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A Technical aspects of the calculations

A.1 Mean First Passage Times

The effective unbinding rate as given by Eq. (8) has been derived by a simple
equilibrium argument. The same equation can also be obtained by calculat-
ing the mean first passage time. Let us denote by Tm,N the mean first passage
time to the state |0〉 with no bound motor if we start from state |m〉 with m
bound motors at time t = 0 (the second index N indicates the total number
of motors). The effective unbinding rate is then given by 1/T1,N , since the
cargo particle first binds to the filament through a single motor.

The first passage times fulfill the recursion relations

Tm,N =
1

εm + πm

+
πm

εm + πm

Tm+1,N +
εm

εm + πm

Tm−1,N (S.1)

for m 6= 0, N , , see, e.g., [1], with the boundary recursions

TN,N =
1

εN
+ TN−1,N and (S.2)

T0,N = 0. (S.3)

Because of the boundary condition T0,N = 0, the recursion relation (S.1)
with m = 1 can be used to express T2,N in terms of T1,N . Next, starting from
(S.1) with m = 2 and using the relation between T2,N and T1,N , we can also
express T3,N in terms of T1,N . Iteration of this procedure leads to explicit
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expressions for Tm,N in terms of T1,N . Finally, when these expressions are
used in (S.2), we obtain an implicit equation for T1,N which is solved by

T1,N =
1

ε1

(
1 +

N−1∑
i=1

i∏
n=1

πn

εn+1

)
, (S.4)

which is exactly the inverse of Eq. (8).

A.2 Distribution of Unbinding Times

To calculate the distribution of unbinding times, we consider the probability
distribution for the passage from state |m〉 with m bound motors at time
t = 0 to the unbound state |0〉 at time t which we denote by ψ̃m,N(t). The
distribution of unbinding times is then given by ψ̃N(∆tb) ≡ ψ̃1,N(t = ∆tb)
since the initial bound state of the cargo particle is provided by state |1〉 with
m = 1 for which the particle is bound to the filament by a single motor.

The probability distributions ψ̃m,N(t) fulfill the recursion relations

ψ̃m,N(t) =
∫ t

0
e−(εm+πm)τ

[
πm ψ̃m+1,N(t− τ) + εm ψ̃m−1,N(t− τ)

]
dτ (S.5)

for m 6= 0, N ,

ψ̃N,N(t) =
∫ t

0
e−εN τεN ψ̃N−1,N(t− τ)dτ, and (S.6)

ψ̃0,N(t) = δ(t). (S.7)

These recursion relations are obtained by considering the first binding/un-
binding event explicitly, summing over the two possibilities for this step
(to m ± 1), and integrating over all possible times τ at which this first
event occurs. The exponential terms express the probability that no bind-
ing/unbinding event occurred until the time τ .

Using Laplace transforms, we can transform the convolution integrals
into algebraic equations and iteratively obtain all the Laplace transformed
distributions ψ̃m,N(s). The solution is given by a finite continued fraction of
depth N , which has the form

ψ̃1,N(s) =
ε1

ε1 + s+ π1

1− ε2

ε2+s+π2

(
1− ...

...+πN−1(1−
εN

εN +s)
...

)

, (S.8)
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see chapter 9 of Ref. [2].
In general, the inverse Laplace transform of (S.8) can be expressed as

ψ̃1,N(t) =
N∑

i=1

e−zit Res(−zi), (S.9)

where the parameters −zi are the poles of ψ̃1,N(s) and Res(−zi) are the
corresponding residues, see [3]. All poles −zi are real and negative. Using
the definition ψ̃N(∆tb) ≡ ψ̃1,N(t = ∆tb) in the relation (S.9), we obtain the
binding time distribution as given by Eq. (9).

In general, the poles and the residues have to be calculated numerically,
but in the two simplest cases, N = 1 and N = 2, the inverse Laplace trans-
form can be obtained in closed form. For N = 1, we can check that we recover
the single exponential ψ̃1,1(t) = ε1e

−ε1t, and for N = 2 the first passage time
distribution is given by

ψ̃1,2(t) =
ε

2

[(
1− ε1 + π1 − ε2

R

)
e−

1
2
(ε1+ε2+π1−R)t

+
(
1 +

ε1 + π1 − ε2
R

)
e−

1
2
(ε1+ε2+π1+R)t

]
(S.10)

with R ≡
√

(ε1 + ε2 + π1)2 − 4ε1ε2.

B Mutual Exclusion of Motors

In general, several motor molecules, which are bound to a certain cargo
particle, may compete for the same binding site of the filament. Such a com-
petition may arise, for example, because the motor molecules are densely
packed on the cargo particle or because they move along a single protofila-
ment of the microtubule. In such a situation, mutual exclusion or hard core
repulsion between the motors should to be taken into account. Exclusion
reduces the binding of motors to the filament and the velocity of the bound
motors [4, 5]. Within a mean-field approximation, these two effects can be
incorporated into our model by using modified binding rates πn and modified
bound state velocities vn as given by

πn = (N − n)πad

[
1− n

Ns

]
and vn = v

[
1− n− 1

Ns − 1

]
(S.11)

for n ≤ Ns where Ns is the number of accessible binding sites that the motors
can reach for a given position of the cargo particle. The terms [1−n/Ns] and
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Figure 6: Exclusion effects: (a) Average velocity veff and (b) average walking
distance 〈∆xb〉 as functions of the number N of motors attached to the cargo.
The chosen parameter values are those of kinesin as described in the text.
The number of binding sites which are accessible to the motors for a given
position of the cargo particle is Ns = 100 as appropriate for a cargo with
radius ∼ 1µm [solid line in (a) and circles in (b)]. The values indicated
by the dashed line in (a) and the crosses in (b) are obtained if exclusion
effects are not taken into account. For typical motor numbers N <∼ 10, direct
comparison shows that exclusion effects are small.

[1− (n− 1)/(Ns− 1)] describe the probability that the site to which a motor
attempts to bind or to move is not occupied by another motor.1 For n ≥ Ns,
all binding sites, that could be reached by the motors, are occupied, so that
πn = 0 for n ≥ Ns. The unbinding rates εn are unaffected by exclusion and
are again given by εn = n ε. If the number of accessible binding sites Ns is
much larger than the number of motors attached to the cargo particle, the
motors are effectively non-interacting, and Eq. (S.11) can be approximated
by Eq. (12).

For typical cargoes such as beads or vesicles with diameters between
100 nm and 1 µm, we can estimate the number of binding sites within the
contact zone of the cargo particle to be of the order of 50–150, while the
number of motors is typically 1–10. For these motor numbers and for the
parameter values corresponding to kinesin, exclusion effects are rather small.
Inspection of Fig. 6(a). shows that the average velocity is reduced by a few
percent as compared to non-interacting motors. The average walking dis-

1The difference between these two expressions arises from a finite-size effect. When an
unbound motor attempts to bind to the state |n〉, it encounters n out of Ns binding sites
that are already occupied. In contrast, a bound motor in state |n〉 ’feels’ only n−1 motors
which are bound to n− 1 out of the remaining Ns − 1 binding sites.
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tance is more sensitive to exclusion, but still of the same order of magnitude
as for non-interacting motors. For example, for N = 5, the walking distance
which is ' 310 nm without exclusion is reduced to 280 nm, see Fig. 6(b).

If motors are closely packed on the cargo particle, i.e. for N ' Ns, a
reduction of the velocity to about 35 percent of the value without exclusion
is obtained as shown in Fig. 6(a). For very high motor densities, a reduction
of the velocity of the order of 50 percent has indeed been observed both in
microtubule gliding assays [6] and bead assays (J. Beeg, private communica-
tion) for kinesin.

In principle, exclusion implies that the walking distance exhibits a maxi-
mum as a function of the number of motors, since at very large motor num-
bers, the velocity approaches zero. Using the rates (S.11) in Eq. (11), we
find, however, that this maximum occurs at walking distances which are far
too large to be experimentally accessible.
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