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Summary. Semiflexible polymers and filaments play an important role in biological
and chemical physics. The cooperative behaviour of interacting filaments and the
internal bending modes of a single filament give rise to various equilibrium phase
transitions, such as bundling and adsorption, which are reviewed in this article. In
motility assays, filaments are adsorbed and driven by motor proteins, which are
anchored to a planar two-dimensional substrate. We present a simulation model for
the active filament dynamics in this non-equilibrium system.

1 Introduction

Stiff, filamentous polymers play an important role in biological and chemical
physics. Such polymers have a considerable bending rigidity, which gives rise to
persistence lengths comparable to or larger than their contour lengths. These
semiflexible polymers exhibit a variety of cooperative phenomena, which we
want to discuss in this article. These transitions result from the competition
of several energies in the system, i.e., the bending energy, the thermal energy,
interaction energies, and external driving forces. In biological systems, driving
forces can arise from the activity of molecular motors which perform directed
walks on cytoskeletal filaments.

First we will discuss the equilibrium phase transition that leads to the
formation of filament bundles in the presence of attractive interactions, which
can arise from crosslinking proteins or unspecific interactions [3]. In eukary-
otic cells, the most important building blocks of the cytoskeleton are micro-
tubules and filamentous actin (F-actin). Actin filaments have a persistence
length Lp 	 30µm [1], microtubules are much stiffer with a persistence length
Lp ∼ mm [2]. In the cortex of the cell, actin filaments form a dense meshwork
which is responsible for many of the viscoelastic properties of the cell. Another
important morphology that is found in the cell are filament bundles [4], which,
e.g., support cell protrusions and serve as stress fibres. Both meshworks and
bundles are hold together by different actin-binding crosslinking proteins [4, 5].
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Actin bundling crosslinkers possess two adhesive end domains which bind to
filaments by weak bonds; crosslinker mediated interactions therefore allow a
reversible formation of actin bundles, which can be regulated by the concen-
tration of crosslinkers in solution. Solution of actin filaments and crosslinking
proteins have been studied in vitro in a number of recent experiments [6–8]. In
these studies it has been observed that bundle formation in F-actin solutions
containing crosslinking molecules requires a threshold crosslinker concentra-
tion above which F-actin bundles become stable against the thermal fluctua-
tions of filaments and a phase containing networks of bundles separates.

Another important equilibrium phase transition of polymers is their ad-
sorption to an attractive planar surface. For semiflexible polymers or filaments,
the adsorption transition is similar to the binding of two filaments but rep-
resents a distinct universality class [9]. Various single molecule methods have
been applied to adsorbed semiflexible polymers because both visualization and
manipulation are easier for adsorbed polymers with a large diameter, such as
DNA [10, 11]. These polymers are generically semiflexible because stronger
entropic or enthalpic interactions along their backbone increase the bending
rigidity. The thermally activated dynamics of single filaments adsorbed on
structured substrates has been discussed in Refs. [12]. Here, we will focus on
the adsorption behaviour of filaments in motility assays. In such an assay,
cytoskeletal filaments are adsorbed and driven over a two-dimensional, planar
substrate by motor proteins whose tails are anchored to the substrate [13]. In
order to obtain adsorption, a critical density of motor proteins is needed in
close analogy to the critical crosslinker concentration for the formation of a
filament bundle.

Motility or gliding assays are a standard biochemistry assay to characterize
motor proteins, which is based on measuring the active dynamics of adsorbed
filaments. In biological cells, small forces generated by motor proteins organize
and rearrange cytoskeletal filaments and give rise to active, non-equilibrium
filament dynamics, which plays an important role for cell division, motility,
and force generation [17]. Whereas conventional “passive” polymer dynamics
is governed by thermal fluctuations [18], active filament dynamics is charac-
terized by a constant supply of mechanical energy by motor proteins, which
hydrolyze adenine triphosphate (ATP). Motility assays are model systems,
which allow to study active filament dynamics in a controlled manner. By an-
alyzing the transport velocities of single filaments gliding over the substrate,
information can be obtained about basic properties of molecular motors such
as their maximal velocity. We introduce a simulation model for motility as-
says, which refines previous models [14–16] and contains semiflexible filaments,
motor heads, and polymeric motor tails as separate degrees of freedom.

This article is organized as follows. In section 2 the formation of filament
bundles via crosslinker-mediated attractive interactions is discussed. The ad-
sorption of a filament onto an adhesive surface is considered in section 3. In
particular, we discuss the filament adsorption on a planar two-dimensional
substrate covered with anchored motor proteins, which represents the geom-
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etry used in motility assays. In section 4, we introduce a model for the active
filament dynamics in motility assays and present recent simulation results.

2 Filament Bundles

We consider N filaments with bending rigidity κ in a solution containing
crosslinking molecules with two adhesive end groups. The persistence length
of such a filament is Lp = 2κ/T , where T is the temperature in energy units.
This system exhibits a critical crosslinker concentration, X1 = X1,c, which
separates two different concentration regimes. ForX1 < X1,c, the filaments are
unbound and uniformly distributed within the compartment. For X1 > X1,c,
the filaments form either a single bundle, which represents the true ground
state of the system as in Fig. 1(a) and (c) , or several sub-bundles, which
represent metastable, kinetically trapped states as in Fig. 1(b). Furthermore,
as we decrease the crosslinker concentration from a value above X1,c towards
a value below X1,c, the bundles undergo a discontinuous unbinding transition
at X1 = X1,c. The existence of a single, discontinuous unbundling transition
can be established by analytic methods for N = 2 filaments [9] and by Monte
Carlo (MC) simulations for larger bundles containing up to N = 20 filaments.

Fig. 1. Monte Carlo snapshots of bundles with N = 20 filaments. (a) Close to
the unbinding transition in the bundled phase. (b) Deep in the bound phase, the
bundle tends to segregate due to slow kinetics and filament entanglement. (c) The
equilibrium shape of the bundle is roughly cylindrical.

2.1 Model

The filaments are oriented along one axis, say the x-axis, and can be parame-
trized by two-dimensional displacements zi(x) (i = 1, ..., N) perpendicular
to the x-axis, with 0 < x < L, where L is the projected length of the poly-
mer. This parametrization is appropriate provided the longitudinal correlation
length is small compared to Lp. We discretize the filament into segments of
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length a‖, i.e., xk = ka‖ and zi,k = zi(xk). The presence or absence of a
crosslinker molecule at segment k of filament i is described by the occupation
number ni,k = ni(xk) = 0, 1. The filament-crosslinker system is described by
the Hamiltonian

H =
∑

i

[Hb,i{zi} + H1{ni}] +
∑
i,j

H2{zi−zj , ni, nj} , (1)

where the first contribution Hb,i =
∫ L

0
dx 1

2κ
(
∂2

xzi

)2 contains the bending en-
ergies of the filaments. The term H1 describes the intrafilament interactions of
linkers. We consider a lattice gas of linkers with hard-core repulsion adsorbing
on a filament with H1 =

∑
k a‖Wni,k where W < 0 is the adhesive energy

(per length) of one linker end group. The third contribution H2 describes the
pairwise interactions between filaments i and j and is given by

H2 =
∑

k

a‖
[
Vr(∆zij,k) +

1
2
(ni,k + nj,k − 2ni,knj,k)Va(∆zij,k)

]
(2)

where∆zij,k ≡ zi,k−zj,k. The first term is the hard-core repulsion of filaments
that is independent of the linker occupation with a potential Vr(z) = ∞ for
|z| < �r and Vr(z) = 0 otherwise where �r is of the order of the filament
diameter. The second term is the linker-mediated attraction and is non-zero
if either segment k of filament i or segment k of filament j carries a linker.
Then the other filament is attracted by a linker-mediated potential Va(z).
The latter filament gains the additional energy |W | if |∆zij,k| ≤ �a, where the
potential range �a is of the order of the linker size. This attraction is modelled
by the potential well

Va(z) = W for 0 < | z| − �r < �a , Va(z) = 0 otherwise. (3)

We can perform the partial trace over the crosslinker degrees of freedom
ni,k in the grand-canonical ensemble to obtain an effective interaction be-
tween filaments. Each crosslinker has two adhesive ends. The first adhesive
end adsorbs on a filament and establishes the standard Langmuir-type ad-
sorption equilibrium with a linker concentration per site X1 ≡ 〈ni,k〉1 =
Kcx/(1 + Kcx) where the average is taken with the Hamiltonian H1. X1

is thus determined by the concentration cx of linkers in solution, where
K is the equilibrium constant of the association reaction of the crosslinker
with the filament. Tracing over weakly bound linkers with |W | � T/a‖,
we end up with effective pairwise linker-mediated filament interactions, i.e.,
H̄2 ≈ 1

2

∑
k a‖[Vr(∆zij,k) + V̄a(∆zij,k)], which have the same functional form

as the bare interactions; the short-range attractive part V̄a is of the form (3)
with a strength W̄ ≈ 2X1W proportional to the linker concentration on the
filament. Pairwise filament interactions with potentials of the form (3) are
generic and do not only arise from crosslinkers but also from van-der-Waals,
electrostatic, or depletion forces.
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Fig. 2. MC data for N = 2, 3, 5, 10, 20 identical filaments (with persistence length
Lp = 200, contour length L = 100, potential range �a = 0.001, and hard core
radius �r = 0.1; all lengths are in units of ∆x, lines are guides to the eye). For
N = 10, 20 two branches of data are shown corresponding to two different initial
conditions; in the lower branch we prepared a compact cylindrical configuration, in
the upper branch (thick lines) we arranged filaments initially in a plane. (a) Mean
energy 〈H〉/NL per filament (in units of T ) as a function of the effective potential
strength |W̄ | (in units of T/∆x). Arrows correspond to the snapshots in Fig. 1. (b)
Logarithmic plot of the mean filament separation 〈∆z〉 ≡ 〈|∆zij | − �r〉 (in units of
∆x) as a function of the reduced potential strength (|W̄ | − |W̄c|)/|W̄ |.

2.2 Discontinuous Unbundling Transition

We have studied bundle formation by MC simulations for up toN = 20 identi-
cal filaments (κi = κ) using the effective Hamiltonian H =

∑
i Hb,i +

∑
i,j H̄2.

The MC simulations can be used to determine the locus and order of the
unbinding transitions, at which the mean energy 〈H〉 exhibits a discontinuity,
see Fig. 2a. To gain further insight into bundle morphologies, we also mea-
sure the mean segment separation 〈|∆zij | − �r〉, see Fig. 2b, which is directly
proportional to the mean bundle thickness that can be determined by optical
microscopy in experiments.

Our MC simulations confirm that, for bundles containing up to N = 20
filaments, there is a single, discontinuous unbinding transition, see Fig. 2a.
In the presence of a hard-core repulsion, the critical potential strength W̄c

saturates to a N -independent limiting value for large N . As can be seen in
Fig. 1a typical bundle morphologies close to the transition are governed by
pair contacts of filaments. The bundle thickness, as given by the mean segment
separation 〈|∆zij | − �r〉, stays finite up to the transition, see MC data in
Fig. 2b. For increasing N , an increasing number of higher moments 〈(|∆zij |−
�r)m〉 remains finite at the transition [all moments m < 2(N − 1)(3N − 4)/3
remain finite] showing that the critical thickness fluctuations of large bundles
become small.

Deep in the bundled phase, i.e., for large |W̄ |, our MC simulations show
that bundles do not always reach their equilibrium shape. Small sub-bundles
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containing typically N ∼ 5 filaments form easily, start to entangle, and further
equilibration is kinetically trapped suggesting that the bundle is in a “glass”
phase. Fig. 1b shows the segregation into sub-bundles in a typical configu-
ration and Fig. 2a shows the corresponding rise in the mean bundle energy
per filament which approaches the N = 5 result. In Fig. 2b the pronounced
rise of the mean separation for N > 5 with increasing potential strength and
with increasing N is due to the segregation. This behaviour is reminiscent of
the experimentally observed F-actin structures consisting of networks of small
bundles [7]. Only when starting from a sufficiently compact initial state, bun-
dles relax towards the equilibrium form in the MC simulation, which is a
roughly cylindrical bundle with a hexagonal filament arrangement as shown
in Fig. 1c. In contrast to the segregated form, the bundle thickness and the
mean energy per filament of the equilibrium form decrease with increasing N ,
as can be seen in Fig. 2.

The critical potential strength W̄c corresponds to a critical crosslinker
concentration X1,c. For weakly bound linkers |W | � T/a‖, we have a simple
linear relation W̄ ≈ 2X1W such that X1,c ≈ W̄c/2W . The corresponding
relation for strongly bound linkers is more complicated.

Our simulations use periodic boundary conditions and treat very long and
essentially parallel filaments. In order to include translational and rotational
entropy we can map the ensemble of semiflexible filaments considered here
onto an ensemble of rigid rods of finite length L and diameter a⊥ at a certain
concentration c. The effective pairwise attraction (per length) J is given by
the bundling free energy of the filaments with J ∼ W̄c−W̄ > 0 for |W̄ | > |W̄c|.
Using the results of Refs. [19], we find that the hard rod system separates into a
high-density nematic phase and a low-density nematic or isotropic phase above
a critical attraction, which is in qualitative agreement with the experimental
results in Refs. [6–8].

3 Filament Adsorption

The adsorption transition of a single filament onto a planar substrate is qual-
itatively similar to the bundle formation for N = 2 filaments in 1+1 dimen-
sions, where the one-dimensional perpendicular distance z(x) from the surface
is analogous to a one-dimensional separation between filaments. The adsorp-
tion transition can be solved analytically [9], which reveals that unbinding
and desorption represent two distinct universality classes with different criti-
cal exponents.

Here we want to consider the adsorption of a filament with persistence
length Lp = 2κ/T on a planar two-dimensional substrate where molecular
motors are adsorbed with an areal density σ. Each motor can bind to a fila-
ment within a capture radius w and a binding energy Wm < 0. In contrast
to the case of the annealed crosslinker ensemble considered previously, the
motors represent a quenched ensemble of adsorption points. In the following,
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we consider the typical experimental situation of a rather uniform coverage
with motor proteins and also neglect effects from filament fluctuations parallel
to the surface. Then the array of motors gives rise to an average adsorption
potential V̄ad(z) of the same functional form as the potential (3) with a po-
tential strength W̄ad = Wmσw, the hard substrate at �r = 0 and �a of the
order of the capture radius w. On length scales comparable or smaller than
Lp, the semiflexible polymer is only weakly bent by thermal fluctuations and
its configurations are governed by the effective Hamiltonian

Had =
∫ L

0

dx
[κ
2
(∂2

xz)
2 + V̄ad(z(x))

]
. (4)

We consider the limit of long filaments LW̄ad � T , which can exhibit a
desorption transition. Using the model (4), this desorption transition has
been studied by transfer matrix techniques in Refs. [9]. The critical potential
strength for desorption is W̄ad,c = −cT/w2/3L

1/3
p corresponding to a criti-

cal motor density σc = T/Wmw
5/3L

1/3
p , where c ≈ √

3π/2 ≈ 1.5. For motor
densities above this critical density, filaments adsorb onto the substrate with
anchored motors against the thermal fluctuations of filaments. The critical
motor density for adsorption is decreasing with increasing filament rigidity κ.
The transfer matrix treatment shows that the free energy difference between
adsorbed and unbound state vanishes as |∆f | ≈ |W̄ad,c||w|/ ln |w|−1 where
w ≡ (W̄ad−W̄ad,c)/W̄ad,c. Therefore, the correlation length ξ‖ = T/|∆f | ∝
|w|−ν diverges with an exponent ν = 1 + log. The weak bending approxima-
tion is valid as long as gradients are small, i.e., 〈(∂xz)2〉 ∼ ξ‖/Lp � 1, which
is fulfilled for |W̄ad−W̄ad,c| � T/Lp, which typically applies to stiff filaments
such as microtubules adsorbed by kinesins.

4 Motility Assays for Motor Proteins

We consider a motility assay, where filaments are connected to the substrate
by anchored motors of sufficient density σ > σc. In the presence of ATP, the
motor heads start to perform a directed walk on the filaments, which induces
active dynamics of adsorbed filaments.

4.1 Model

Our microscopic model for motility assays describes filaments, motor heads,
and polymeric motor tails as separate degrees of freedom [22]. One end of the
motor tail is anchored to the substrate and the motor head on the other end
can bind to a filament in the correct orientation due to the tail flexibility.
Once bound the motor head moves along the filament thereby stretching the
polymeric tail, which gives rise to a loading force acting both on the motor
head and the attached filament. This force feeds back onto the motion of the
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Fig. 3. Schematic top view of a filament i in the motility assay with two motors
attached. The configuration of filament i is specified by the position rc,i of its center
of mass an its orientation angle θi; ui = (cos θi, sin θi) is the orientational unit vector
of the filament. Fα

m,i is the force arising from the stretched polymeric tail of motor
α, which has an end-to-end vector ∆rα. The polymeric tail is stretched by the motor
head moving with velocity v, see eq. 6. dm denotes the distance between attached
motors.

bound motor head, which moves with a load-dependent motor velocity [20, 21].
Filaments follow an overdamped dynamics with external forces arising from
the stretched motor tails and the repulsive filament-filament interaction.

To proceed, let us consider N rigid filaments of length L on a planar two-
dimensional substrate [23]. The configuration of filament i (i = 1, ..., N) is
then specified by the position of its center of mass rc,i and its orientation angle
θi, see Fig. 3. The overdamped translational and rotational dynamics of each
filament i is described by stochastic Langevin-type equations of motion [22]

Γ · ∂trc,i =
∑Ni

α=1
Fα

m,i +
∑N

j=1
Fr,ij + ζi

Γθ∂tθi =
∑Ni

α=1
Mα

m,i +
∑N

j=1
Mr,ij + ζθ,i , (5)

where Ni is the number of motor heads attached to filament i and indexed by
α. ui = (cos θi, sin θi) is the orientational unit vector of filament i. Γ is the
matrix of translational friction coefficients, Γ = Γ‖ui⊗ui+Γ⊥(I−ui⊗ui) [18],
where I is the unit matrix, and Γθ is the rotational friction coefficient. Γ‖, Γ⊥
and Γθ are the friction coefficients of the passive filament dynamics. ζi(t)
and ζθ,i(t) are the translational and the angular components of the Gaussian
distributed thermal random forces. Fα

m,i is the force arising from the stretched
tail of motor α. The end-to-end vector of the polymeric tail is ∆rα ≡ rα

i − rα
0 ,

where the motor tail is anchored at rα
0 and the head position is rα

i . We model
the polymeric tail as freely jointed chain such that Fα

m,i is pointing in the
direction −∆rα and its absolute value is obtained by inverting the force-
extension relation of a freely jointed chain [24]. There is also a corresponding
torque due to the motor activity, Mα

m,i = |(rα
i − rc,i)×Fα

m,i|. The interaction
forces Fr,ij and torques Mr,ij are due to the purely repulsive interactions
between filaments i and j corresponding to a hard-rod interaction for filaments
of diameter D.

The dynamics of motor heads is described by a deterministic equation of
motion, which has the form
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∂tx
α
i = v(Fα

m,i) , (6)

where |xα
i | ≤ L/2 defines the position of the motor α on the rod i, i.e.,

rα
i = rc,i +xα

i ui, i.e., the filament polarity is such that the motor head moves
in the direction ui. The motor velocity v is a function of the loading force
Fα

m,i which builds up due to stretching of the motor tail. We use a force-
velocity relation with a maximum value vmax for forces Fα

m,i · ui ≥ 0 pulling
the motor forward, a linear decrease for forces Fα

m,i ·ui < 0 pulling the motor
backwards, and v = 0 for Fα

m,i ·ui < −Fst, where Fst is the stall force [20, 21].
We assume that the motor binds to the filament when the distance between
the position of the fixed end of the motor tail at rα

0 and the filament is smaller
than the capture radius w. Apart from the stall force Fst the motor is also
characterized by its detachment force Fd, above which the unbinding rate of
the motor head becomes large. For simplicity we assume in our model that
the motor head detaches whenever the force Fα

m,i exceeds a threshold value
Fd. We consider the case of processive motors with a high duty ratio close to
unity, i.e., motors detach from a filament only if they reach the filament end
or if the force F becomes larger than the detachment force Fd.

4.2 Simulation

Using the above model we performed simulations of gliding assays for a ran-
dom distribution of motors with a surface density σ and periodic bound-
ary conditions. At each time step ∆t we update the motor head position
xα

i and filament position by using the discrete version of the equations of
motion (5) and (6). The parameter values that we choose for the simula-
tions are comparable with experimental data on assays for conventional ki-
nesin. The simulation results presented in this article have been obtained
for assays with quadratic geometry and size 25µm2 with rigid filaments of
length L = 1µm and diameter D = L/40. We simulate at room temperature
T = 4.28 × 10−3pN µm. Friction coefficients are Γ⊥ = 2Γ‖ = 4πηL/ ln(L/D)
and Γθ = Γ‖L2/6, where η is the viscosity of the surrounding liquid. We
use a value η = 0.5pN s/µm2 much higher than the viscosity of water,
ηwater ∼ 10−3pN s/µm2, which allows to take larger time steps and decreases
the simulation time. We checked that this does not affect results. We use a
maximum motor speed of vmax = 1µms−1 and a stall force of Fst = 5pN . The
capture radius for motor proteins is w = 10−2µm and the length of the fully
stretched motor tail Lm = 5× 10−2µm.

The motion of a single filament with contour length L is characterized
by stochastic switching between rotational and translational diffusion if no
motors are attached, directed translation in rotationally diffusing directions if
one motor is attached, and directed translation in one direction if two or more
motors are attached. The relative frequency of these types of motion depends
on the mean number of motors attached to the filament or the mean distance
〈dm〉 between bound motors and, thus, on the surface motor concentration
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Fig. 4. (a) Simulation results for average distance 〈S〉 traveled by a filament
between successive rotations as a function of the filament length L for high motor
concentration. The solid line is the analytical result (7) as derived in Ref. [14]. (b)
and (c): Snapshots of a gliding assay of rodlike filaments with filament density ρ =
2/L2 on a motor coated substrate with randomly distributed motors and periodic
boundary conditions. For detachment forces Fd = Fst, we find (b) an isotropic phase
at low motor surface density σwL = 0.03 and (c) active nematic ordering at high
motor surface density σwL = 0.09.

σ [14]. In the limit of high motor concentration a filament has two or more
bound motors on average and 〈dm〉 ∼ 1/σw. The single filament performs a
persistent walk with a persistence length [14]

ξp =
〈S〉
〈∆θ2〉 =

1
〈∆θ2〉

L+ 2〈dm〉
L+ 3〈dm〉

〈dm〉2
L

(
eL/〈dm〉 − 1 − L

〈dm〉
)

(7)

where 〈S〉 is the mean distance traveled by a filament between successive
rotations and 〈∆θ2〉1/2 = 3σ/σL2 the mean angle at rotations. The theoretical
result (7) is confirmed by our simulation as shown in Fig. 4a. The mean
filament velocity vF = 〈|ṙc,i|〉 can be obtained by simultaneously equating
the filament friction force with the total motor driving force and the filament
velocity with the motor velocity in the steady state, which gives vF = vmax(1+
Γ‖vmax〈dm〉/LFst)−1. This relation is confirmed by our simulations.

Our results for the simulation of many filaments with hard-core interac-
tions indicate that the motility assay exhibits active nematic ordering if the
motor density σ is increased as can be seen in the two simulation snapshots
Figs. 4b and c.
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