��d

2li with

�d
2li � ���4/�x4�d + 2��2/�x2���2/�y2�d + ��4/�y4�d�lx,y ,

�6�

which couples li with the displacement variables at 12 neigh-
boring lattice sites, �ii� the force �V�li ,si� /�li which arises
from the potential V and depends on the value of the activity
variable si, and �iii� the thermal white noise �i. The average
value of this latter noise vanishes at each lattice site, i.e.,

	�i�t�
 = 0, �7�

and its correlation function is given by

	�i�t��i��t��
 = 2�kBT��t − t���i,i� �8�

as required by the fluctuation-dissipation theorem �or the
principle of detailed balance�.

B. Active processes

So far, we have not specified the activity variables si. A
simple and natural choice is to take binary or Ising-like vari-
ables si= ±1 where si=−1 corresponds to the “off”-state and
si= +1 corresponds to the “on”-state of the activity variable
at lattice site i. A membrane segment with a certain activity
pattern �s� is shown in Fig. 1. This implies that the local
force Fi experienced by the membrane segment at lattice site
i is given by

Fi = − �V�li,− 1�/�li for si = − 1 �inactive site�

= − �V�li, + 1�/�li for si = + 1 �active site� .

In general, the activity patterns �s�= �s�t�� could exhibit
various spatial and temporal correlations. For simplicity, we

will take the local activity fields si�t� at different lattice sites
to be statistically independent from each other and to have
temporal correlations that decay with a single characteristic
time scale. More precisely, we will consider, at each lattice
site i, the so-called dichotomic process �or two-valued Mar-
kov process or random telegraph process� �27�. For this pro-
cess, the probabilities P+�t� and P−�t� to find the activity
variable si�t� in the “on”- and “off”-state, respectively, satisfy
the simple evolution equations

dP+/dt = − P+�− + P−�+,

dP−/dt = + P+�− − P−�+,

which depends on the two transition rates �+ and �−. The
transition rate �+ represents the probability per unit time to
go from the “off”-state si=−1 to the “on”-state si= +1. Like-
wise, the transition rate �− represents the probability per unit
time for the reverse process from the “on”-state si= +1 to the
“off”-state si=−1. These transition rates are taken to be the
same for all lattice sites i and for all values of the membrane
displacement field li.

In order to discuss the statistical properties of this active
process, it will be convenient to use the variable

X �
�+

�+ + �−
, �9�

which describes the average fraction of “on” sites, and the
mean switching rate

� �
�+ + �−

2
�10�

instead of the two transition rates �+ and �−. Here and be-
low, X and � will be considered as the basic switching pa-
rameters. In terms of X and �, the stationary probability
distribution P�st��si� for each of the statistically independent
activity fields si is given by

P�st��s� = X�s,1 + �1 − X��s,−1. �11�

Furthermore, the variables si�t� have the average value

	si�t�
 = 2X − 1 �12�

and the two-point correlation function

	si�t�si��t��
 − 	si�t�
	si��t��
 = 4X�1 − X�e−2��t−t���i,i�.

�13�

The angular brackets in Eqs. �12� and �13� represent averages
with respect to the stationary distribution as given by Eq.
�11�. Note that the correlation function �13� of the activity
variables decays exponentially with the decay time 1/2�.

C. Thermal versus active fluctuations

If �+=0, all activity fields are switched off and X=0; if
�−=0, all activity fields are switched on and X=1. In these
two special cases, the correlation function �13� is identically
zero, and the Langevin dynamics as given by Eq. �5� de-
scribes the relaxation of the membrane displacements in the

FIG. 1. Snapshot of a flexible membrane in a certain activity
pattern �s� which is defined, at each lattice site i, by a binary or
Ising-like variable si= ±1. The white and gray membrane patches
correspond to si=−1 and si= +1, respectively. The time evolution of
the activity pattern is characterized by two transition rates as de-
scribed in the text.
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laterally uniform potentials V�l ,1� and V�l ,−1�, respectively.
The membrane will then attain a certain equilibrium state
and relax to the deepest potential well after a sufficiently
long time. In such an equilibrium state, the displacement
variables li will undergo thermal fluctuations which are gov-
erned by the thermal energy kBT.

In general, we will consider active processes which are
characterized by an “on” fraction X with 0	X	1 and a
mean switching rate � with 0	�	
. These processes in-
duce additional membrane fluctuations which are not gov-
erned by the thermal energy kBT but by the switching param-
eters X and �. In general, the overall membrane fluctuations
may be dominated by thermal fluctuations or by active fluc-
tuations or both contributions may be comparable. In the
case of actively switched harmonic potentials as studied in
Sec. IV below, the membrane roughness can be explicitly
decomposed into a thermal and into an active part. One can
then determine the range of X and � values for which the
active fluctuations dominate.

A rather intuitive concept for the coupling to active pro-
cesses is the idea that these processes can be described in
terms of an effective temperature �see, e.g., �37��. Thus, in
the present context, one might be tempted to think that the
additional membrane fluctuations, which are induced by the
active switching of the membrane potential, correspond to
fluctuations at a higher, effective temperature. However, this
effective temperature concept is only applicable �i� for cer-
tain observables and �ii� for a limited range of model param-
eters as we will show explicitly for the case of actively
switched harmonic potentials.

III. SIMULATION METHODS

The statistical properties of the membrane models intro-
duced in the previous section can be studied by Monte Carlo
simulations �38�. It is then useful to introduce the length
scale

lsc � a�kBT/� �14�

and to define the dimensionless displacement variable �28�

zi � li/lsc = �li/a���/kBT �15�

at lattice site i. It is instructive to estimate the length scale lsc
for phospholipid bilayers. In this case, the bending rigidity is
of the order of 20kBT and the lattice parameter a is of the
order of 6 nm �29�. This implies that lsc1.3 nm.

The membrane shape is now specified by the set �z� and
the configuration energy �4� is rewritten in terms of these
variables. As before, we consider a discrete lattice of N�N
sites. Each lattice site is labeled by a pair of integer numbers
i= �x ,y� with 1�x�N, 1�y�N and periodic boundary
conditions in both the x and the y directions. The Monte
Carlo �MC� simulations described here have been performed
with up to 108 MC steps, i.e., MC moves per lattice site.

Each MC move consists of two submoves: �i� First, a
lattice site, i, is randomly chosen, and the membrane position
at this site, zi, is shifted to the value zi+�, where � is a
random number with the probability distribution

p���=1/ �2�z� for −�z	�	�z, and �z is the step size for the
displacement variable. This submove is accepted according
to the standard Metropolis algorithm with probability

w�z → z�� = min�1,e−�H�z�,s�−H�z,s��/kBT� �16�

where the new, primed displacement fields are defined by
zj��zj +�i,j�; and �ii� the second submove consists of the
random choice of another lattice site j for which the value of
the activity variable sj is switched from sj =1 to sj =−1 with
probability − and vice versa with probability +.

It has been previously argued that the Metropolis algo-
rithm has the same scaling properties as the Langevin dy-
namics �28� since both describe the relaxational dynamics
along the gradients of the configuration energy. However, we
will now show that it is even possible to derive a quantitative
mapping between the Metropolis algorithm just described
and the Langevin dynamics as given by Eq. �5�. This map-
ping is obtained in the limit of small �z, i.e., of small step
size for the displacement variables zi, and leads to explicit
relations between the simulation parameters �z ,+ ,− and
the parameters � ,�+ ,�−, which appear in the continuous
time model.

In order to derive this mapping, let us consider the prob-
ability distribution P�z ,s , t� for the membrane configuration
�z� and the activity pattern �s� at time t. The probability
current density Ii�z ,s , t�, which is induced by the first sub-
move �i� as described above with z�zi, satisfies the master
equation

Ii�z,s,t��t =
1

2�z
�

−�z

�z

d��P�z�,s,t�w�z� → z�

− P�z,s,t�w�z → z��� �17�

with the time step �t corresponding to one submove and the
transition probabilities w�z�→z� as in Eq. �16�. The first and
second terms in the square bracket describe the gain and loss
of the probability density, respectively. In order to make a
connection with the continuous time model corresponding to
the Langevin dynamics �5�, we will now consider the limit of
small time step �t and small step size �z for the displacement
variables.

We thus expand the probability distribution P and the
transition probabilities w, which are present on the right-
hand side of Eq. �17�, in powers of the dimensionless vari-
able � which is then integrated between −�z and +�z. In
order to perform this expansion in a systematic way, one has
to take into account that the transition probabilities as given
by Eq. �16� are not differentiable at �=0 and, thus, lead to
two different expressions for �	0 and ��0. The most trans-
parent way to keep track of the different terms is to distin-
guish several cases depending on the sign of �H /�zi. Expan-
sion of the integrand up to second order in � and subsequent
integration over � leads to the truncated master equation
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Ii�z,s,t��t =
��z�2

6

�

�zi
� 1

kBT

�H
�zi

+
�

�zi
�P�z,s,t� + O���z�3� .

�18�

On the other hand, the probability current density which cor-
responds to the Langevin dynamics for the membrane sepa-
ration field li as given by Eq. �5� has the Smoluchowski or
Fokker-Planck form

Ii�l,s,t� =
1

�

�

�li
� �H

�li
+ kBT

�

�li
�P�l,s,t� . �19�

Comparing the two expressions in Eqs. �18� and �19� and
using the relation z= �l /a��� /kBT�1/2 as in Eq. �15�, we obtain
the parameter relation

�t =
��z�2

6

�a2

�
. �20�

If this relation is fulfilled, the Langevin dynamics as given
by Eq. �5� and the Metropolis dynamics as in Eq. �16� are
equivalent in the limit of small step size �z���t�1/2.

Since we alternate between submove �i� and submove �ii�,
the same time step �t is used for both submoves. This im-
plies that the switching probabilities ± and the transition
rates �± are related via

± = �t�± =
��z�2

6

�a2

�
�±. �21�

In the next section, we will apply this simulation method
to the active switching between two bound states. We will
distinguish two cases which we call the symmetric and the
asymmetric case. For the symmetric case, both bound states
lead to the same thermally excited roughness of the mem-
brane. In contrast, the asymmetric case is characterized by
two bound states that differ in their thermal roughness.

In both cases, the system attains a steady state which is
characterized by certain time-independent quantities such as
the average membrane separation 	zi
 and the two-point cor-
relation function 	zizi�
− 	zi
	zi�
. A useful test for our simu-
lation code is provided by the symmetric case since we can
obtain an explicit analytical solution for this case. The cor-
responding analytical expressions are compared with the
simulation results in Figs. 3–5. Inspection of these figures
shows that, for sufficiently small simulation step sizes �z, the
statistical properties of the membrane model are determined
by our simulations with rather high accuracy.

For all Monte Carlo simulations reported below, the step
size �z was chosen to be �z=0.025. In addition, we used the
system sizes N=40 or N=60 and checked that these sizes are
sufficiently large so that our data are not affected by finite
size effects.

IV. ACTIVE SWITCHING BETWEEN TWO BOUND
STATES

A. Crosslinkers with two molecular conformations

Let us now consider a membrane which is immobilized
on a planar substrate surface. The connection between the

membrane and the substrate is provided by anchored
polymers which act as flexible crosslinkers �2,3�. The
end-to-end distance of the polymers is equal to the local
separation of the membrane from the substrate. Now, let us
imagine to integrate switchable or stimulus-responsive mo-
lecular groups into these crosslinkers. For simplicity, we will
assume that each crosslinker can attain only two different
conformations, which we call “on” and “off” �or “up” and
“down”� and which differ in their end-to-end distance lon and
loff. Thus, depending on the molecular conformation, the lo-
cal separation of the membrane from the substrate is loff or
lon. In addition, we assume that we can switch the molecular
conformation by an external signal such as light, electric
potential, or pH.

For such a system, the “off” conformation leads to an
effective membrane potential V�li ,−1� with a local minimum
at li= loff whereas the “on” conformation implies another
membrane potential V�li , +1� with a local minimum at
li= lon. The “off-on” transition, which occurs with transition
rate �+ is induced by the external signal whereas the “on-
off” transition can occur spontaneously with transition
rate �−. In the following, we will use the convention that
lon� loff; the opposite case with lon	 loff can be easily ob-
tained by permuting the two indices.

In order to obtain a tractable model, we now expand the
effective potentials V�li ,−1� and V�li , +1� around their
minima up to second order in the displacement variables
which leads to

V�li,si = − 1� � Voff +
1

2
v−�li − loff�2 �22�

and

V�li,si = + 1� � Von +
1

2
v+�li − lon�2 �23�

with Voff�V�loff ,−1� and Von�V�lon, +1�. It is then conve-
nient to transform the displacement variables li according to
li→ li�� li+ loffv− / �v−+v+�+ lonv+ / �v−+v+�. If we denote the
shifted variables li� again by li, we obtain

V�li,si = − 1� = Voff +
1

2
v−�li + l−�2

with l− � �lon − loff�
v+

v− + v+
�24�

and

V�li,si = + 1� = Von +
1

2
v+�li − l+�2

with l+ � �lon − loff�
v−

v− + v+
. �25�

The shift of the displacement variables li was done in such a
way that the two parameters l− and l+ satisfy the simple
relation

v−l− = v+l+. �26�
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The two harmonic potentials as given by Eqs. �24� and
�25� imply the local force

Fi = − v−�li + l−� 1
2 �1 − si� − v+�li − l+� 1

2 �1 + si� = − 1
2 �v− + v+�li

+ 1
2 �v− − v+�sili + v+l+si

acting on the membrane segment at lattice site i where rela-
tion �26� has been used in the second line. If this local force
is inserted into the general Langevin equation as given by
Eq. �5�, we obtain the stochastic equation of motion

�
�li

�t
+

�

a2�d
2li +

v− + v+

2
li −

v− − v+

2
sili = v+l+si + �i

�27�

for the displacement variable li at lattice site i. As before, the
time evolution of li depends �i� on the thermal force �i, �ii�
on the activity variable si, and �iii� on the neighboring dis-
placement variables which are coupled to li via the curvature
term proportional to �. Note that the absolute values Voff and
Von of the membrane potentials at loff and lon do not enter the
local forces and, thus, do not enter the Langevin equation.

The two terms on the right-hand side of Eq. �27� represent
additive noise terms whereas the last term on the left-hand
side is proportional to the product sili and, thus, corresponds
to a multiplicative noise term. For the special case of sym-
metric switching with v+=v−, the multiplicative noise term
vanishes which leads to the explicit solution described in the
next section.

B. Symmetric case

Let us now focus on the symmetric case for which the two
harmonic potentials V�li ,−1� and V�li , +1� in Eqs. �24� and
�25� have the same “spring constants” given by

v+ = v− � v �28�

which also implies

l+ = l− � l0 �29�

via relation �26�. The two harmonic potentials are shown in
Fig. 2 where we have set Voff=0 and Von=0 since these pa-
rameters do not enter the Langevin equation. The effective
membrane potential now has the particularly simple form

V�li,si� = 1
2v�li − sil0�2 �30�

and the Langevin equation �27� reduces to

�
�li

�t
+

�

a2�d
2li + vli = vl0si + �i �31�

with two additive noise terms on the right-hand side but no
multiplicative noise term.

The local energy input provided by the activity variables
si onto the membrane segment at site i can be estimated
as follows. In the off state with si=−1, the membrane
segment will try to attain the local displacement li=−l0 cor-
responding to the minimum of the effective membrane po-
tential V�li ,−1�. If the activity variable is now switched to
si= +1, this membrane segment attains the potential energy
V�−l0 , +1�=2vl0

2. The latter energy has to be provided by the
activity variable which represents an external force field. For
all parameter values discussed in the following, the local
energy input 2vl0

2 is smaller or comparable to 10 kBT.

1. Fourier decomposition

In order to handle the coupling between neighboring dis-
placement variables, which arises from the curvature term,
we now decompose the displacement variables li= lx,y with
1�x�N and 1�y�N into their Fourier components. This
is possible since the sites �x ,y� form an N�N lattice with
periodic boundary conditions. The Fourier components or
displacement modes are defined by

l̃m,n�t� �
1

N
�
x=1

N

�
y=1

N

e−2�i�xm+yn�/Nlx,y�t� , �32�

where the two indices m and n satisfy 1�m�N and 1�n
�N. The Fourier decomposition is then given by

lx,y�t� =
1

N
�
m=1

N

�
n=1

N

e2�i�xm+yn�/Nl̃m,n�t� . �33�

Note that, in the exponents, the symbol i��−1 denotes the
imaginary unit which should not be confused with the lattice
site i. Likewise, we decompose the activity variables sx,y�t�
and the thermal force �x,y�t� into their Fourier components,
s̃m,n�t� and �̃m,n�t�. When these Fourier series are inserted
into the Langevin equation �31�, we obtain the decoupled
equations

�� �

�t
+ Rm,n� l̃m,n�t� = s̃m,n�t�vl0 + �̃m,n�t� , �34�

with the inverse relaxation time

Rm,n �
v
�

+
�

a2�
Qm,n

4 �35�

for mode �m ,n�, and the dimensionless wave numbers

FIG. 2. Symmetric switching: Two harmonic potentials V as a
function of the displacement variable li at lattice site i. If the activ-
ity variable si=−1, the harmonic potential is located at l=−l0; if the
activity variable si= +1, the potential is located at l= + l0.
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Qm,n � �4 − 2 cos�2�n

N
� − 2 cos�2�m

N
��1/2

. �36�

The linear equation of motion as given by Eq. �34�, which

describes the time evolution of the displacement modes l̃m,n,
has the general solution

l̃m,n�t� = e−tRm,n� l̃m,n�0� +
1

�
�

0

t

dt�et�Rm,n�s̃m,n�t��vl0

+ �̃m,n�t���� . �37�

Since the wave numbers Qm,n have the symmetry property
Q−m,−n=Qm,n, one has

R−m,−n = Rm,n �38�

for the inverse relaxation times Rm,n. Furthermore, because
of 0�Qm,n�2�2, the relaxation times 1/Rm,n satisfy the in-
equalities

�

v

1

1 + 64�/a2v
�

1

Rm,n
�

�

v
. �39�

2. Average membrane position

The average membrane position can be determined
as follows. First, we take the average of both sides
of Eq. �37�. The average value 	�̃m,n�t�
=0 since the thermal
white noise has been defined with 	�x,y
=0, see Eq. �7�.
For the two-valued Markov process, we have
	s̃m,n�t�
= �2X−1�N�m,N�n,N as follows from Eq. �12�. Using
these relations and performing the t� integration in Eq. �37�,
we get an explicit expression for 	l̃m,n�t�
. In the long time
limit, the system relaxes into its stationary state, and the
average displacement variables attain the asymptotic values

	l̃m,n
 � �2X − 1�
vl0N

�Rm,n
�m,N�n,N. �40�

Applying the discrete Fourier transform �33� to this equation,
we find that, in the steady state, the average membrane po-
sition is given by

	li
 = 	lx,y
 � �2X − 1�l0, �41�

which is independent of the mean switching rate � but in-
creases linearly with X as shown in Fig. 3. This behavior can
also be obtained from the following simple argument. For the
symmetric case, the membrane potential as given by Eq. �30�
has two minima at li=sil0 with si= ±1. Taking the average of
both sides of this latter equation leads to 	li
= �2X−1�l0,
since 	si
=2X−1. However, this simple relation is no longer
valid for the asymmetric case which will be considered fur-
ther below.

3. Average membrane roughness

The average membrane roughness �� can be obtained
from the cumulant

	lx,y�t�2
c � 	lx,y�t�2
 − 	lx,y�t�
2 �42�

which behaves as

	lx,y�t�2
c � ��
2 for large t . �43�

It is again convenient to use the Fourier transformed dis-

placement variables l̃m,n which lead to

	lx,y�t�2
c =
1

N2�
m

�
n

e−2�i�mx+ny�/N

��
m�

�
n�

e−2�i�m�x+n�y�/N	l̃m,n�t�l̃m�,n��t�
c.

�44�

Using the general solution �37� for the displacement vari-

ables l̃m,n, we can now express these variables in terms of
s̃m,n�t��, which describes the two-valued Markov process, and
�̃m,n�t��, which represents the thermal white noise. The latter
variables have the correlation functions

	�̃m,n�t��̃m�,n��t��
 = 2�kBT��t − t���m,−m��n,−n� �45�

and

	s̃m,n�t�s̃m�,n��t��
 − 	s̃m,n�t�
	s̃m�,n��t��


= 4X�1 − X�e−2��t−t���m,−m��n,−n� �46�

as follows from Eqs. �8� and �13�, respectively. In this way,
we obtain an explicit expression for the cumulant 	lx,y�t�2
c

as given by Eq. �44�. In the limit of large t, this expression
leads to the average membrane roughness

FIG. 3. The average membrane position 	zi
, given in dimen-
sionless units, for the steady state as a function of the average
fraction X of the active crosslinker molecules with si=1. The points
represent data from Monte Carlo simulations while the solid line is
obtained from Eq. �41�. The mean switching rate � is constant
and given by ��a2 /�=1 with friction coefficient �, molecular size
a, and bending rigidity �. The dimensionless distance between the
two potential minima is z0=4 and the rescaled spring constant
va2 /�=1/5.
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��
2 =

1

N2 �
m=1

N

�
n=1

N
1

v +
�

a2Qm,n
4 �kBT +

4X�1 − X�v2l0
2

2�� + v +
�

a2Qm,n
4 � .

�47�

Note that the first term on the right-hand side is proportional
to the thermal energy kBT whereas the second term depends
on the switching parameters, X and �, and is invariant under
the transformation X→1−X which arises from the symmetry
of the underlying membrane potential as given by Eq. �30�.

For X=0 or X=1, all molecules are in the off and on state,
respectively, and the membrane stays in the corresponding
minimum of the effective potential �30�. In this case, the
second term in Eq. �47� vanishes and the membrane rough-
ness reduces to the thermal roughness ��=��,th with

��,th
2 �

1

N2 �
m=1

N

�
n=1

N
kBT

v +
�

a2Qm,n
4

. �48�

For 0	X	1, the molecules are actively switched and the
membrane is locally displaced by these molecules. This leads
to the additional, active roughness ��,ac as given by

��,ac
2 �

1

N2 �
m=1

N

�
n=1

N
4X�1 − X�v2l0

2

�v +
�

a2Qm,n
4 ��2�� + v +

�

a2Qm,n
4 �

�49�

corresponding to the second term in Eq. �47�. Note that the
active roughness ��,ac does not depend on temperature T.
Thus, for the symmetric membrane potential considered
here, the roughness can be decomposed into two contribu-
tions, a thermal and an active one, according to

��
2 = ��,th

2 + ��,ac
2 . �50�

The analytical result �47� for the membrane roughness is
compared with Monte Carlo simulations in Figs. 4 and 5. In
Fig. 4, the roughness is shown as a function of the average
fraction X whereas Fig. 5 shows the � dependence of this
quantity.

The membrane roughness �� is a decreasing function of
the mean switching rate �, as shown in Fig. 5. This follows
directly from Eq. �47� and can be intuitively understood as
follows. The random force F0,i�t��vl0si�t�, which appears
on the right-hand side of Eq. �31�, has a constant magnitude
and acts in a given direction, on average, over the time pe-
riod 1/�. This time scale should be compared with the re-

laxation times 1/Rm,n for the displacement modes l̃m,n. These
relaxation times satisfy the inequalities as given by Eq. �39�.
If 1 /� is shorter than the smallest membrane relaxation time,
the random force F0��F0,i� cannot displace the membrane
much from its average position and, thus, �����,th. In fact,
in the limit of large switching rates, the actively induced
roughness ��,ac vanishes, and the membrane roughness as
given by Eq. �47� becomes equal to the thermal roughness,
��=��,th. On the other hand, if 1 /� is larger than the relax-
ation time for short-wavelength membrane deformations, the

random forces F0 act to increase the membrane roughness.
The force centers in the state si=−1 keep pushing the mem-
brane towards the potential minimum which is located at
li=−l0 while the force centers in the state si= +1 act to
localize the membrane in the other potential minimum, at
li= l0. The membrane is then pulled between the two com-
petitive minima of the external potential and its roughness is
larger than in thermal equilibrium. The two regimes—of fast
and slow switching—are separated by the longest membrane
relaxation time which, according to relations �39�, is equal to
� /v. This crossover is visible in Fig. 5 which shows the
functional dependence of the membrane roughness on the
switching rate; the midpoint between maximal and minimal
roughness is located at switching rate �=v /�. Note that the

FIG. 4. The dimensionless membrane roughness �	zi
2
− 	zi
2�1/2

in the steady state as a function of the average fraction X of
crosslinker molecules that are in their active states with si=1. The
points are obtained from simulations while the solid line shows
relation �47�. The model parameters are the same as in Fig. 3. The
relative simulation error, in comparison to the exact result, is
smaller than 1%. Note that the roughness is symmetric with respect
to X=1/2.

FIG. 5. The dimensionless membrane roughness �	zi
2
− 	zi
2�1/2

in the steady state as a function of the average switching rate �
which is rescaled with the friction coefficient �, the molecular size
a, and the bending rigidity � �semilogarithmic plot�. The points
represent Monte Carlo data and the solid lines are obtained from
Eq. �47�. For the upper curve, the dimensionless distance between
the two harmonic potentials is z0=4, and the rescaled spring
constant va2 /�=1/5. For the bottom curve, one has z0=2 and
va2 /�=1/2. In both cases, the average fraction of the crosslinker
molecules in their “on” state is X=0.5.
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plot in Fig. 5 is semilogarithmic: a linear plot would lead to
a functional dependence that is convex upwards for all val-
ues of the switching rate.

The above considerations indicate that the probability dis-
tribution P�li� for finding a membrane patch in the steady
state at position li should exhibit a noise-induced transition
from a distribution with a single-peak to a bimodal distribu-
tion. At high switching rates the distribution P�li� has a
single maximum at li= 	li
 while at low switching frequencies
it could have two maxima, one shifted towards li= l0 and
another one shifted towards li=−l0. The transition should oc-
cur at �=v /�. These expectations are confirmed by our
simulations, see Fig. 6.

4. Thermally versus actively induced roughness

In order to compare the relative size of the thermally and
the actively induced roughness of the membrane, it is con-
venient to rewrite the corresponding expressions �48� and
�49� for ��,th and ��,ac as follows. First, the thermal contri-
bution ��,th

2 as given by Eq. �48� can be rewritten as

��,th
2 = a2kBT

�
f1�va2

�
� , �51�

where the function f1 is defined by

f1��� �
1

N2 �
m=1

N

�
n=1

N
1

� + Qm,n
4 . �52�

The actively induced roughness ��,ac as given by Eq. �49�
can also be expressed in terms of the function f1 which leads
to

��,ac
2 = a24X�1 − X�

l0
2v2

2���
� f1�va2

�
� − f1�2��a2

�
+

va2

�
�� .

�53�

The function f1 as defined by Eq. �52� becomes particu-
larly transparent if we consider the continuum limit of small
lattice constant a and large system size Na. In the latter limit,
the dimensionless wave numbers Qm,n as in Eq. �36� behave
as

Qm,n
2 � a2q2 �54�

with the two-dimensional momenta

q � �qx,qy� � �2�m

Na
,
2�n

Na
� . �55�

Note that Qm,n
2 �a2q2 as in Eq. �54� ensures that the discrete

elastic energy of the membrane as given by Eq. �1� has the
correct continuum limit

Hel�l� =� dxdy 1
2���2l�2. �56�

Higher order terms arising from the expansion of the cosine
terms in Eq. �36� reflect the discretization via a square lattice
and have no significance for fluid membranes.

Inserting the asymptotic equality Qm,n�a2q2 into Eq. �52�
and replacing the sum by an integral, we obtain

f1��� �
1

a2 � d2q

�2��2

1

��/a4� + q4 �
1

8��
�57�

since the large momentum cutoff � /a becomes infinite for
small a.

If the asymptotic form �57� for the function f1 is inserted
in the expression �51�, the thermal roughness becomes

��,th
2 � a

kBT

�

1

8
��

v
�1/2

�58�

in the limit of small a and large N. If we considered the
potential energy density Vme�li ,si�=V�li ,si� /a2 as introduced
in Eq. �3�, the harmonic potential �30� would have the form

Vme�l,s� = 1
2v2�l − sl0�2 with v2 � v/a2. �59�

In terms of v=v2a2, the thermal roughness becomes

��,th
2 �

kBT

�

1

8
� �

v2
�1/2

�60�

which is independent of a.
For the actively induced roughness as given by Eq. �53�,

the continuum limit leads to

��,ac
2 � aX�1 − X�

l0
2

2
� v

�
�1/2� f2�2��

v
��−1

�61�

with the function

f2��� � 1 + � + �1 + � . �62�

If we again replaced the potential parameter v by v2=v /a2,
we would find that ��,ac�a2. Thus, in contrast to the thermal

FIG. 6. The stationary probability distribution P�zi� for finding a
membrane patch at position zi. The two diagrams show results of
our Monte Carlo simulations: the solid and dashed line corresponds
to the switching rate �=1.67v /� and �=0.17v /�, respectively,
where v denotes the spring constant and � is the friction coefficient.
At frequency �=v /� the probability distribution P�zi� exhibits a
noise-induced transition from a distribution with a single maximum
to a bimodal distribution with two maxima, which cannot be under-
stood in terms of the active temperature Tac as given by Eq. �65�.
Here, the average fraction of crosslinker molecules in their
“on” state is X=0.5, the dimensionless distance between the two
potential minima is z0=5, and the spring constant v is given by
va2 /�=6 with the lattice constant a and the bending rigidity �.
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roughness, the actively induced roughness goes to zero in the
limit of small a and fixed v2 which reflects the molecular
nature of the switchable crosslinkers.

We now define the crossover rate �* by the requirement
that the thermal and the actively induced roughness are
equal, i.e., ��,th

2 =��,ac
2 , for this crossover rate. Using the ex-

pressions �58� and �61�, which are valid for large N, we
obtain the implicit equation

f2�2�*�

v
� = 4X�1 − X�

l0
2v

kBT
�63�

for the crossover rate �*. Note that this equation depends
only on three dimensionless parameters: the rescaled switch-
ing rate 2�*� /v, the average fraction X of on states, and the
rescaled local energy input 2l0

2v /kBT. If we keep the latter
parameter fixed, the solution of Eq. �63� leads to a functional
dependence of the crossover rate �* on X as schematically
shown in Fig. 7. For switching rates ���*�X� and
�	�*�X�, the membrane roughness is dominated by thermal
motion and active switching, respectively.

5. Active switching and effective temperature

It is instructive to see to what extent the active switching
of the crosslinker molecules can be described by an effective
temperature. Comparison of the two expressions �58� and
�61� for the thermally and actively induced membrane rough-
ness shows that

��,ac
2 = ��,th

2 �T = Tac� �64�

if one considers the thermal roughness ��,th as a function
of temperature T and defines the active temperature
Tac=Tac�X ,�� via

kBTac � 4X�1 − X�l0
2v� f2�2��

v
��−1

, �65�

which depends both on the switching parameters, X and �,
and on the potential parameters, v and l0. The total mem-
brane roughness can then be written as

��
2 = ��,th

2 �T� + ��,ac
2 = ��,th

2 �T� + ��,th
2 �Tac�

= ��,th
2 �Teff � T + Tac� . �66�

It is important to note, however, that the effective tem-
perature Teff=T+Tac does not apply to other quantities such
as the probability distribution for the displacement field l that
undergoes a transition from a single peak distribution to a
bimodal distribution with two peaks.

C. Asymmetric case

Let us now return to the stochastic equation of motion
�27� and consider the asymmetric case of two harmonic po-
tentials with two different spring constants v+�v−. Because
of the multiplicative noise term, sili, we are no longer able to
solve Eq. �27� analytically. In order to get some insight into
the more general case v+�v−, we now perform a mean-field-
type approximation and replace the term sili in Eq. �27� by
�2X−1�li, i.e., we replace the stochastic variable si by its
average value 2X−1. By doing this, we reduce the stochastic
equation �27�, containing both additive and multiplicative
noise terms, to Eq. �31� with additive noise only, provided
we identify

v � Xv+ + �1 − X�v− �67�

and

l0 �
l+v+

Xv+ + �1 − X�v−
. �68�

In the symmetric case with v+=v−, the above relations are
equivalent with the previous definitions �28� and �29�.

Within the framework of the mean-field approximation
�MFA�, that we have introduced above, the average mem-
brane position and roughness are determined by Eqs. �41�
and �47�, respectively, with v and l0 as given by relations
�67� and �68�. Note that for X=1, Eqs. �67� and �68� reduce
to v=v+ and l0= l+, while for X=0, we get v=v− together
with l0= l−, since v+l+=v−l−. These limiting cases are under-
standable. For X=1 all lattice sites remain in the on state
with harmonic potential �25�, while for X=0 all sites are in
the off state and potential �24�. Thus, in these two cases, we
expect the MFA to be exact. In particular, in these two cases
we get the correct thermal roughness for membranes within
the corresponding harmonic potential.

To verify the accuracy of the MFA, we compare its pre-
dictions with simulation results. Examples are shown in Figs.
8–10. Our simulation data indicate that the MFA gives the
correct formula for the average membrane position

	li
 =
�2X − 1�l+v+

Xv+ + �1 − X�v−
, �69�

see also Fig. 8. For X=0 and X=1 the above equation re-
duces to exact values 	li
= l− and 	li
= l+, respectively. More-
over, 	li
 is an increasing function of X, which is rather plau-
sible: the more lattice sites are in the on state, the stronger is
the membrane pulled towards the potential minimum located
at li= l+. Note also that for the symmetric case with v+=v−,
Eq. �69� reduces to the linear X dependence �41�.

FIG. 7. Rescaled crossover rate �=�* as a function of the frac-
tion X of the crosslinker molecules in their “on” states where � and
v are the friction coefficient and the spring constant, respectively.
The example shown here follows from the implicit equation �63� for
local energy input 2l0

2v=10kBT. For switching rates ���*�X� and
�	�*�X�, the membrane roughness is dominated by thermal mo-
tion and active switching, respectively.
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The effective parameters v and l0, as given by Eqs. �67�
and �68�, do not depend on � but only on X. Thus, if one
now considers the membrane roughness ��, the � depen-
dence remains the same as in the symmetric case �i.e., �� is
a decreasing function of the switching rate� whereas one has
a more complex X dependence. One consequence of this is
that, when plotted as a function of X, the roughness is no
longer symmetric with respect to X=1/2, see Fig. 9.

In the mean-field approximation used here, the membrane
roughness �� is given by

��
2 = a2kBT

�
f1�va2

�
� + a24X�1 − X�

l0
2v2

2���
� f1�va2

�
�

− f1�va2

�
+

2��a2

�
�� , �70�

with v and l0 as in Eqs. �67� and �68�. This expression for ��
2

increases with temperature T and decreases with the mean
switching rate �, as in the symmetric case. However, it
can no longer be decomposed into thermally and actively
induced contributions, since even the first term in Eq. �70�
which is proportional to kBT now depends on the switching
parameter X, see Eq. �67�. It is therefore impossible to extend
the definition �64� of the active temperature Tac to the
asymmetric case.

In Figs. 9 and 10, we show the average membrane rough-
ness �� as a function of the switching parameters X and �,
respectively, and compare results obtained from the MFA
and simulations. Our simulation data show that the MFA
leads to the roughness �� that is exact for X=0 and X=1, and
presumably for X=1/2 as well �see Fig. 10�. This result is
clear since for X=0 and X=1 Eq. �70� gives the correct ther-
mal roughness ��,th for membranes in the harmonic poten-
tials �24� and �25�, respectively. For other X values, the MFA
remains only in qualitative agreement with the simulation
results. If the stiffer harmonic potential dominates, the MF
roughness is too small compared to the simulation data. If
the softer harmonic potential dominates, then the MF rough-
ness is too large compared to the simulation results.

In Fig. 11 we show the stationary probability distribution
P�li� for finding a membrane patch at distance li from the
substrate. The two sets of data were obtained from Monte
Carlo simulations: the gray and black points correspond to
the switching rate �	v /� and ��v /�, respectively, where
the potential parameter v is given by Eq. �67�, and � denotes
the friction coefficient. At �=v /� the probability distribu-

FIG. 8. The average membrane position 	zi
, given in dimen-
sionless units, as a function of the average fraction X of crosslinker
molecules in the “on” state. The points represent Monte Carlo data
and the solid line shows relation �69� which is determined from the
MFA. The mean switching rate � is constant and, as in Fig. 3, given
by ��a2 /�=1 with friction coefficient �, lattice constant a, and
bending rigidity �. The minima of potentials �24� and �25� are lo-
cated at z+=6 and z−=2, whereas the spring constants v+ and v− are
given by v+a2 /�=0.2 and v−a2 /�=0.6, so that the parameter rela-
tion �26� is fulfilled.

FIG. 9. The dimensionless roughness �	zi
2
− 	zi
2�1/2 of the

membrane in the steady state is shown as a function of the average
fraction X of the “on” crosslinker molecules. The points are ob-
tained from MC simulations and the solid line shows relation �70�
which is determined from the MFA. The MFA is exact for X=0,
X=1, and X=1/2. The model parameters are the same as in Fig. 8.
Note also that the membrane roughness is no longer symmetric with
respect to X=1/2.

FIG. 10. The membrane roughness �	zi
2
− 	zi
2�1/2, given in di-

mensionless units, as a function of the mean switching rate � which
is rescaled with the friction coefficient �, the lattice constant a, and
the bending rigidity � �semilogarithmic plot�. In this example, the
average fraction of crosslinker molecules in their “on” state is
X=1/2. Other model parameters are the same as in Figs. 8 and 9.
The points represent data from our MC simulations and the solid
line is obtained from Eq. �70�. The MFA is correct over a wide
range of switching rates �.
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tion P�li� exhibits a noise-induced transition from an almost
symmetric to a highly asymmetric function.

V. SUMMARY AND OUTLOOK

We have presented a simple theoretical model for biomi-
metic membranes that are bound to a planar substrate by
anchored polymers which act as flexible crosslinkers. These
crosslinkers can attain two different conformations that differ
in their end-to-end distance. In addition, the crosslinker mol-
ecules are switchable, and one can induce transitions be-
tween their two conformations by an external signal such as
light, electric potential, or changes in pH. The membrane
then exhibits active shape fluctuations which lead to an in-
crease of the membrane roughness.

The conformational transitions of the crosslinker mol-
ecules as well as the thermal motion of the membrane in an
aqueous solution represent stochastic processes. Therefore
the model dynamics is stochastic and given by the Langevin-
type equation �5� that describes the overdamped motion of
the membrane displacement field, and the two-valued Mar-
kov process that describes random transitions between the
two possible conformational states, denoted by “on” and
“off,” of the crosslinker molecules.

The two-valued Markov process is characterized by two
switching rates, �+ and �−, for the forward and backward
transitions, respectively. These transition rates define the
mean switching rate �= ��++�−� /2 and the average fraction
X=�+ / ��++�−� of “on” molecules in a steady state. Using
both analytical methods and Monte Carlo simulations, we
have determined the average membrane position and mem-
brane roughness as a function of the switching parameters, X
and �, and temperature T. These calculations were done for

two different types of effective membrane potentials: �i�
Symmetric ones for which the two potential wells acting on
the membrane have the same shape and �ii� asymmetric ones
for which these two potential wells differed in their shape. In
case �i�, the Langevin-type equation contains only an addi-
tive noise term, in case �ii� this equation involves both addi-
tive and multiplicative noise.

In the symmetric case �i� we have solved the Langevin-
type equation analytically in Fourier space and found exact
expressions for the average membrane position and for the
membrane roughness, see Figs. 3–5. These exact results pro-
vide a useful test for our simulation methods. In this case, we
could decompose the membrane roughness into a thermal
and an active contribution as given by Eqs. �58� and �61�,
respectively. This allows us to determine the range of X and
� values for which the active fluctuations dominate over the
thermal ones and, additionally, to introduce a natural defini-
tion of an effective temperature Teff. Using Monte Carlo
simulations we have also determined the stationary probabil-
ity distribution for finding a membrane patch at a given dis-
tance from the substrate surface as shown in Fig. 6. This
distribution has a single maximum if the switching process is
sufficiently fast, while for low switching rates � it has two
separated maxima. It thus exhibits a noise-induced transition
which, however, cannot be understood in terms of the effec-
tive temperature Teff.

In the asymmetric case �ii� we are not able to solve the
Langevin-type equation analytically. To find an approximate
solution of this equation we have applied a mean-field theory
that leads to an expression for the average membrane posi-
tion which seems to be exact as confirmed by Monte Carlo
simulations, see Fig. 8. The mean-field expression for the
roughness, on the other hand, is only qualitatively correct,
see Fig. 9. Furthermore, it is no longer possible to decom-
pose the membrane roughness into a thermally and actively
induced contribution.

It is straightforward to generalize our results to tense
membranes and interfaces. For an effective membrane ten-
sion �, we obtain the modified relaxation rate

Rm,n =
v
�

+
�

�
Qm,n

2 +
�

a2�
Qm,n

4 �71�

which generalizes the expression �35� used above. One then
has to distinguish a rigidity-dominated regime with tension
�	�*��4�v /a2 from a tension-dominated regime with
tension ���* �39�. In the rigidity-dominated regime, the
tension is irrelevant and one recovers the system behavior as
obtained in the present paper; in the tension-dominated re-
gime, on the other hand, the bending rigidity is irrelevant and
the system behavior will be different. In fact, in the tension-
dominated regime, thermally excited membrane fluctuations
are strongly suppressed which implies an enlarged parameter
region, for which active switching dominates the membrane
roughness, compare Fig. 7. This latter modification also
applies to the shape fluctuations of interfaces governed by
interfacial tension.

Finally, let us come back to the experimental systems
mentioned in the Introduction. Several types of polymers

FIG. 11. The stationary probability distribution P�zi� for finding
a membrane patch at position zi. The two sets of data show results
of our MC simulations: the dashed and solid line corresponds to the
switching rate �=0.25v /� and �=2v /�, respectively, where v is
the effective parameter given by Eq. �67� and � denotes the friction
coefficient. At �=v /� the probability distribution P�zi� exhibits a
noise-induced transition from a distribution with a single peak to a
bimodal distribution. Here, the average fraction of crosslinker mol-
ecules in their “on” state is X=0.5. The minima of potentials �24�
and �25� are located at z+=6 and z−=2 whereas the spring constants
v+ and v− are given by v+a2 /�=2 and v−a2 /�=6, so that the pa-
rameter relation �26� is fulfilled.
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have been used as crosslinkers between membranes and sub-
strate surfaces �2,3�, and it seems feasible to integrate swit-
chable molecular groups into these polymers. One example
for such a group is provided by azobenzene chromophores
that can be switched between a low energy trans and a high
energy cis configuration. The spatial displacement associated
with such a conformational transition is relatively small and
of the order of 2 Å. Thus, in order to have an appreciable
effect onto the end-to-end distance of the crosslinkers, one
would have to incorporate several such groups into each
crosslinker.

Larger changes in the end-to-end distance can be achieved
by other molecular architectures such as, e.g., copolymers
consisting of polymethacrylic acid �PMAA� and polyethyl-
ene glycol �PEG�. These copolymers undergo a conforma-
tional transition from a relatively compact structure at low
pH to a relatively open or swollen structure at high pH.
Layers of such copolymers in aqueous solution have been
recently studied by atomic force microscopy �11�. The thick-
ness of these layers could be changed between 2 and 14 nm
by changing the pH of the solution between pH 4 and pH 9.
Furthermore, fast and reversible changes of the pH can be
achieved by photolysis of phenolic compounds �40�.

In our study, the change in polymer layer thickness
or membrane/substrate separation is equal to
2l0=2z0lsc2.6z0 nm where the latter estimate corresponds
to phospholipid bilayers, compare Eq. �14�. In the simula-

tions, we have chosen a relatively large value for z0 in order
to suppress statistical errors. The value z0=2, for example,
corresponds to a change of 5.2 nm in the polymer layer
thickness. However, the general relations �69� and �70� for
the average membrane separation and the membrane rough-
ness apply for any value of z0. As far as the roughness is
concerned, inspection of Eq. �70� shows that this quantity
depends only on the combination 2vl0

2 which represents the
local energy input provided by the active switching process.

In the numerical example shown in Fig. 7, the local en-
ergy input was chosen to be 10kBT. This represents the en-
ergy which is needed in order to stretch or compress the
flexible parts of the crosslinker. This energy input is typically
smaller than the energy needed in order to switch the con-
formation of the molecular group. The energy barrier for the
trans/cis transition of one azobenzene chromophore, e.g., is
of the order of 20 kBT �41�. For a light-induced process, both
the elastic deformation of the crosslinkers and the switching
of the molecular groups will be provided by the absorbed
photons. This is quite feasible since, for visible light, a single
photon provides an energy input between 60 and 100 kBT.

ACKNOWLEDGMENT

B.R. would like to thank Marek Napiórkowski for stimu-
lating and useful discussions.

�1� E. Sackmann, Science 271, 43 �1996�.
�2� M. L. Wagner and L. K. Tamm, Biophys. J. 79, 1400 �2000�.
�3� C. A. Naumann et al., Biomacromolecules 3, 27 �2002�.
�4� M. S. Ferritto and D. A. Tirrell, Macromolecules 21, 3117

�1988�.
�5� G. Möller, M. Harke, and H. Motschmann, Langmuir 14, 4955

�1998�.
�6� K. Ichimura, S.-K. Oh, and M. Nakagawa, Science 288, 1624

�2000�.
�7� S. Abbott, J. Ralston, G. Reynolds, and R. Hayes, Langmuir

15, 8923 �1999�.
�8� H. Lahann et al., Science 299, 371 �2003�.
�9� R. A. Bissell, E. Córdova, A. E. Kaifer, and J. F. Stoddart,

Nature �London� 369, 133 �1994�.
�10� J. Berna et al., Nat. Mater. 4, 704 �2005�.
�11� M. Ye, D. Zhang, L. Han, J. Tejada, and C. Ortiz, Soft Mater.

2, 243 �2006�.
�12� Y. Liu, L. Mu, B. Liu, and J. Kong, Chem.-Eur. J. 11, 2622

�2005�.
�13� B. Różycki, R. Lipowsky, and T. R. Weikl, Phys. Rev. Lett.

96, 048101 �2006�.
�14� S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, J. Cell Biol.

141, 1551 �1998�.
�15� N. S. Gov and S. A. Safran, Biophys. J. 88, 1859 �2005�.
�16� J. Prost and R. Bruinsma, Europhys. Lett. 33, 321 �1996�.
�17� R. Granek and S. Pierrat, Phys. Rev. Lett. 83, 872 �1999�.
�18� D. Lacoste and A. W. C. Lau, Europhys. Lett. 70, 418 �2005�.
�19� L. C.-L. Lin, N. Gov, and F. L. H. Brown, J. Chem. Phys. 124,

074903 �2006�.
�20� J.-B. Manneville, P. Bassereau, D. Levy, and J. Prost, Phys.

Rev. Lett. 82, 4356 �1999�.
�21� M. C. Sabra and O. G. Mouritsen, Biophys. J. 74, 745 �1998�.
�22� S. Ramaswamy, J. Toner, and J. Prost, Phys. Rev. Lett. 84,

3494 �2000�.
�23� H.-Y. Chen, Phys. Rev. Lett. 92, 168101 �2004�.
�24� R. Reigada, J. Buceta, and K. Lindenberg, Phys. Rev. E 71,

051906 �2005�.
�25� W. Horsthemke and R. Lefever, Noise–Induced Transitions,

1st ed. �Springer-Verlag, Berlin, 1984�.
�26� H. Risken, The Fokker-Planck Equation: Methods of Solution

and Applications �Springer-Verlag, Berlin, 1989�.
�27� N. van Kampen, Stochastic Processes in Physics and Chemis-

try �Elsevier, Amsterdam, 1992�.
�28� R. Lipowsky and B. Zielinska, Phys. Rev. Lett. 62, 1572

�1989�.
�29� R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett. 82,

221 �1999�.
�30� T. R. Weikl and R. Lipowsky, Phys. Rev. E 64, 011903 �2001�.
�31� J. O. Rädler, T. J. Feder, H. H. Strey, and E. Sackmann, Phys.

Rev. E 51, 4526 �1995�.
�32� B. Pozo-Navas, V. A. Raghunathan, J. Katsaras, M. Rappolt,

K. Lohner, and G. Pabst, Phys. Rev. Lett. 91, 028101 �2003�.
�33� H-G. Döbereiner, G. Gompper, C. K. Haluska, D. M. Kroll, P.

G. Petrov, and K. A. Riske, Phys. Rev. Lett. 91, 048301
�2003�.

�34� U. Seifert and S. A. Langer, Europhys. Lett. 23, 71 �1993�;

ADHESION OF MEMBRANES VIA SWITCHABLE MOLECULES PHYSICAL REVIEW E 73, 061908 �2006�

061908-13



Biophys. Chem. 49, 13 �1994�.
�35� M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

�Clarendon Press, Oxford, 1986�.
�36� P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

�1977�.
�37� R. D. Vale and F. Oosawa, Adv. Biophys. 26, 97 �1990�.
�38� K. Binder and D. W. Heermann, Monte Carlo Simulation in

Statistical Physics �Springer-Verlag, Berlin, 1992�.
�39� R. Lipowsky, in Structure and Dynamics of Membranes, edited

by R. Lipowsky and E. Sackmann �Elsevier, Amsterdam,
1995�, p. 521.

�40� M. Gutman, D. Huppert, and E. Pines, J. Am. Chem. Soc. 103,
3709 �1981�.

�41� A. R. Dias et al., J. Chem. Thermodyn. 24, 439 �1992�.

RÓŻYCKI, WEIKL, AND LIPOWSKY PHYSICAL REVIEW E 73, 061908 �2006�

061908-14


