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Abstract – Molecular motors and nanomachines are considered that are coupled to exergonic
processes which provide energy input to these motors and allow them to perform work. The motor
dynamics is described by continuous-time Markov processes on a discrete state space, which can
contain an arbitrary number of cycles consisting of two dicycles with opposite orientation. For
the steady state of such a motor, the statistical entropy produced during the completion of each
dicycle is expressed in terms of its transition rates. Identifying this statistical entropy with the
heat released by the motor and using the first law of thermodynamics, we derive steady-state
balance conditions that generalize the well-known detailed balance conditions in equilibrium. Our
derivation is rather general and applies to any nonequilibrium system described as a Markov
process. For molecular motors, these balance conditions depend on the external load force and
can be decomposed into a zero-force and a force-dependent part.

Copyright c© EPLA, 2007

Introduction. – Living cells contain a large number of
molecular motors: membrane pumps, cytoskeletal motors,
growing filaments, and assemblers such as polymerases
and ribosomes [1]. In many cases, these nanomachines are
driven by the energy released from fuel molecules such as
ATP. The corresponding catalytic reactions have to be
exergonic and to occur primarily in the forward direction
in order to break detailed balance and time-reversal
symmetry. The coupling of the motor to these nonequi-
librium reactions provides energy which is converted into
conformational transformations of the motor and enables
it to perform work. This chemomechanical coupling
involves three aspects of randomness [2]: i) each chemical
reaction represents a stochastic process since the fuel
molecules are delivered by diffusion and the reshuffling
of the chemical bonds has an intrinsically stochastic
character; ii) these machines may also exhibit several
chemical pathways or motor cycles as recently proposed
for the cytoskeletal motor kinesin [3]; and iii) because
of their small size, the molecular conformations of these
machines exhibit strong thermal fluctuations.
In order to obtain a useful description of such a motor,

we will focus on the different chemical states, denoted by
�i� with i= 1, 2., . . . Ns, which are involved in the catalytic
reaction that drives the motor. As a concrete example,

consider a motor protein that consumes ATP. Each protein
domain that is able to catalyze ATP hydrolysis can then
be in three different states corresponding to bound ATP,
bound ADP, and no bound ATP or ADP1. Thus, if the
molecular motor has k catalytic domains, it can attain
Ns = 3

k different chemical states and undergo transitions
between these states.
It is useful to visualize the motor’s state space as a

network graph for which the vertices represent the Ns
states of the motor; an example is shown in fig. 1. Every
pair �i� and �j� of states is connected by two directed
edges or di-edges corresponding to the forward transition
|ij〉 from �i� to �j� and the backward transition |ji〉 from
�j� to �i�. In fig. 1, these two di-edges are combined
into the undirected edge 〈ij〉. In general, the motor may
undergo a chemical transition in which one of the catalytic
motor domains changes its chemical composition or a
mechanical transition corresponding to a mechanical step
(or substep). In fig. 1, chemical and mechanical transitions
are indicated by solid and broken lines, respectively.
Nonequilibrium steady states are intimately related
to cycles in state space and nonzero fluxes along these

1The hydrolysis of ATP leads to the reaction products ADP and

inorganic P. An extended description includes bound ADP-P as a

fourth state which implies Ns = 4
k.
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Fig. 1: (a) Network graph with 9 states for a molecular motor with two catalytic domains, each of which can be empty (E), or
bind an ATP (T) or ADP (D) molecule. This network contains 21 edges corresponding to 18 chemical forward and backward
transitions (solid lines) as well as 3 mechanical forward and backward steps (broken lines); and (b) reduced state space with 6
states �i� with i= 1, 2, . . . , 6 obtained from the 9-state network in (a) by omitting the three states E-E, T-T, and D-D. This
network contains 7 edges 〈ij〉 corresponding to 6 chemical transitions (full lines) plus 1 mechanical transition (broken line).

cycles [4–6]. In order to be precise, we will distinguish the
undirected cycle Cν = 〈i1, i2, . . . , in, i1〉, which consists
of the edges 〈i1i2〉, 〈i2i3〉, . . ., and 〈ini1〉, from the
directed cycles or dicycles C+ν = |i1, i2, . . . , in, i1〉 and
C−ν = |i1, in, . . . , i2, i1〉. The network graph in fig. 1(a)
contains a large number of different cycles whereas the
one in fig. 1(b) has only three cycles, namely 〈2, 5, 6, 1, 2〉,
〈5, 2, 3, 4, 5〉, and 〈1, 2, 3, 4, 5, 6, 1〉.

Main conclusions. – Since our discussion is neces-
sarily somewhat formal, we first summarize our main
conclusions. The dynamics of the motor is described by a
continuous-time Markov process [7,8] with transition rates
ωij from state �i� to state �j�. We consider the statisti-
cal entropies ∆S(C+ν ) and ∆S(C

−
ν ), which are produced,

in the steady state, during the completion of dicycle C+ν
and C−ν , respectivly, and show that these dicycle entropies
satisfy the simple relation

∆S(C+ν ) = kB
∑

|ij〉

ν,+

ln(ωij/ωji) =−∆S(C
−
ν ), (1)

where the superscipt ν,+ at the summation sign indicates
a summation over all di-edges |ij〉 of dicycle C+ν .
Each state �i� of the motor represents an ensemble of
molecular conformations that differ in thermally excited
vibrational modes. The corresponding internal energy will
be denoted by Ui. During the transition |ij〉, the internal
energy can change because of i) energy input Ech,ij arising
from the coupling to the exergonic chemical reaction,
ii) mechanical work Wme,ij , which the motor performs
against an external force, and iii) heat Qij , which the
motor releases into the surrounding medium. Conservation
of energy implies ∆Uij ≡Uj −Ui =Ech,ij −Wme,ij −Qij .
The special case ∆Uij = 0 has been considered in ref. [9]
for simple motor models with a single cycle. In general,
the energy input Ech,ij may be partially stored in the
motor molecule after the transition |ij〉, which implies

∆Uij > 0, and this stored energy may be transformed into
work and/or heat during a later transition |i′j′〉, which
implies ∆Ui′j′ < 0. However, because the internal energy
is a state property, its change, ∆U(C+ν ), along any dicycle
C+ν must satisfy

∆U(C+ν ) =Ech(C
+
ν )−Wme(C

+
ν )−Q(C

+
ν ) = 0, (2)

where the three terms Ech(C
+
ν ), Wme(C

+
ν ), and Q(C

+
ν )

represent the energy input, work performed, and heat
released during the completion of C+ν , respectively. We now
identify the heat released by the motor with the statistical
entropy produced by it. A combination of (2) and (1) then
leads to the steady-state balance conditions

∑

|ij〉

ν,+

ln

(

ωij
ωji

)

= [Ech(C
+
ν )−Wme(C

+
ν )]/kBT, (3)

which provide relations between the transition rates ωij ,
the chemical energy input Ech, and the mechanical work
Wme for any dicycle of the network. In equilibrium, all
terms on the right-hand side of this equation vanish, and
we recover the well-known conditions of detailed balance,
which are called Wegscheider conditions [10] in the context
of chemical kinetics.
The mechanical work is determined by external load
forces experienced by the motor and vanishes in the
absence of such forces. This implies that one can decom-
pose the steady-state balance conditions (3) into a zero-
force and a force-dependent part as we will show explicitly
for the case of cytoskeletal motors. At the end of this arti-
cle, we will also discuss the number of independent balance
conditions and various extensions to other nonequilibrium
processes.

Dynamics in state space. – Next, we give a precise
definition of our motor models. When the motor arrives
at a certain state �i�, it occupies this state for a certain
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sojourn (or holding) time τi, which is a random variable
that is governed by the probability distribution P(τi) =
(1/〈τi〉) exp(−τi/〈τi〉), where 〈τi〉 denotes the average
sojourn time [8]. When the motor leaves the state �i�,
it jumps to state �j� with probability πij . The probability
Pi(t) to find the motor in state �i� at time t is then
governed by the Master equation

d

dt
Pi =−

∑

j

∆Jij ,

with ∆Jij ≡ Piωij −Pjωji =−∆Jji

and ωij = πij/〈τi〉. (4)

The steady state is characterized by probabilities P sti with
dP sti /dt= 0 which implies

∑

j

∆J stij =
∑

j

(

P sti ωij −P
st
j ωji

)

= 0. (5)

This relation provides Ns linear equations for the prob-
abilities P sti which can be solved by linear algebra, see,
e.g., [11,12] or, more conveniently, by a graph-theoretic
method [2,13–15].
In order to calculate the frequencies of dicycle comple-
tions in the steady state, we start from the action func-
tional A as defined by Lebowitz and Spohn [16]. Thus,
consider a directed walk or trajectory T + ≡ |i1, i2 . . . , im〉
on the network graph together with the time-reversed walk
T − ≡ |im, im−1 . . . , i1〉. Each walk consists of a connected
sequence of di-edges |ij〉. The action functional A is then
defined by

exp[A(T +)]≡
∏

|ij〉∈T +

ωij

/

∏

|ij〉∈T −

ωij = exp[−A(T
−)],

(6)

where the product in the numerator and denominator runs
over all di-edges of the walk T + and T −, respectively. The
probabilities Ω(T +) and Ω(T −) for the two walks T +

and T − are then related to the action functional A via
Ω(T +)/Ω(T −) = (P st1 /P

st
m) exp[A(T

+)] [16]. This relation
simplifies for closed walks T +c which are characterized by
im ≡ i1 and, thus, by P

st
1 = P

st
m . Indeed, for any closed

trajectory T +c that goes through the dicycle C
+
ν only once

and does not go through any other dicycle, one obtains
the probability ratio

Ω(T +c )

Ω(T −c )
=
Ω(C+ν )

Ω(C−ν )
= exp[A(C+ν )] =

∏

|ij〉

ν,+

(ωij/ωji), (7)

where the superscript ν,+ at the product sign indicates a
product over all di-edges |ij〉 contained in the dicycle C+ν .
In general, such a closed trajectory T +c will consist of the
dicycle C+ν together with various tree-like excursions away
from it as well as multiple walks along partial segments
of C+ν . However, all transition rates apart from those

corresponding to one completion of C+ν and C
−
ν cancel in

the probability ratio (7).

Cycle decomposition of fluxes. – The relation for
the probability ratio Ω(C+ν )/Ω(C

−
ν ) contained in (7) can

also be derived from the explicit solution of (5) [17,18].
This latter derivation is based on the cycle fluxes as given
by [2,14,17]

J st(Cν) = J
st(C+ν )−J

st(C−ν )

with J st(Cdν ) =





∏

|ij〉

ν,d

ωij



Υ(Cν)/Ω and d≡±.

(8)

Both Υ(Cν) and Ω are multilinear polynomials of the
transition rates ωij ; the polynomial Υ(Cν) is identical for
the two dicycles C+ν and C

−
ν ; the polynomial Ω is a dicycle-

independent normalization factor. The excess fluxes ∆J stij
can now be expressed as

∆J stij =
∑

ν

εij,νJ
st(Cν) =

∑

ν

εij,ν
(

J st(C+ν )−J
st(C−ν )

)

,

(9)

where the antisymmetric symbol εij,ν =−εji,ν is equal to
+1 and −1 for |ij〉 ∈ C+ν and |ij〉 ∈ C

−
ν , respectively, and

εij,ν = 0, otherwise.
The dicycle fluxes J st(Cdν ) determine the average times

for dicycle completion. Thus, let us follow the motor’s
walk for a long time period ∆t. The motor will then
pass successively through many dicycles and we can count
the number of times, N∆t(C

d
ν ), that it passed through

the dicycle Cdν . Thus, N∆t(C
d
ν ) represents the absolute

frequency of completed dicycles Cdν within the time period
∆t. These frequencies are related to the dicycle fluxes
via N∆t(C

d
ν )/∆t≈ J

st(Cdν ) for large ∆t which implies the
average time τ(Cdν ) = 1/J

st(Cdν ) for the completion of
the dicycle Cdν [17,18].

Statistical entropy and entropy production. –

The statistical entropy S{Pi} of the motor is defined by
S{Pi} ≡−kB

∑

i Pi ln(Pi), and its time derivative can be
written in the form d

dt
S{Pi}= σpr+σfl with the entropy

production rate σpr and the entropy flux term σfl, which
represents the heat flux from the surrounding medium, as
given by [15,16,19,20]

σpr ≡
1
2
kB
∑

ij

∆Jij ln

(

Piωij
Pjωji

)

and σfl ≡−
1
2
kB
∑

ij

∆Jij ln

(

ωij
ωji

)

. (10)

In the steady state with d
dt
S = 0, one then obtains

the entropy production rate σstpr =−σ
st
fl = kB

∑

∆J stij ×
ln(ωij/ωji) where the sum runs over all edges 〈ij〉 of the
network graph. We now insert the cycle decomposition
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for ∆Jij as given by (9) into the expression for σ
st
pr

which leads to

σstpr = kB
∑

ν

J st(Cν)
∑

〈ij〉

εij,ν ln(ωij/ωji)

= kB
∑

ν

J st(Cν)A(C
+
ν ). (11)

with the dicycle action A(C+ν ) as in (7). Combining (11)
with J st(Cν) = J

st(C+ν )−J
st(C−ν ), we obtain

σstpr =
∑

ν

(

σst(C+ν )−σ
st(C−ν )

)

with σst(Cdν )≡ J
st(Cdν ) kB

∑

|ij〉

ν,d

ln(ωij/ωji). (12)

Using the explicit solution of the steady-state equa-
tions (5), Hill and Simmons [4,5] have previously shown
that the expression (11) applies to several specific models
of biochemical kinetics. In these latter studies, the dicycle
actions A(C+ν ) were interpreted as “thermodynamic
forces” X+ν ≡ kBTA(C

+
ν ). In addition, Qian [6] has

obtained a relation that is equivalent to (12) and applied
it to a 3-state Markov process with a single cycle.
We now integrate the entropy production rate σst(Cdν )
for dicycle Cdν as given by (12) over the average time
τ(Cdν ) = 1/J(C

d
ν ) for completing this dicycle, which cancels

the factor J(Cdν ) on the right-hand side of (12). In
this way, we find that the entropies produced by the
completion of the dicycles C+ν and C

−
ν satisfy the simple

relations (1) which imply that these entropies are odd
under time reversal. Thus, our derivation reveals that
the thermodynamic force X+ν considered in refs. [4,5]
is, in fact, T times the statistical entropy produced per
completed dicycle.
Seifert [21,22] has recently proposed an evolution equa-
tion for the entropy production that is defined for single
walks (or trajectories). If the walk jumps at the discrete
times t= tm from state im to state jm, this evolution equa-
tion can be written in the form d

dt
S1 =

∑

m δ(t− tm)Simjm
with Sij ≡ kB ln(ωij/ωji). If one integrates the evolution
equation in time along any closed walk that goes through
the dicycle Cdν only once and does not go through any
other dicycle, one recovers relation (1). Thus, the evolution
equation as proposed in [21,22] is consistent with the dicy-
cle entropies as derived here using only steady-state prop-
erties. One should note, however, that the single edge term
kB ln(ωij/ωji), which is identified with the entropy change
Sij during the transition |ij〉 in [21,22], is interpreted in
terms of different thermodynamic potentials in [4,5,23].

Example: Cytoskeletal motors. – As an example,
we now consider cytoskeletal motors such as kinesin
or dynein which catalyze ATP hydrolysis and perform
discrete steps along cytoskeletal filaments, compare fig. 1.
Each dicycle then contains nh(C

d
ν )� 0 transitions that

involve ATP hydrolysis as well as ns(C
d
ν )� 0 transitions

that correspond to ATP synthesis. The chemical energy
input per completed dicycle now depends on the
molar concentrations [ATP], [ADP], and [P] and has the
explicit form

Ech(C
d
ν ) = [nh(C

d
ν )−ns(C

d
ν )]∆µ

with ∆µ≡ kBT ln(Keq[ATP ]/[ADP ][P ]), (13)

where ∆µ represents the energy change per hydrolyzed
ATP molecule and Keq is the corresponding equilibrium
constant.
In addition, each dicycle leads to mf(C

d
ν )� 0 forward

mechanical steps and to mb(C
d
ν )� 0 backward mechanical

steps. For simplicity, let us focus on motors such as kinesin
that have a fixed step size 	. In the presence of an external
load force, F , the mechanical work performed by the motor
during one completed dicycle is then given by

Wme(C
d
ν ) = [mf(C

d
ν )−mb(C

d
ν )] 	 F. (14)

It is now convenient to parametrize the motor’s
transition rates ωij according to

ωij = ωij(F )≡ ωij,0 Φij(F ) with Φij(0)≡ 1. (15)

For F = 0, the mechanical work vanishes, and the
condition (3) becomes

∑

|ij〉

ν,+

ln

(

ωij,0
ωji,0

)

=
(

nh(C
+
ν )−ns(C

+
ν )
) ∆µ

kBT
, (16)

which relates the zero-force transition rates ωij,0 to
the free energy change ∆µ per hydrolyzed ATP mole-
cule. The models of biochemical kinetics considered in
refs. [4,5] provide examples for relation (16). Substracting
condition (16) from condition (3), we also obtain

∑

|ij〉

ν,+

ln

(

Φij(F )

Φji(F )

)

=− [mf(C
+
ν )−mb(C

+
ν )] 	 F /kBT,

(17)

which relates the transition rate factors Φij(F ) to the step
size 	 and the external force F .
In this way, we have decomposed the steady-steady

balance condition (3) into two independent parts. The first
part (16) imposes one condition per cycle on the zero-force
transition rates ωij,0. The second part (17) imposes one
condition per cycle on the F -dependent transition rate
factors Φij(F ). Both for F = 0 and F 	= 0, the number of
linearly independent conditions is equal to the number Nfc
of so-called fundamental cycles of the network, a property
that has been proven in [24] for detailed balance. For a
network graph with Ns states and Ne edges, the number
of fundamental cycles is equal to Nfc =Ne−Ns+1. Thus,
the 2Ne transition rates ωij have to satisfy Nfc balance
conditions. For networks with Ne
Ns only about half
of the transition rates can be varied independently from
each other.
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Summary and outlook. – In summary, we have
derived steady state balance conditions as given
by (3), (16), and (17) for molecular motors and biomimetic
nanomachines that relate the transition rates ωij between
different motor states to the input of chemical energy and
to the mechanical work per completed dicycle. Our deriva-
tion was based on i) the identification of the statistical
dicycle entropies as given by (1) with the heat released
by the motor during the completion of the corresponding
dicycles and ii) the 1st law of thermodynamics when
applied to these dicycles. In principle, both the transition
rates ωij and the energetic terms on the right hand side
of (3), (16), and (17) can be measured. If such a complete
set of experiments were available for a certain motor, one
could use the balance conditions to estimate the experi-
mental accuracy. In practise, some of the transition rates
will be difficult to measure, and the balance conditions can
then be used to estimate the values of the unknown rates.
We have recently applied this latter strategy to the

cytoskeletal motor kinesin [25]. One important conse-
quence of our analysis is that the stall force of the motor
is determined by the flux balance of two different cycles
that govern the forward and backward mechanical step
and both involve the hydrolysis of one ATP molecule as
proposed in ref. [3]. This differs from previous unicycle
models in which the stall force was determined by the flux
balance between the two dicycles of the same cycle. The
latter flux balance is, however, not possible for small ADP
concentrations as typically considered in motility assays.
It is straightforward to include other energetic processes

into the steady state balance conditions. Two examples are
i) energy input Eem arising from electromagnetic fields,
i.e., from the adsorption of photons and ii) work Wec
against an electrochemical potential. If the motor is also
coupled to these two processes, one obtains the generalized
balance conditions

∑

|ij〉

ν,d

ln

(

ωij
ωji

)

=

[Ech(C
d
ν )+Eem(C

d
ν )−Wme(C

d
ν )−Wec(C

d
ν )]/kBT. (18)

One interesting example is provided by the molecular
motor F0F1 ATP synthase which uses an ion gradient
to synthesize ATP. Finally, our derivation of the steady-
state balance conditions is rather general and can be
applied to any nonequilibrium system that is described
by a continuous-time Markov process.
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