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Abstract

Processive molecular motors which drive the traffic of organelles in cells move in a directed way along cytoskeletal

filaments. On large time scales, they perform motor walks, i.e., peculiar random walks which arise from the repeated

unbinding from and rebinding to filaments. Unbound motors perform Brownian motion in the surrounding fluid. In

addition, the traffic of molecular motors exhibits many cooperative phenomena. In particular, it faces similar problems

as the traffic on streets such as the occurrence of traffic jams and the coordination of (two-way) traffic. These issues are

studied here theoretically using lattice models.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of constructing nanometer-sized de-
vices and machines has created a lot of excitement
during the past years. Despite the progress made,
the functionality of artificial nano-devices is,
however, still rather limited. At the same time,
more and more biomolecular nano-machines have
been identified in the cells of living beings where
e front matter r 2005 Elsevier B.V. All rights reserve
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they accomplish a huge variety of tasks. Many
of these molecular motors are now rather well
studied and were found to work with an amazing
degree of precision and efficiency as a result of
billions of years of evolution [1,2]. In the follow-
ing, we will focus on one class of molecular motors
which has been studied quite extensively during
the last decade, namely processive cytoskeletal
motors which drive the traffic of vesicles and
organelles within cells. These motors hydrolyze
adenosinetriphosphate (ATP) and convert the free
energy from this chemical reaction into directed
d.
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Fig. 1. The ‘bead assay’ constitutes a biomimetic model system:

a molecular motor transports a (glass or latex) bead along a

filament which is immobilized on a surface.
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movements along filaments of the cytoskeleton.
This class of motors contains kinesins and dyneins,
which move along microtubules, and certain
myosins, which move along actin filaments. These
motors walk along the filaments by performing
discrete steps with a step size which corresponds to
the repeat distance of the filament, 8 nm for
kinesins and 36 nm for myosin V. They are called
processive if they make many steps while staying in
contact with the filament.
From a physical point of view, much of the

interest in molecular motors is due to the fact that
the difference in size compared to macroscopic
engines implies also conceptual differences. The
typical energy of macroscopic motors is much
larger than the thermal energy, kBT , while the
typical energies of molecular motors are of the
order of kBT . For example, the hydrolysis of ATP
releases about 20 kBT . On the one hand, molecular
motors have to cope with perturbations arising
from thermal fluctuations; on the other hand, the
unavoidable presence of noise suggests that evolu-
tion has created motors which make use of this
noise in order to generate work or directed
movement.
From a technological viewpoint, the amazing

properties of single biological motor molecules
and the complexity of the systems into which they
are integrated in the cell provide inspiration for the
design of artificial nanoscale transport systems
[3,4].
In this article, we discuss several theoretical

aspects of the motor movements. In Section 2, we
start by summarizing some recent experimental
results and discuss the question whether noise-
driven mechanisms are used by these motors. In
Section 3, we discuss another effect of noise,
namely the detachment of motors from their
tracks due to thermal fluctuations, which leads to
peculiar random walks. We derive the asymptotic
behavior of these random walks using the statis-
tical properties of the returns of motors to the
filament. Finally, in Section 4, we summarize our
recent studies of traffic problems which arise in
systems with many molecular motors due to their
mutual exclusion from binding sites of the
filaments. These topics are also addressed in the
review article [5].
2. Active movements of molecular motors

Molecular motors can be studied outside cells using
biomimetic model systems. In these experiments, the
biological complexity is reduced to a minimal number
of components, namely motors, filaments, and ATP.
An example is shown in Fig. 1. By these experiments,
one can observe movements of single motor mole-
cules and measure transport properties such as
velocities, step sizes, and forces [1,2].
On the one hand, these experiments provide insight

into the motor mechanisms. A major breakthrough
was to resolve the discrete steps of the motors and to
measure their step size which corresponds to the
repeat distance of the filament. This has first been
achieved for kinesin using an optical tweezers setup
[6]. More recently, it has been shown that kinesin
[7,8] and also myosin V [9] move in a hand-over-hand
way, i.e., that the two heads of the dimer step
forward in an alternating fashion such that the rear
head always moves in front of the leading head,
similar to human walking. Further progress is
expected from combining mechanical methods and
particle tracking with fluorescence techniques.
On the other hand, using these biomimetic motility

assays, one can measure the transport properties
systematically varying external control parameters.
Here the main focus has been on the velocity as a
function of the ATP concentration and of the force
applied with, e.g., optical tweezers to oppose the
movements, see, e.g., Ref. [10]. Other quantities that
have been measured are the one-dimensional diffu-
sion coefficient of motors bound to filaments or the
randomness parameter and the walking distance
before unbinding from the filament. These measure-
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ments have stimulated a large amount of theoretical
work, see, e.g., Refs. [11–13], modeling the walks of
motors along filaments in order to either fit the
experimental data or to find out the generic proper-
ties of these walks. For example, it turns out that the
motor velocity as a function of the ATP concentra-
tion is given by a universal relationship which should
be valid for many types of motors [14,15].
Since nanometer-sized molecular motors have to

live in a noisy environment, it has been speculated
whether these motors exploit the noise to generate
their directed movements, and various variants of
ratchet models have been proposed as reviewed in
Refs. [11–13]. In the simplest case, the conforma-
tional changes associated with the chemical cycle of
the motor rectify the one-dimensional Brownian
motion along the filament. While such a simple
mechanism is not consistent with the measurements
for dimeric motors such as conventional kinesin or
myosin V, it can describe movements of processive
monomeric motors such as the monomeric kinesin
KIF1A [16–18] (for other processive monomeric
motors, see the review [19]). These monomeric
motors exhibit biased, but strongly diffusive move-
ments along the filaments similar to what one
obtains in the simplest ratchet models. Interestingly,
coupling two such ratchets by a spring [20,21] leads
to a driving mechanism which is independent of the
diffusion along the filament. Similarly, dimerization
of monomeric kinesin results in a higher velocity and
smaller diffusion coefficient of the filament-bound
motors [17]. These results suggest that the dimeriza-
tion of motors has two effects: it allows the motors
to stay bound to the filament for many chemical
cycles—in contrast to many (therefore, unprocessive)
monomeric motors—and in addition, it allows the
motors to move by a more efficient mechanism
which, in contrast to the motility of monomers, does
not rely on diffusion along the filament.
Fig. 2. Random walk of a molecular motor: the motor

performs directed movement along a filament and unbinds

from it after a certain walking distance. The unbound motor

diffuses in the surrounding fluid until it rebinds to the filament

and resumes directed motion.
3. Random walks arising from many diffusional

encounters with filaments

3.1. Motor walks in open compartments

The fact that nanometer-sized motor molecules
work in a noisy environment has another conse-
quence: even processive motors do not move along
a filament forever, but unbind from it after a
certain binding time (which corresponds to a
typical walking distance), because the binding
energy is finite and can be overcome by thermal
fluctuations. For a single kinesin or myosin V
motor, the binding times and walking distances are
of the order of 1 s and 1 mm, respectively. Much
longer walking distances can be obtained if several
motors form a complex or if a cargo is transported
by a larger number of motors. Note that the
unbinding may also have a biological function by
allowing the motors to diffuse around obstacles on
the filament.
Unbound motors perform simple Brownian

motion until they rebind to the same or another
filament. On large time scales, the combination of
active directed movements along filaments and
nondirected Brownian motion leads to peculiar
random walks, called motor walks in the follow-
ing, which consist of alternating sequences of the
two types of movements as sketched in Fig. 2
[22,23].
In order to determine the effective transport

properties of these motor walks, we have studied
several simple arrangements of filaments em-
bedded in compartments of various geometries.
A particularly simple but intriguing case consists
of a single filament and a set of confining walls,
which restrict the diffusion of unbound motors. In
the simplest case, there are no confining walls and
the unbound motors can diffuse freely in the full



ARTICLE IN PRESS

10
0

10
1

10
2

10
3

10
3

10
2

10
1

10
0

10
4

10
5

t

d = 2

d = 3X
Fig. 3. Average displacement x as a function of time t for the

motor walks as shown in Fig. 2 in two- and three-dimensional

systems without confining walls. The displacement grows as

x�t1=2 and x� ln t for d ¼ 2 and 3, respectively.
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three-dimensional space (similar behavior is ob-
tained for a half-space geometry which is more
easily accessible to experiments). By placing the
filament in a quasi two-dimensional slab or in a
cylindrical tube (geometries, which are also acces-
sible to in vitro experiments), diffusion can be
restricted along one or two dimensions perpendi-
cular to the filament.
We have studied the motor walks by mapping

them to random walks on a lattice [23]. A line of
lattice sites represents the filament. Motors at these
sites perform a biased random walk and move
predominantly into one direction, which we
choose to be the positive x direction. In a
discrete-time description, they move with a small
probability �=2d to each of the adjacent nonfila-
ment sites and thus unbind from the filament. At
the nonfilament sites the motors perform simple
symmetric random walks and move to each
neighbor site with probability 1=2d (d denotes
the spatial dimension) and rebind to the filament
with probability pad when they reach again a
filament site. Confining walls are implemented as
repulsive boundaries, at which all attempted
movements towards the walls are rejected.
We have used scaling arguments, computer

simulations, and exact solutions of the master
equations to study the drift and diffusion behavior
arising from the motor walks [23–26]. The motor
walks exhibit anomalous drift behavior and
strongly enhanced diffusion parallel to the fila-
ment due to the repeated binding and unbinding.
At large times, motors move with an effective
velocity given by vbPb, where vb is the velocity of
the bound motor and Pb is the probability that the
motor is bound to the filament. In the tube
geometry, Pb is time-independent at large times
and given by the equilibrium of binding/unbinding
and diffusion perpendicular to the filament. In the
slab and half-space geometries as well as in two-
and three-dimensional systems without confining
walls, a steady state cannot be reached at any time,
because motors can rebind to the filament after
arbitrarily large excursions, and the typical size of
these excursions, which determines the average
behavior, increases with time t. Therefore, Pb and
the effective velocity are time-dependent in these
cases, namely PbðtÞ�t�d?=2 for compartments with
d? dimensions of unconfined diffusion (for d-
dimensional systems without confining walls, we
have d? ¼ d � 1). The time-dependent effective
velocity implies that the average displacement of
the motors grows sublinearly. In the effectively
two-dimensional slab geometry (as well as on a
two-dimensional lattice without confining walls),
the displacement behaves as xðtÞ�

ffiffi
t

p
at large

times, and in the half space (or full three-
dimensional space), it is given by xðtÞ� ln t, see
Fig. 3.
In the following, we will give a simplified

description which explains these features and
relates them to known results from the theory of
random walks.

3.2. Asymptotics and return to the filament

For simplicity, we discuss the case of a single
infinitely long filament embedded into d-dimen-
sional space with d ¼ 2 or 3. Motor particles
binding to this filament walk along it with velocity
vb until they unbind. Unbinding occurs with a rate
��, so that the motors perform straight move-
ments over the walking distance Dxb�vb=�. The
diffusive excursions between two bound walks
bring the motors back to the filament. (For
simplicity, we take the sticking probability pad to
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be one. If pado1, the motor has to return to the
filament 1=pad times before rebinding.) The
distribution cðtÞ of the excursion times t is
therefore given by the distribution of the return
times of a random walker’s return to a line in d

dimensions or, if we consider the projection into
the plane perpendicular to the filament, of the
return to the origin in d � 1 dimensions. This is a
classical problem in the theory of random walks
which was solved by Polya in 1921 and has led to
the remarkable result that the return of a random
walker to the origin is certain on one- and two-
dimensional lattices, but not in three dimensions
[27]. For the molecular motors, this implies that
they will return to the filament with certainty.
If we are only interested in the movement

parallel to the filament, we can consider the
excursions away from the filament as periods of
rest. In addition, for large times, the duration of an
excursion is typically much longer than the time
the motor is bound to the filament; therefore, we
can consider the walks along the filament as
effectively instantaneous steps of size xs�Dxb�

vb=� (if pado1, the effective step size is xs�

vbpad=�). The motor walks are then described by
continuous time random walks with the dwell time
distribution cðtÞ given by the distribution of the
excursion times. For this type of random walks,
solutions can be obtained using Fourier–Laplace
transforms [28]. A short summary of this method
is given in Appendix A. In that way, one finds that
the Laplace transforms of the first two moments of
the position of this random walker are given by

xðsÞ ¼
hxsicðsÞ

s½1� cðsÞ�
(1)

and

x2ðsÞ ¼
hxsi

2cðsÞ
s½1� cðsÞ�

þ
2hx2

s ic
2
ðsÞ

s½1� cðsÞ�2
, (2)

where cðsÞ is the Laplace transform of the waiting
time distribution cðsÞ 


R1

0 dtcðtÞe�st. In general,
hxsi and hx2

s i are the moments of the step size
distribution; for the motor walks, they are given by
the active walks along the filament and we take
them to be given by xs ¼ vb=� and x2

s , respectively.
From these relations, the average displacement
and the dispersion of the motor walks for large
times can be obtained by inverting the Laplace
transform. In particular, these relations imply that
the asymptotic displacement of the motors is given
by the large-time (or small s) behavior of the
distribution of return times to the origin in d � 1
dimensions.
Normal drift behavior with xðtÞ�t is obtained,

as long as cðtÞ has a finite mean value, t̄, and thus
cðsÞ � 1� t̄s for small s. If, however, cðtÞ decays
slower than �t�2 at large t, the mean dwell time
diverges (which implies a divergence of ½cðsÞ � 1�=s

for small s), and anomalous drift is obtained. The
latter behavior occurs in our case (where the
waiting times are given by return times to the
filament) if the diffusion away from the filament is
not restricted.
In the two-dimensional case, the return time

distribution behaves as cðtÞ � 1=ð2
ffiffiffi
p

p
t3=2Þ for

large t or cðsÞ � 1�
ffiffi
s

p
for small s as shown in

Appendix B. Inserting this into Eq. (1) and
inverting the Laplace transform, we obtain

xðsÞ �
xs

s3=2
¼

vb

�s3=2
(3)

and

xðtÞ �
2xs

ffiffi
t

p

ffiffiffi
p

p ¼
2vb

ffiffi
t

p

�
ffiffiffi
p

p , (4)

for small s and large t, respectively. Similarly, in
the three-dimensional case, the return time dis-
tribution is cðtÞ � 2p=ð3t ln2 tÞ for large t or
cðsÞ � 1� 2p=ð3 ln s�1Þ for small s, see again
Appendix B, which leads to

xðtÞ �
3xs

2p
ln t ¼

3vb

2p�
ln t. (5)

Likewise, we can obtain the dispersion Dx2ðtÞ of
the motors from the second moment of the
distribution arising from the encounters with
filaments. Eq. (2) leads to Dx2ðtÞ � ð2� 4=pÞðvb
=�Þ2t þ ð1=2Þt and Dx2ðtÞ � ð9=4p2Þðvb=�Þ

2 ln t þ

ð1=3Þt in two and three dimensions, respectively,
where we have added the contribution due to the
diffusion of unbound motors parallel to the
filament. Note that the broadening of the distribu-
tion of motors due to the encounters with the
filament is characterized by an anomalously high
effective diffusion coefficient of the order of ðvb=�Þ

2
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in two dimensions, while in three dimensions, the
leading term is the unbound diffusion, but with a
large logarithmic correction, again of the order
ðvb=�Þ

2. These results agree with the corresponding
asymptotic results from the exact solution of the
full master equations [24,25].
4. Traffic phenomena in many-motor systems

4.1. Traffic jams and density patterns

Finally, we consider systems with many inter-
acting molecular motors. The simplest type of
motor–motor interaction is simple exclusion which
arises from the fact that a motor occupies a certain
volume and, in particular, excludes other motors
from the binding site of the filament to which it is
bound as observed in decoration experiments, see,
e.g., Ref. [29]. Exclusion is most important if
motors accumulate in certain regions along the
filaments, where it leads to the formation of
molecular traffic jams. These interactions are
easily incorporated into our lattice model by
rejecting all movements to occupied lattice sites
[23,30,31]. These models then represent new
variants of exclusion processes or driven lattice
gas models, where the active or driven movements
are localized to the filaments. In driven exclusion
processes, the state of the system depends crucially
on the boundary conditions, since the boundaries
determine the current through the system.
We have studied tube systems with a single

filament located along the axis of a cylindrical tube
and with several types of boundary conditions at
the left and right tube ends [23,30]. We use the
convention that the active movement along the
filament is biased to the right. There are several
possibilities to build such tube systems artificially
such as micropipette glass tubes or liquid micro-
channels, but there are also several tubular
compartments within cells for which these tube
systems provide simple descriptions. The most
prominent example for the latter is the axon of a
nerve cell; another example is provided by the
hyphae of fungi.
The simplest situation is given by periodic

boundary conditions which can be solved exactly
[30]. In this case, motor particles reaching the right
end of the tube simply restart their movements at
the left end. This leads to constant density profiles
for both the bound and unbound motors in the
stationary state. Diffusive currents in the radial
direction vanish and binding to the filament is
locally balanced by unbinding. The current of
motors through the tube is given by J ¼ vbrbð1�
rbÞ and the value of the bound density rb is
determined by the total number of motor particles
in the tube. If the number of motors within the
tube is increased beyond an optimal number
(where rb ¼ 1=2 and J ¼ vb=4), the current
through the tube decreases due to jamming of
the motors.
In a closed tube, motors accumulate in front of

the right end, and a diffusive current of unbound
motors to the left balances the current along the
filament in the stationary state [23,31]. If the
number of motors in the tube is small, the motors
are essentially localized at the right tube end.
Upon increasing the number of motors within the
tube, a jammed region at the right tube end builds
up, separated from a low density region to its left
by a rather sharp interface, which provides
probably the simplest example for active pattern
formation by molecular motors. The crowded
domain spreads to the left at higher motor
concentrations until the filament is uniformly
covered by motors and rather crowded, see Fig.
4. Such density profiles have recently been
observed for a kinesin-like motor in fungal hyphae
[32]. Let us note that these density patterns exist
due to continuous consumption of ATP. If the
ATP concentration is not kept constant within the
closed compartment, then after burning all ATP,
the density pattern will finally become homoge-
neous.
Tubes with open boundaries which are coupled

to reservoirs of motors at both ends, so that
motors enter the tube at the left end and leave it at
the right end, exhibit boundary-induced phase
transitions [30,33]. There are three phases which
are distinguished by the ‘bottleneck’ which deter-
mines the motor current through the tube. This
‘bottleneck’ can be the left boundary, the right
boundary or the interior of the tube. These
three cases correspond to the low-density (LD),
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high-density (HD) and maximal-current (MC)
phase as shown in Fig. 5. If changing the motor
densities in the reservoirs at the boundaries leads
to a change in the ’bottleneck’ position, a phase
transition occurs which can be either discontin-
uous (LD–HD) or continuous (LD–MC and
HD–MC). These types of phases and transitions
are known from the one-dimensional asymmetric
simple exclusion process (ASEP) [34,35] which
corresponds to the dynamics along the filament in
our model without the binding and unbinding
processes. The presence of the unbound state of
the motors, however, increases the number of
possible boundary conditions, and since the phase
transitions are boundary-induced, the location of
the transition lines within the phase diagram is
quite sensitive to that choice. At present, it is
difficult to see which of these boundary conditions
will be the simplest to implement experimentally.
Nevertheless, systems of molecular motors are
promising candidates for the experimental obser-
vation of boundary-induced phase transitions.

4.2. Phase transitions in two-way traffic

Another type of phase transition occurs in
systems with two-way traffic of motors. While
each motor moves either towards the plus- or
towards the minus-end of the corresponding
filament, different types of motors move into
opposite directions. We have studied systems with
two species of motors moving into opposite
directions along the same filament [36]. The
interactions of these motors are described by a
single interaction parameter q by which the
binding and unbinding rates are increased or
reduced in order to enhance binding and reduce
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unbinding if a motor of the same type is present at
a neighboring site and to enhance unbinding and
reduce binding if a motor with opposite direction-
ality is bound at a neighboring site. This type of
interaction is suggested by decoration experiments.
For equal concentrations of both motor species
and for sufficiently strong interaction with q4qc
(where qc is the critical value of the interaction
parameter which depends on the overall motor
concentration), there is spontaneous symmetry
breaking, so that one motor species occupies the
filament, while the other one is largely excluded
from it, see Fig. 6. If several filaments are aligned
in parallel and with the same orientation, this
symmetry breaking leads to the spontaneous
formation of traffic lanes for motor traffic with
opposite directionality. Varying the relative con-
centration of the two motor species for q4qc leads
to a discontinuous phase transition with hysteresis,
similar to the transitions induced by changes of the
external fields in magnetic systems. In contrast to
the boundary-induced phase transitions discussed
in the preceding section, these transitions do not
depend on the boundaries, but are induced by the
binding and unbinding dynamics. This implies that
they are hardly affected by the choice of the
boundary conditions. They depend, however, on
the active movements of the motors, and are not
found in an equilibrium situation with motor
velocity vb ¼ 0, as applies, e.g., to systems without
ATP.
5. Summary

In summary, molecular motors exhibit interest-
ing movements on several length scales. Here we
have addressed two of these length scales, namely
the walks along filaments which consist typically
of 100 steps with a step size of the order of 10 nm
and random walks which consist of many such
walks along filament interrupted by periods of
diffusion after unbinding from the filament. In
addition, the presence of many motors leads to
traffic phenomena such as traffic jams and traffic
lanes, similar to the macroscopic traffic on streets.
However, unbinding of motors from the filaments
due to thermal fluctuations (which is a conse-
quence of their microscopic size) plays an im-
portant role and can help to circumvent obstacles
and to regulate the traffic.
Appendix A. Continuous time random walks

In this appendix, we summarize some results for
random walks with a dwell time distribution cðtÞ
and a step distribution PðxsÞ which are used in
Section 3. We consider random walkers in one
dimension which make the first step at time t ¼ 0
starting from the origin, x ¼ 0. The probability
distribution pðx; tÞ of such a random walk fulfills
the recursion relation [37,28]

pðx; tÞ ¼
X1
n¼0

pnðxÞ

Z t

0

cnðt
0ÞCðt � t0Þdt0, (A.1)

where pnðxÞ is the probability density that the
walker is at position x after the nth step, cnðtÞ is
the probability that the nth step occurs at time t,
and CðtÞ 


R1

t
cðtÞdt is the probability that no

step occurred until time t. The initial conditions
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are p0ðxÞ ¼ dðxÞ and c0ðtÞ ¼ dðtÞ. The solution
of this recursion can be obtained using Fourier–
Laplace transforms, which leads to

pðq; sÞ ¼
1� cðsÞ

s½1�PðqÞcðsÞ�
(A.2)

for the Fourier–Laplace transform of the prob-
ability distribution pðx; tÞ [37] with the Laplace
transform of the waiting time distribution, cðsÞ 
R1

0 dtcðtÞe�st and the Fourier transform of
the step distribution PðqÞ 


R1

�1
dxsPðxsÞe

iqxs �

1þ ihxsiq � hx2
s iq

2=2. The latter expansion is valid
for small q, provided that the moments hxn

s i of the
step distribution PðxsÞ with n ¼ 1; 2 are finite.
Using this expansion, we can derive expressions
for the Laplace transforms of the moments of our
random walk by expanding pðq; sÞ as given in Eq.
(A.2) in powers of q [38] which leads to Eq. (1)
from which the asymptotic behavior of the time-
dependent moments can be obtained via the
Tauberian theorems, see Ref. [28].
Appendix B. Return to the origin

In this appendix we sketch the derivation of the
distribution of return times to the origin which
determines the dwell time distribution c used in
Section 3.2. We consider the probability f ðx; tÞ
that, at time t the random walker is at position x

for the first time provided it started at the origin at
time t ¼ 0. f ð0; tÞ then determines the distribution
of return times to the origin. These probabilities
satisfy the recursion relation

pðx; tÞ ¼
Xt

t¼1

f ðx; t � tÞpð0; tÞ þ dt;0dx;0, (B.1)

which states that the walker is at site x at time t, if
it had been there at any time tot and returned
there in time t � t. The last term expresses the
initial conditions. Using Fourier–Laplace trans-
forms, one can derive an expression for the
Laplace transform of f ð0; tÞ, the probability that
the walker returns to the origin at time t [27,28],

f ð0; sÞ ¼
1

1þ s
�

1

ð1þ sÞ2J ðdÞðsÞ
, (B.2)
where the J ðdÞðsÞ are integrals over the momentum
q which depend on the spatial dimensions. The
same integrals have to be calculated for the exact
solution of the motor walks [25].
In the one-dimensional case we have

Jð1ÞðsÞ ¼
1

2p

Z 2p

0

dq

s þ ð1� cos qÞ=2
¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
s þ s2

p ,

(B.3)

which leads to f ð0; sÞ � 1�
ffiffi
s

p
for small s and

f ð0; tÞ �
1

2
ffiffiffi
p

p
t3=2

(B.4)

for large t. In the two-dimensional case the
corresponding integral is given by

Jð2ÞðsÞ ¼
1

ð2pÞ2

Z 2p

0

Z 2p

0

dq1 dq2
s þ ð2� cos q1 � cos q2Þ=3

¼
3

ffiffiffiffi
m

p

p
KðmÞ, ðB:5Þ

where KðmÞ is a complete elliptic integral of the
first kind and m 
 4=ð2þ 3sÞ2. Since KðmÞ behaves
as KðmÞ � 1

2
ln½16=ð1� mÞ� for m close to one [39],

the return time distribution is asymptotically given
by f ð0; sÞ � 1� 2p=ð3 ln s�1Þ for small s or

f ð0; tÞ �
2p

3t ln2 t
(B.6)

for large t.
The dwell time distribution cðtÞ used in Section

3.2 for the case of a filament within a d-
dimensional lattice is given by cðtÞ ¼ f ð0; t ¼ tÞ,
where the expression on the right-hand side has to
be taken in the d? ¼ d � 1 dimensions.
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Straley, J. Phys. A 31 (1998) 6911.

[36] S. Klumpp, R. Lipowsky, Europhys. Lett. 66 (2004) 90.

[37] E. Montroll, G. Weiss, J. Math. Phys. 6 (1965) 167.

[38] M. Shlesinger, J. Stat. Phys. 10 (1974) 421.

[39] M. Abramowitz, I. Stegun (Eds.), Pocketbook of Mathema-

tical Functions, Harri Deutsch, Thun and Frankfurt, 1984.


	Movements of molecular motors: Ratchets, random walks and traffic phenomena
	Introduction
	Active movements of molecular motors
	Random walks arising from many diffusional encounters with filaments
	Motor walks in open compartments
	Asymptotics and return to the filament

	Traffic phenomena in many-motor systems
	Traffic jams and density patterns
	Phase transitions in two-way traffic

	Summary
	Continuous time random walks
	Return to the origin
	References


