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Abstract. – We study the activated motion of adsorbed polymers which are driven over a
structured substrate by a localized point force. Our theory applies to experiments with single
polymers using, for example, tips of scanning force microscopes to drag the polymer. We con-
sider both flexible and semiflexible polymers, and the lateral surface structure is represented by
double-well or periodic potentials. The dynamics is governed by kink-like excitations for which
we calculate shapes, energies, and critical point forces. Thermally activated motion proceeds by
the nucleation of a kink-antikink pair at the point where the force is applied and subsequent dif-
fusive separation of kink and antikink. In the stationary state of the driven polymer, the collec-
tive kink dynamics can be described by a one-dimensional symmetric simple exclusion process.

Introduction. – The thermally activated escape over potential barriers under the influence
of an external force has been first solved by Kramers for a point particle [1]. Since then this
process has been extensively studied not only for point particles [2] but also for extended ob-
jects such as elastic strings. Examples are provided by condensed-matter systems: dislocation
motion in crystals [3,4], motion of flux lines in type-II superconductors [5], or charge-density
waves [6]. An analogous problem is the activated motion of polymers over a potential barrier,
which has been considered both for flexible [7] and semiflexible polymers [8, 9].

In all of these previous studies, the thermally activated motion is induced by spatially
uniform forces which are applied to the whole polymer or elastic line. In contrast, in the
present article, we will address the thermally activated motion of polymers over potential
barriers in the presence of a point force which acts only locally on the polymer. We will
consider both flexible and semiflexible polymers.

Our theoretical study is motivated by experimental advances in the manipulation and
visualization of single polymers using optical [10] and magnetic [11] tweezers, or scanning
force microscopy [12]. In ref. [12], it has been demonstrated that these techniques allow to
experimentally apply localized point forces to a polymer adsorbed on a substrate. Polymers
that are strongly adsorbed onto crystalline substrates such as graphite or mica experience a
spatially modulated adsorption potential reflecting the underlying crystal lattice structure and
giving rise to preferred orientations of the adsorbed polymer. For such systems, the dynamics
of the adsorbed polymer is governed by thermal activation over the potential barriers of the
surface potential.
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Fig. 1 – (a) Kink-antikink configuration of a semiflexible polymer in a double-well potential V under
the action of a point force Fp displacing the midpoint in the z-direction to a value zm. The configura-
tion zk(x) is calculated for Fp/Fc = 0.19, zm/a = 0.21 (L2/wk = 1.1, L1/wk = 15) and has an energy
E/2Ek = 0.72. (b) The midpoint zm (in units of a) as a function of the external force (in units of
critical force 4Ek/a). (c) Energy E(zm) (in units of 2Ek) of a kink-antikink pair as a function of the
midpoint zm (in units of a) for different forces Fp/Fc = 0, 0.19, 0.5.

One example of polymers adsorbed on a structured surface are self-assembling polymer
chains consisting of long-chain alkanes and alkylated small molecules on crystalline substrates
such as the basal plane of graphite [13]. The alkyl chains orient along the substrate axes
thereby providing an effective periodic adsorption potential. Also biopolymers such as DNA
or polyelectrolytes can be oriented on the basal plane of graphite by using long-chain alkanes
as an oriented template layer [12, 14]. It has been demonstrated experimentally that these
polymers can be manipulated individually on the structured surface by applying point forces
using the tip of a scanning force microscope [12].

Our main results are as follows. At low forces, the dynamics of the polymer is governed
by thermal activation and nucleation of localized kink-like excitations as shown in fig. 1. We
calculate the critical point force below which the polymer moves by thermal activation over the
barriers of the adsorption potential. The steady state of this activated motion determines the
profile and velocity of the moving polymer and is governed by the (collective) driven motion of
the kink excitations which can be described as a one-dimensional symmetric simple exclusion
process of these excitations. Our results for the critical point force, the velocity, and the profile
of the moving polymer are accessible in manipulation experiments on adsorbed polymers and
allow to extract material parameters of the polymer and the substrate structure from such
experiments. We will first present detailed calculations for stiff, semiflexible polymers. Results
for flexible polymers are discussed in the end.

Model. – We consider the dynamics of a semiflexible polymer adsorbed to a planar two-
dimensional structured substrate under the influence of an external point force Fp pulling
the polymer. A generic model of the substrate structure is a double-well potential that is
translationally invariant in one direction, say the x-axis as in fig. 1. The semiflexible polymer
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has a bending rigidity κ and persistence length Lp = 2κ/T , where T is the temperature in
energy units. We focus on the regime where the potential wells are sufficiently deep and
narrow so that the adsorbed polymer is oriented along the x-axis and can be parameterized
by displacements z(x) perpendicular to the x-axis with −L/2 < x < L/2, where L is the
projected length of polymer, see fig. 1. The Hamiltonian of an oriented polymer is given by

H{z(x)} =
∫ L/2

−L/2

dx
[κ
2

(
∂2

xz
)2

+ V (z)
]
, (1)

i.e., the sum of bending and potential energy [8,9]. We consider a piecewise harmonic double-
well potential

Vp(x, z) ≡ V0(z)− Fpδ(x− xp)z (2)

with V0(z) ≡ 1
2V0(|z| − a)2, where V0 is the depth of the potential. The potential (2) contains

the action of a point force pulling the polymer at the point x = xp with a force Fp in the
z-direction. For zero point force Fp = 0, the potential is symmetric, translationally invariant
in the x-direction, has a barrier height V0a

2/2, and the distance between minima is 2a. For
Fp > 0, the point force in (2) breaks the translational invariance of the system.

Our assumption of an oriented polymer is valid if U-turns of the polymer within a single
potential well are suppressed by the bending energy. This is the case if the size 2a of each
potential well in the z-direction is smaller than the persistence length Lp. This condition is
typically fulfilled for adsorbing substrates structured on the nm scale [13]. Furthermore, the
polymer should be strongly adsorbed, which corresponds to a small density of thermally in-
duced kink excitations, i.e., Ek 	 T , where Ek is the kink energy, see eq. (4) below and ref. [8].

The overdamped motion of the polymer is described by [8,9]

γ∂tz = −δH
δz

+ ζ(x, t) = −κ∂4
xz − V ′

0(z) + Fpδ(x− xp) + ζ(x, t), (3)

where γ is the damping constant and ζ(x, t) is a Gaussian distributed thermal random force
with 〈ζ〉 = 0 and correlations 〈ζ(x, t)ζ(x′, t′)〉 = 2γTδ(x−x′)δ(t− t′). We neglect longitudinal
motion of polymer segments (see ref. [9] for a discussion) and do not study the effects of an
external tension or compression. For Vp = 0, tension and compression have been considered
in [15] and [16], respectively.

Static kinks. – First, we calculate the stationary shape of the semiflexible polymer that
is deformed by a point force acting at its midpoint into a kink-antikink configuration zk(x)
as shown in fig. 1a. This configuration is obtained by displacing the polymer at the midpoint
where the point force acts to a prescribed position zm and letting the rest of the polymer
equilibrate. Therefore, we have to solve the saddle-point equation δH/δz = 0 for the en-
ergy (1), i.e., eq. (3) for the time-independent case and in the absence of noise (ζ = 0), with
appropriate boundary conditions and a prescribed position zk(xp) = zm. For zm > 0 the
kink configuration crosses the barrier at two points, see fig. 1a; we choose the origin x = 0
and the length L2 such that these points are zk(0) = 0 and zk(L2) = 0. The polymer has
a total length L = L1 + L2 and extends from x = −L1/2 to x = L1/2 + L2, and the force
acts at the midpoint xp = L2/2. The kink-like configuration has to fulfill four boundary
conditions, zk(−L1/2) = zk(−L1/2 + L2) = −a and z′k|−L1/2 = z′k|−L1/2+L2 = 0. At the
midpoint xp = L2/2, we fix the displacement zm of the polymer zk(xp) = zm, and the point
force causes a discontinuity in the third derivative, z′′′k (xp+)− z′′′k (xp−) = Fp/κ. In addition,
zk(x) and its first two derivatives have to be continuous at the midpoint, and zk(x) and its
first three derivatives have to be continuous at each crossing point x0 = 0, L2.
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Away from the point force, i.e., for x �= xp the saddle point solutions are linear combi-
nations of the four functions exp[±x/wk] exp[±ix/wk], where wk ≡ √

2(κ/V0)1/4 is the kink
width. Construction of the solution through the four regions separated by the crossing points
and the midpoint then requires to determine 16 linear expansion coefficients and the two pa-
rameters L2 and zm as a function of the system size L and the remaining model parameters
including the point force from the boundary and matching conditions. The resulting shapes of
the kink-like polymer configurations are shown in fig. 1a. Figure 1c shows the energies E(zm)
of the kink-like configuration as a function of zm for different point forces Fp. For low forces
the energies E(zm) in fig. 1c have two stationary points, a stable minimum at zm = zm,min < 0
(the midpoint does not cross the barrier) and an unstable maximum at zm = zm,nuc > 0. This
maximum is unstable with respect to further displacement of the midpoint and represents the
critical nucleus configuration. For Fp = 0, we obtain another stable minimum at zm = a (the
midpoint reaches the next potential well) which is the static kink-antikink solution [8]. The
width wk of a static kink and its characteristic energy Ek are given by

wk =
√
2(κ/V0)1/4, Ek = a2κ1/4V

3/4
0 /

√
2. (4)

In the limit of large L, we can find analytic expressions for the resulting stationary positions
zm,min and zm,nuc as a function of the applied force Fp, see fig. 1b. We find that there are no
stationary positions if the point force Fp exceeds a critical value Fc given by

Fc = 4Ek/a = 2
√
2aκ1/4V

3/4
0 . (5)

The midpoint displacement zm,min < 0 in the stationary minimum is a linear function of the
external force, zm,min = −a(1−Fp/Fc) and reaches the barrier at zm,min = 0 for Fp = Fc, see
fig. 1b. This force-displacement relation describes the linear response of the polymer before
crossing the barrier. For the midpoint displacement in the unstable nucleus configuration
zm,nuc > 0, on the other hand, we obtain the following set of two equations for zm,nuc and L2:

Fp/Fc = (cosx− sinx)e−x
∣∣
x=L2/2wk

, zm,nuc/a = 1− (sinx+ cosx)e−x
∣∣
x=L2/2wk

. (6)

As shown in fig. 1b, Fp is decreasing for increasing zm,nuc as the critical nucleus configuration
widens for small point forces. The negative values of Fp for large zm,nuc indicate that for a
semiflexible polymer the kink-antikink configuration reached for zm = a is stabilized by an
energy barrier. Only below a negative threshold force F−

c ≡ −Fce
−π/2 < 0 the kink-antikink

configuration becomes unstable.

Kink nucleation. – Now we turn to the activated kink nucleation in the presence of a point
force pushing the polymer over the potential barrier. The point force breaks the translational
invariance in x-direction and kink-antikink pairs are only nucleated at x = xp with a rate J per
unit time. This thermally activated process is governed by an energy barrier which is given
by the excess energy ∆En of the critical nucleus configuration. The energy of the critical
nucleus can be obtained from the energy profiles E(zm) shown in fig. 1c as the difference
∆En ≡ E(zm,nuc)−E(zm,min) between minimum and maximum values of the energy E(zm)
of the kink-like configuration. We find ∆En ∼ 2Ek(1− Fp/Fc)2, which vanishes as the force
approaches the critical value Fc. The activation energy enters the nucleation current

J = (Qn/2π) exp [−∆En/T ] with Q2
n ≡ |ωn,0|ωs,0

∏
p>0

(ωs,p/ωn,p), (7)

which shows Arrhenius-type behaviour. The prefactor Qn includes the spectrum of attempt
frequencies ωn,p and ωs,p (p = 0, 1, . . .) for phononic fluctuations around the critical nucleus
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Fig. 2 – (Left) The shape of a semiflexible polymer pulled over a periodically structured surface by
a point force acting at the midpoint. The horizontal lines indicate the position of potential barriers.
The thick solid line shows a typical polymer configuration z(x), the thin line the average shape 〈z(x)〉.
(Right) The stationary kink density ρk(x) as a function of the distance from the point xp where the
force is acting on the polymer.

configuration and the straight configuration zm = −a, respectively. We find one unstable
negative mode ωn,0 ≤ 0, which diverges as ωn,0 = (V0/γ)[1 − 24/3(1 − Fp/Fc,κ)−4/3] upon
approaching the critical force Fp ≈ Fc, a bound state with 0 < ωn,1 ≤ V0/γ, and a set
of positive modes ωn,p > V0/γ with the same level spacing as the modes of the straight
configuration. It is important to note that two translational modes (for kink and antikink)
only exist if the point force is zero because the point force breaks the translation invariance.
Close to the critical force Fp � Fc, we obtain Q2

n ≈ (V0/γ)2[1− 24/3(1− Fp/Fc)−4/3].

Collective kink dynamics. – After nucleation of a kink-antikink pair at x = xp by thermal
activation, kink and antikink are driven apart by a small force ∼ Ek/wke

−L2/wk , which decays
exponentially with the distance L2 > wk between kink and antikink. This exponential decay
is characteristic for a point driving force which interacts only over a distance ∼ wk with the
kink and very different from the case of a spatially uniform force, where kinks experience a
spatially uniform driving force [8, 17]. For separations L2 > wk the kink diffuses essentially
freely with a diffusion constant Dk = 2Twk/3γa2 [8].

A spatially localized driving force also leads to a distinct steady-state motion of the polymer
in a periodically continued potential, see fig. 2. This motion can be described in terms of the
collective dynamics of an ensemble of kinks and antikinks which are generated at the single
point x = xp by the point force and subsequently separated by the exponentially decaying
force. For the following discussion we choose coordinates such that xp = 0, and the polymer
extends from −L/2 < x < L/2. Because a point force creates kink-antikink pairs only at
x = 0, we find an ensemble consisting only of kinks in the region x > 0 and an ensemble
consisting only of antikinks in x < 0. As two (anti-)kinks have a mutual short-range repulsion
of range wk, we have an ensemble of diffusing kinks (antikinks) with a hard-core repulsion on
the interval L/2 > x > 0 (−L/2 < x < 0). In order to treat the non-equilibrium dynamics
of these ensembles, we introduce a discrete one-dimensional lattice of possible kink positions
with spacing ∆x = wk which allows to map the dynamics of each ensemble onto the symmetric
simple exclusion process (SSEP) with open boundaries [18,19]. In the following we consider the
kink ensemble (x > 0); the antikink ensemble (x < 0) can be treated analogously. In the kink
ensemble, the kink particles are freely diffusing, i.e., they have symmetric rates D ≡ Dk/w

2
k

for hopping to the right and left on the lattice xi = iwk (i = 1, . . . , N with N = L/2wk); they
interact through their hard-core repulsion. In the SSEP, boundary conditions are specified by
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rates α and δ for particles to enter the system at the left (i = 1) and right (i = N), respectively,
if that site is empty. For the kink ensemble we have α = J , as kinks are nucleated at i = 1
with the Kramers rate (7), and δ = 0 as no kinks enter the system at i = N . Furthermore,
kinks leave the system diffusively, at i = 1 by annihilation with an antikink and at i = N by
relaxation of the free polymer end.

Despite the hard-core interaction, the stationary density profile ρk(x) of kinks in the
SSEP fulfills the stationary diffusion equation, ∂2

xρk = 0 [18,19]. Furthermore, our boundary
conditions are equivalent to boundary conditions ρk(0) = w−1

k min(α/D, 1) and ρk(L/2) = 0
for the stationary kink density at the ends of the system. For α > D the system reaches its
maximal kink density w−1

k at x = 0. The resulting linear density profile ρk(x) is

ρk(x) = ρk(0)(1− 2|x|/L) with ρk(0) = w−1
k min(α/D, 1) = min(Jwk/Dk, 1/wk) (8)

as shown in fig. 2 (right). The average distance between kinks is 1/ρk(x) and at each kink the
polymer position changes by ∆z = −2a leading to a characteristic parabolic polymer shape
〈z(x)〉 − zm = −2a

∫ |x|
0

dx̃ρk(x̃) = −2(a/wk)min(Jw2
k/Dk, 1)|x|(1 − |x|/L) in the stationary

state as shown in fig. 2 (left). The average velocity vz ≡ 〈∂tz〉 of the polymer in the z-
direction is determined by the stationary current JSSEP = −Dk∂xρk = min(J,Dk/w

2
k)wk/L

of the SSEP. Only for small nucleation rates J � Dk/w
2
k the kink interaction can be ne-

glected and the current is directly given by the Kramers rate (7), JSSEP ≈ Jwk/L. Dur-
ing the time 1/JSSEP the polymer advances by a distance 2a leading to vz = 2aJSSEP ≈
2amin(J,Dk/w

2
k)wk/L.

Flexible polymers. – So far we considered semiflexible polymers dominated by their
bending energy. In this section we want to outline the main results for flexible Gaussian
polymers governed by entropic elasticity with a tension σ = T/2b, where b is the Kuhn length.
The Hamiltonian of a flexible Gaussian polymer on a planar two-dimensional substrate is
given by

H =
∫ Lc/2

−Lc/2

ds
[σ
2

[
(∂sx)2 + (∂sz)2

]
+ V (z)

]
, (9)

where we integrate over the arc length s with −Lc/2 < s < Lc, and Lc is the contour length
of the polymer. The translationally invariant potential V (z) is a function of z only. Therefore
fluctuations in the x-coordinate decouple and are Gaussian with moments 〈(x(Lc)−x(0))〉 = 0
and 〈(x(Lc) − x(0))2〉 ≈ Lcb/2. The Rouse dynamics of the z-coordinate of the polymer is
given by

γ∂tz = σ∂2
sz − V ′

0(z) + Fpδ(s− sp) + ζ(s, t), (10)

where γ is the damping constant and ζ(x, t) is a Gaussian-distributed thermal random force.
The point force is on the monomer s = sp. For a flexible polymer the kink width is
wk,σ = (σ/V0)1/2 and the kink energy Ek,σ = a2(σV0)1/2 [7, 17]. As for the semiflexible
polymer, we can calculate the energy E(zm) of a kink-antikink configuration with prescribed
midpoint zk(sp) = zm. For a flexible polymer the displacements in the stationary minimum
at zm = zm,min and the maximum representing the nucleus with zm = zm,nuc are both lin-
ear functions of the external force, zm,min = −a(1 − Fp/Fc,σ) and zm,nuc = a(1 − Fp/Fc,σ),
where the critical force for the flexible polymer is given by Fc,σ = 2Ek,σ/a = 2a(σV0)1/2. The
nucleation current Jσ for the flexible polymer is given by the same expression (7) as for a
semiflexible polymer with the excess energy ∆En ∼ 2Ek,σ(1−Fp/Fc,σ)2. The spectrum of at-
tempt frequencies ωn,p for the critical nucleus shows slightly different behaviour for the flexible
polymer as the unstable negative mode ωn,0 ≈ −3V0/γ does not diverge for Fp ≈ Fc,σ, and we
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finally obtain Qn ≈ √
3V0/γ. The collective kink dynamics for a flexible polymer can also be

mapped onto a one-dimensional SSEP. As a function of the arc length s, we find a linear sta-
tionary kink density profile ρk(s) = ρk(0)(1−2|s|/Lc) with ρk(0) = min(Jσwk,σ/Dk,σ, 1/wk,σ)
and a parabolic shape 〈z(s)〉 = −2(a/wk,σ)min(Jσw

2
k,σ/Dk,σ, 1)|s|(1 − |s|/Lc) analogously

to the semiflexible polymer, cf. eq. (8), where Dk,σ = Twk,σ/γa
2 [17] is the kink diffusion

constant of the flexible polymer. In the real space coordinates of the substrate, however,
the resulting shape is (〈x(s)〉, 〈z(s)〉) = (0, 〈z(s)〉) and thus, the parabolic shape is lost
due to the decoupled Gaussian fluctuations in the x-direction. The result for the velocity
vz = 2aJSSEP ≈ 2amin(Jσ,Dk,σ/w

2
k,σ)wk,σ/Lc is analogous to the semiflexible polymer.

Conclusion. – In summary, we described the activated motion of single adsorbed poly-
mers on a structured substrate displaced by localized point forces, which can be realized
experimentally using, e.g., scanning force microscopy tips. The dynamics is governed by
kink-like excitations for which we have calculated shapes, energies, and critical point forces.
Kink and antikink pairs are locally nucleated by the point force and then undergo a sepa-
ration which is diffusive on separations larger than the kink width wk. We have calculated
the nucleation rate (7) using Kramers theory. The collective kink dynamics can be mapped
onto a one-dimensional symmetric simple exclusion process (SSEP). Using this mapping, we
find the average polymer velocity and a characteristic average parabolic shape for a driven
semiflexible polymer.
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We thank S. Klumpp for discussions on the simple symmetric exclusion process.
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[19] Schütz G. M., Phase Transitions and Critical Phenomena, Vol. 19, edited by Domb C. and

Lebowitz J. L. (Academic Press, San Diego) 2001.




