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Semiflexible polymers and filaments play an important role in biological and chemical physics. Single
filaments are characterized by a certain bending rigidity which governs their persistence length and
buckling instabilities. Attractive mutual interactions of filaments in bundles or the attractive interaction
with an adhesive substrate lead to equilibrium phase transitions, such as bundling and adsorption.
Finally, on the level of active systems consisting of many interacting filaments, we discuss coopera-
tive ordering effects in non-equilibrium systems such as motility assays. In motility assays filaments
are adsorbed and driven by motor proteins, which are anchored to a planar two-dimensional sub-
strate. The interaction with motor proteins leads to enhanced ordering of filaments. Motility assays
containing patterns of adsorbed motors, i.e., stripes of low motor density with increasing widths can
be used to sort filaments according to their lengths.

Keywords: Filaments, Semiflexible Polymers, Molecular Motors, Buckling, Bundling, Pattern
Formation.

1. INTRODUCTION

Stiff, filamentous polymers play an important role in bio-
logical and chemical physics. Both DNA or cytoskele-
tal filaments such as F-actin and microtubules1�2 and
chemically synthesized stiff polymers such as dendronized
polymers3 are “nanorods.” These polymers have diameters
in the range from 2 to 25 nanometers which leads to a
considerable bending rigidity and gives rise to persistence
lengths comparable to or larger than the polymer’s contour
lengths. Such semiflexible polymers exhibit a variety of
cooperative phenomena, which we will briefly review in
this article. The cooperative behavior arises from the com-
petition of several energies in the system, i.e., the bending
energy, the thermal energy, interaction energies, and exter-
nal driving forces. In biological systems, driving forces can
arise from the activity of molecular motors which perform
directed motion on cytoskeletal filaments or the polymer-
ization dynamics of cytoskeletal filaments. Both the activ-
ity of molecular motors and the polymerization dynamics
are processes far from equilibrium and are typically cou-
pled to the hydrolysis of adenine triphosphate (ATP).

First, we will consider two aspects of single filaments
related to the cooperative behavior of their bending modes,

∗Author to whom correspondence should be addressed.

the renormalization of bending rigidity and the buckling
instability. The bending rigidity renormalization leads to
an effective softening of large-scale fluctuations of a fila-
ment, which can be quantified using renormalization group
methods.4 The buckling instability is an important effect
that restricts the force generation by growing filaments.
We discuss a cusp-like singularity in the projected length
as a function of the filament length, which can serve as
an experimental signature for the buckling of growing fil-
aments or rods.

Then we will discuss the equilibrium phase transition
that leads to the formation of filament bundles in the
presence of attractive interactions, which can arise from
crosslinking proteins or unspecific interactions.5 In eukary-
otic cells, the most important building blocks of the cyto-
skeleton are microtubules and filamentous actin (F-actin).
Actin filaments have a persistence length Lp � 30 �m,6

microtubules are much stiffer with a persistence length
Lp � 10 mm.7 In the cortex of the cell, actin filaments
form a dense meshwork which is responsible for many
of the viscoelastic properties of the cell. Another impor-
tant morphology that is found in the cell are filament
bundles,8 which, e.g., support cell protrusions and serve as
stress fibres. Both meshworks and bundles are hold together
by different actin-binding crosslinking proteins.8�9 Actin
bundling crosslinkers possess two adhesive end domains
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which bind to filaments by weak bonds; crosslinker medi-
ated interactions therefore allow a reversible formation of
actin bundles, which can be regulated by the concentra-
tion of crosslinkers in solution. Solution of actin filaments
and crosslinking proteins have been studied in vitro in a
number of recent experiments.10–12 In these studies it has
been observed that bundle formation in F-actin solutions
containing crosslinking molecules requires a threshold
crosslinker concentration above which (i) F-actin bundles
become stable against the thermal fluctuations of filaments
and (ii) a phase containing networks of bundles separates.
Polymerizing bundles are used within the cell in order to
generate forces.13�14 We will shortly discuss one possible
“zipping”-mechanism for force generation which is based
on the conversion of adhesive energy into polymerizing
forces.

Another important equilibrium phase transition of poly-
mers is their adsorption to an attractive planar surface.
For semiflexible polymers or filaments, the adsorption
transition is similar to the binding of two filaments but
represents a distinct universality class.15 Various single
molecule methods have been applied to adsorbed semiflex-
ible polymers because both visualization and manipulation
are easier for adsorbed polymers with a large diameter,
such as DNA.16�17 These polymers are generically semi-
flexible because strong entropic or enthalpic interactions
along their backbone increase the bending rigidity. The
manipulation kinetics of strongly adsorbed single filaments
or semiflexible polymers on structured substrates requires
thermal activation.18�19 Here, we will discuss the adsorp-
tion behavior of filaments in motility assays. In such an
assay, cytoskeletal filaments are adsorbed and driven over a
two-dimensional, planar substrate by motor proteins whose
tails are anchored to the substrate.20 In order to obtain
adsorption, a critical density of motor proteins is needed
in close analogy to the critical crosslinker concentration
for the formation of a filament bundle.

Motility or gliding assays are a standard biochem-
istry assay to characterize motor proteins, which is based
on measuring the lateral displacement of adsorbed fil-
aments. In biological cells, small forces generated by
motor proteins organize and rearrange cytoskeletal fila-
ments and give rise to active, non-equilibrium filament
dynamics, which plays an important role for cell divi-
sion, motility, and force generation.1�2 Whereas conven-
tional “passive” polymer dynamics is governed by thermal
fluctuations,21 active filament dynamics is characterized by
a constant supply of mechanical energy by motor pro-
teins, which hydrolyze ATP. Motility assays are model
systems, which allow to study active filament dynamics
in a controlled manner. By analyzing the transport veloci-
ties of single filaments gliding over the substrate, informa-
tion can be obtained about basic properties of molecular
motors such as their maximal velocity. We introduce a
simulation model for motility assays, which refines previ-
ous models22–24 and contains semiflexible filaments, motor

heads, and polymeric motor tails as separate degrees of
freedom.

In such motility assays, several interesting ordering
phenomena can occur on the nanoscale if we consider
many interacting filaments. The ordering is caused by the
interplay of the active dynamics of filaments and their
mutual repulsive interactions. On the one hand, we find an
increased tendency for nematic ordering in motility assays
with randomly adsorbed motor proteins.25 On the other
hand, stripe-shaped patterns of adsorbed motors can be
used for the length sorting or fractionation of filaments.

This article is organized as follows. In Section 2, the
persistence length of a single filament is discussed in the
framework of a systematic renormalization group approach.
In Section 3, we discuss a particular feature of the buck-
ling instability of a single filament, which is relevant to
experiments on growing filaments. In Section 4, the forma-
tion of filament bundles via crosslinker-mediated attractive
interactions and the ability of “zipping” bundles to gen-
erate forces is discussed. The adsorption of a filament on
an adhesive surface, which is provided by a planar two-
dimensional substrate covered with anchored motor pro-
teins and which represents the geometry used in motility
assays, is considered in Section 5. In Section 6, we intro-
duce a model for the active filament dynamics in motility
assays and present recent simulation results. These results
demonstrate an enhanced nematic ordering of interacting
filaments in motility assay. They also demonstrate that fil-
aments can be sorted according to their length if striped
patterns of different motor density are realized in a motil-
ity assay.

2. PERSISTENCE LENGTH

The coupling between the different bending modes of sin-
gle filaments can lead to a considerable softening of the
filaments on large length scales. On length scales larger
than the persistence length Lp, the polymer appears to be
flexible. We have quantified this effect using renormaliza-
tion group (RG) methods; here we briefly summarize some
of the results, details are presented elsewhere.4 Starting
from a discretized model for an inextensible semiflexible
chain consisting of M bonds or segments of length �b and
with unit tangent vectors ti (i = 1� � � � �M) in d spatial
dimensions. The bending energy of this semiflexible chain
is given by26

�
ti�=
�

�b

M∑
i=1

1− ti · ti−1�� with t2
i = 1 (1)

where � is the bending rigidity. Physically relevant cases
are chains in three spatial dimensions (d = 3) and chains,
which are adsorbed on a planar substrate and, thus, con-
fined to two dimensions (d= 2). In the continuum limit of
small �b the model (1) reduces to the continuous worm-
like chain model for an inextensible filament.27
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The partition sum is obtained by integrating over all
possible bond orientations with the appropriate Boltzmann
weight exp−�
ti�/T �, where T is the temperature in
energy units. Within the model (1), modes of different
wavelengths are coupled. Upon integrating out short-scale
fluctuations, this leads to a softening of the effective
renormalized ��� governing the fluctuations with wave
length � such that ��� < �. In order to calculate ���,
we use a real-space functional renormalization group
(RG) approach, which has been developed originally in
the context of one-dimensional classical Heisenberg spin
models.28 The RG transformation eliminates fluctuations
up to the scale � = 2R�b. After the Rth RG step, we can
find an exact recursion relation for �M = �2R�b�. For
d = 2, the resulting recursion relations are given by4

�R
�

= 2R

K0

{ �∑
m=−�

��0�m K0��
2Rm2

}/{ �∑
m=−�

��0�m K0��
2R
}

with K0≡�/�bT and �0�m K0�≡e−K0ImK0�
(2)

where Imx� denotes the modified Bessel function of the
first kind.29 A similar recursion relation can be found for
d = 3. The renormalized ��� for d = 2 and d = 3 is plot-
ted in Figure 1 as a function of the length scale �. For
large �, the expression (2) has the asymptotic behavior

���

�
≈ �T

�
2e−�T /2�−4e−�T /�+8e−3�T /2�−· · · � (3)

which is governed, to leading order, by the decay length
Lp = 2�/T which we identify with the persistence length
in d = 2. Similarly, we define Lp = �/T in d = 3. These
results generalize the conventional definitions based on the
exponential decay of the particular two-point tangent cor-
relation function and gives identical results for Lp. In the
remainder of this article we will define the persistence
length by the d = 2 result, i.e.,

Lp ≡ 2�/T (4)

5000 10000

0.5

1

κ(
  )

/κ

/  b

Fig. 1. ���/� as a function of �/�b = 2R for K0 = 1000 for d = 2
(dashed line) according to the recursion relation (2 and d= 3 (solid line)).

3. BUCKLING INSTABILITY

Another hallmark of filaments or nanorods with bending
elasticity is the presence of buckling instabilities if the fil-
ament is subject to a large compressional force of size F
as follows from classical elasticity theory.30 In the absence
of thermal fluctuations, the filament undergoes such an
instability if the compressional force F exceeds a certain
threshold value, the critical force Fc, for constant filament
length or if the filament length L exceeds a certain critical
length Lc for constant force. We will limit our discussion
to the situation of a longitudinal force F that acts parallel
to the straight, unbuckled state of the filament. The thresh-
old values for force and filament length are then given by

Fc = c2
bc�

2�/L2 and Lc = cbc��/F �
1/2 (5)

where cbc is a dimensionless coefficient that depends on
the boundary conditions at the two filament ends. For
the three boundary conditions (bc0), (bc1), and (bc2)
described in the next paragraph and illustrated in Figure 2,
one has cbc = 1/2�1, and 2, respectively.

Let us denote the two ends of the filament by e1 and e2.
Filament end e1 is taken to be immobilized and to have a
fixed spatial position. The orientation of the filament seg-
ment adjacent to e1, which is described by the tangent
vector of this segment, may be free or clamped: ‘free’
means that it can freely adapt to the compressional force,
‘clamped’ that it is constrained to be parallel to this force.
The three boundary conditions are now defined as follows
(see also Fig. 2): (bc0) Filament end e1 is clamped and
filament end e2 is free. In this case, a longitudinal force
that acts parallel to the straight, unbuckled filament leads
to a displacement of e2 that has both a longitudinal and a
transverse component; (bc1) Both filament ends are free.
As the filament buckles, the filament end e2 is only dis-
placed in the longitudinal direction parallel to the force;
and (bc2) Both filament ends are clamped and we only

L|| L||

(bc0) (bc1) (bc2)
FF

e1 e1

e2 e2

F

e1

F

e2

Fig. 2. Straight unbuckled filament and three boundary conditions
(bc0), (bc1), and (bc2) for buckling. (Left) Straight, unbuckled fila-
ment growing against the upper (grey) wall which exerts the longitudinal
force F . The projected length L
 of the filament is equal to its contour
length L. The straight filament is stable as long as L do not exceed a criti-
cal value Lc, which differs for the three boundary conditions (bc0), (bc1),
and (bc2), see Eq. (5). For L > Lc the filament buckles and L
 < L. The
lower filament end e1 has a fixed spatial position. For (bc0), filament end
e1 is clamped to an orientation parallel to the force and filament end e2
is free; for (bc1), both filaments ends can freely adapt their orientations;
for (bc2), both filament ends have clamped orientation and, furthermore,
we only allow for displacements of e2 parallel to the force.
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allow for a longitudinal displacement of e2 parallel to the
force.

In the living cell, the ATP-driven polymerization of fil-
aments is an important mechanism for force generation.
Likewise, synthetic semiflexible polymers, which grow via
polymerization, can be envisaged as suitable systems for
force generation on the nanoscale. The ability of these sys-
tems to perform work is, however, limited by the buckling
instability. Here we want to discuss a simple model sys-
tem where a single filament is growing by polymerization
against a planar wall. As before, one filament end, e1, is
immobilized and has a fixed spatial position. The other
end, e2, can now grow by attachment of monomers which
leads to a time-dependent filament length L= Lt�. Since
this growth is rather slow, we can assume that the fila-
ment attains a state of mechanical equilibrium with length
L = Lt�. The planar wall is movable and is loaded by a
constant force F , such that it always touches and pushes
the growing end of the filament. Now we investigate how
the buckling instability of the filament is reflected in the
behavior of the projected length L
, which is the longitu-
dinal extension of the filament in the direction parallel to
the force and is directly accessible in experiments.

If the filament bends in a plane, its configuration can
be described by the planar angle  s� between its tangent
vector and the force direction which is parametrized by
the arc length s with 0< s < L. The total energy E of the
filament then has the form

E =
∫ L

0
ds

[
�

2
#s �2+F cos s�

]
(6)

where the first and the second term represent the bending
and compression energy, respectively. The force F is pos-
itive if it acts against the growing filament. The projected
length L
 is given by

L
 =
∫ L

0
ds cos s� (7)

Minimizing the total energy E with respect to the angle
configuration  s�, leads to the beam equation which has
to be solved for appropriate boundary conditions. This
solution can be expressed in terms of the planar angle
 ∗ ≡  s∗�. For the boundary conditions (bc0) and (bc1),
one simply has s∗ = L. For the boundary condition (bc2),
the arc length s∗ corresponds to the smallest s-value for
which the filament’s curvature vanishes which implies
d s�/ds = 0 for s = s∗. One then finds that the ratios of
the contour length L and of the projected length L
 to the
critical length Lc are given by

L

Lc

= �1 ∗�
�10�

and
L

Lc

= �1 ∗�−�2 ∗�
�10�

(8)

with the two integrals

�1y�≡
∫ y

0
dx

1√
2cosx− cosy�

(9)

–0.75 –0.5 –0.25 0 0.25 0.5 0.75 1

0.2

0.4

0.6

0.8

1

1
–

L
||/

L
c

L/Lc–1

Fig. 3. Plot of the reduced projected length L
/Lc as a function of
the reduced contour length L/Lc for the two boundary conditions (bc0)
and (bc1), see text. For L < Lc, the filament is straight with L
 = L

which corresponds to the left part of the diagram with L/Lc − 1 < 0.
The buckled solution appears for L > Lc as shown in the right part of
the diagram with L/Lc − 1 > 0. The red curve is obtained numerically
by a parametric plot using  ∗ =  L� as the curve parameter. The black
line is the linear approximation (11). For L/Lc −1> 0�478, L
 becomes
negative.

and
�2y�≡

∫ y

0
dx

1− cosx√
2cosx− cosy�

(10)

As y goes to zero, the first integral has the finite limit
�10�=�/2 whereas �20�= 0. Using these expressions,
one can obtain a parametric representation of the reduced
projected length L
/Lc as a function of the reduced con-
tour length L/Lc in the buckled state with L> Lc. For the
two boundary conditions (bc0) and (bc1), one obtains
the same relation which is plotted in Figure 3. Close to
the buckling instability, all three boundary conditions lead
to the asymptotic behavior

1−L
/Lc ≈ 3L/Lc−1� for small L/Lc−1> 0 (11)

For L < Lc, on the other hand, the filament is unbuckled
which implies that the projected length L
 is identical with
the contour length L and

1−L
/Lc = 1−L/Lc for L/Lc −1< 0 (12)

Combining the two results for L > Lc and L < Lc, we
see that the relation between projected and contour length
exhibits a cusp at the buckling point with L=Lc as shown
in Figure 3.

For a growing filament this cusp-like singularity directly
translates into a singularity in time. The filament growth
can be characterized by the rate %effF � of subunit inser-
tion or attachment which depends on the external force F .
The time-dependent length of the filament is then given by

Lt�= Lc +�b %effF �t− tc� (13)

where �b is the size of the inserted subunits and tc is the
buckling time. As an example, let us consider an actin
filament which is extended by a formin molecule with
insertion rate %eff0� � 2�5 subunits/s and subunit size

4 J. Comput. Theor. Nanosci. 3, 1–14, 2006
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�b � 2�75 nm.31 Using the growth law (13) for Lt� in (11)
for t > tc and in (12) for t < tc, one obtains the jump

dL

dt

∣∣∣∣
t=tc+0

− dL

dt

∣∣∣∣
t=tc−0

=−4�b %effF � (14)

in the growth rate dL
/dt of the projected length at the
buckling instability. This singularity should be accessible
to experiments and can then be used to determine the
growth rate %effF � of the filament or nanorod. The singu-
larity as given by (14) also applies to N parallel filaments
provided one replaces F by F /N .

4. FILAMENT BUNDLES

Within this section we consider an equilibrium phase tran-
sition in a system of many filaments, which have a short-
range attractive interaction mediated by crosslinkers. We
consider N filaments with bending rigidity � in a solu-
tion containing crosslinking molecules with two adhesive
end groups. This system exhibits a critical crosslinker
concentration, X1 = X1� c, which separates two different
concentration regimes. For X1 < X1� c, the filaments are
unbound and uniformly distributed within the compart-
ment. For X1 > X1� c, the filaments form either a single
bundle, which represents the true ground state of the sys-
tem as in Figures 4(a) and (c), or several sub-bundles,
which represent metastable, kinetically trapped states as in
Figure 4(b). Furthermore, as we decrease the crosslinker
concentration from a value above X1� c towards a value
below X1� c, the bundles undergo a discontinuous unbind-
ing transition at X1 = X1� c. The existence of a single,
discontinuous unbundling transition can be established by
analytic methods for N = 2 filaments15 and by Monte
Carlo (MC) simulations for larger bundles containing up
to N = 20 filaments.5

4.1. Model

The filaments are oriented along one axis, say the x-axis,
and can be parametrized by two-dimensional displace-
ments zix� (i = 1� � � � �N ) perpendicular to the x-axis,

(a) (b) (c)

Fig. 4. Monte Carlo snapshots of bundles with N = 20 filaments.
(a) Close to the unbinding transition in the bundled phase. (b) Deep in
the bound phase, the bundle tends to segregate due to slow kinetics and
filament entanglement. (c) The equilibrium shape of the bundle is roughly
cylindrical.

x
z2 (x) z1 (x)

Fig. 5. Crosslinkers connecting two filaments. If these crosslinker
molecules are rather rigid, they mediate effective filament–filament inter-
actions that depend on the filament orientations as discussed in Ref. [15].
In this review, we will focus on the case of short, flexible crosslinkers
with two adhesive endgroups as indicated in this figure. In the latter case,
the effective filament–filament interactions depend only on the distance
between the filaments.

with 0 < x < L
, where L
 is the projected length of
the polymer. This parametrization is appropriate provided
the longitudinal correlation length of the displacements is
small compared to Lp. The filament interaction is mediated
by crosslinking sticker molecules that adsorb from the sur-
rounding solution. Each linker consists of a short polymer
with adhesive endgroups, see Figure 5. In the following,
we assume flexible linkers for simplicity which can link
two filaments irrespective of their orientation; orientation-
dependent interactions which arise from rigid linkers can
be studied in a similar way, see Ref. [15].

We discretize the filament into segments of length a
,
i.e., xk = ka
 and zi� k = zixk�. The presence or absence
of a crosslinker molecule at segment k of filament i
is described by the occupation number ni�k = nixk� =
0�1. The filament-crosslinker system is governed by the
Hamiltonian

� =∑
i

��b� i
zi�+�1
ni��+
∑
i� j

�2
zi− zj � ni� nj� (15)

where the first contribution

�b� i =
∫ L

0
dx

1
2
�#2

xzi�
2

contains the bending energies of the filaments. The term
�1 describes the intrafilament interactions of linkers. We
consider a lattice gas of linkers with hard-core repulsion
adsorbing on a filament with

�1 =
∑
k

a
Wni�k

where W < 0 is the adhesive energy (per length) of one
linker end group. The third contribution �2 describes the
pairwise interactions between filaments i and j and is
given by

�2=
∑
k

a


[
Vr/zij�k�+

1
2
ni�k+nj�k−2ni�knj�k�Va/zij�k�

]

(16)
where /zij� k ≡ zi� k − zj� k. The first term represents the
hard-core repulsion between two filaments that is indepen-
dent of the linker occupation and leads to a potential

Vrz�=� for �z�< �r and Vrz�= 0 otherwise

The length scale �r is of the order of the filament diameter.
The second term is the linker-mediated attraction and is

J. Comput. Theor. Nanosci. 3, 1–14, 2006 5
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non-zero if either segment k of filament i or segment k
of filament j carries a linker. Then the other filament is
attracted by a linker-mediated potential Vaz�. The latter
filament gains the additional energy �W � if �/zij� k� ≤ �a,
where the potential range �a is of the order of the linker
size. This attraction is modeled by the potential well

Vaz�=W for 0< �z�−�r <�a and Vaz�=0 otherwise
(17)

We can perform the partial trace over the crosslinker
degrees of freedom ni�k in the grand-canonical ensem-
ble to obtain an effective interaction between filaments.
Each crosslinker has two adhesive ends. The first adhe-
sive end adsorbs on a filament and establishes the standard
Langmuir-type adsorption equilibrium with a linker con-
centration per site X1 ≡ ni�k�1 = cx/Kd+ cx� where the
average is taken with the Hamiltonian �1. X1 is thus deter-
mined by the concentration cx of linkers in solution, where
Kd is the equilibrium constant of the dissociation reaction
of the crosslinker with the filament. Tracing over weakly
bound linkers with �W � � T /a
, we end up with effective
pairwise linker-mediated filament interactions, i.e.,

��2 ≈
1
2

∑
k

a
�Vr/zij� k�+ �Va/zij� k��

which have the same functional form as the bare interac-
tions; the short-range attractive part �Va is of the form (17)
with a strength†

�W ≈ 2X1W (18)

proportional to the linker concentration on the filament.
Pairwise filament interactions with potentials of the form
(17) are generic and do not only arise from crosslinkers but
also from van-der-Waals, electrostatic, or depletion forces.

4.2. Discontinuous Unbundling Transition

We have studied bundle formation by MC simulations for
up to N = 20 identical filaments (�i = �) using the effec-
tive Hamiltonian

� =∑
i

�b� i+
∑
i� j

��2

Filaments are discretized into L
//x points along the
x-direction, in which we apply periodic boundary condi-
tions. In each MC step we attempt a random perpendicular
displacement in the z-direction. The MC simulations can
be used to determine the locus and order of the unbind-
ing transitions, at which the mean energy �� exhibits
a discontinuity, see Figure 6(a). To gain further insight
into bundle morphologies, we also measure the mean seg-
ment separation �/zij � − �r�, see Figure 6(b), which is

†This corrects the corresponding Eqs. in Ref. [5]; The effective inter-
action ��2 contains an additional factor 1/2, and the effective potential
strength �W an additional factor 2.
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(b)

Fig. 6. MC data for N = 2�3�5�10�20 identical filaments (with per-
sistence length Lp = 200, contour length L
 = 100, potential range �a =
0�001, and hard core radius �r = 0�1; all lengths are in units of /x,
lines are guides to the eye). For N = 10�20 two branches of data are
shown corresponding to two different initial conditions; in the lower
branch we prepared a compact cylindrical configuration, in the upper
branch (thick lines) we arranged filaments initially in a plane. (a) Mean
energy ��/NL
 per filament (in units of T ) as a function of the effec-
tive potential strength � �W � (in units of T //x). Arrows correspond to the
snapshots in Figure 4. (b) Logarithmic plot of the mean filament sepa-
ration /z� ≡ �/zij �− �r� (in units of /x) as a function of the reduced
potential strength � �W �− � �Wc��/� �W �.
directly proportional to the mean bundle thickness that can
be determined by optical microscopy in experiments.

Our MC simulations confirm that, for bundles con-
taining up to N = 20 filaments, there is a single, dis-
continuous unbinding transition, see Figure 6(a). In the
presence of a hard-core repulsion, the critical potential
strength �Wc saturates to a N -independent limiting value
�Wc�� for large N . The numerical simulations support a
scaling behavior �Wc�� − �Wc ∼ N−� with an exponent
� � 1�0± 0�1 as shown in Figure 7. As can be seen in
Figure 4(a) typical bundle morphologies close to the tran-
sition are governed by pair contacts of filaments. The bun-
dle thickness, as given by the mean segment separation
�/zij �−�r�, stays finite up to the transition, see MC data
in Figure 6(b). For increasing N , an increasing number
of higher moments �/zij � − �r�m� remains finite at the

6 J. Comput. Theor. Nanosci. 3, 1–14, 2006
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Fig. 7. MC data points for the critical potential strength �Wc� as a func-
tion of the inverse filament number 1/N . The data points are fitted well
by a straight line with a limiting value �Wc�� � 4�48.

transition (all moments m< 2N −1�3N −4�/3 remain
finite) showing that the critical thickness fluctuations of
large bundles become small.

Deep in the bundled phase, i.e., for large � �W �, our MC
simulations show that bundles do not always reach their
equilibrium shape. Small sub-bundles containing typically
N ∼ 5 filaments form easily, start to entangle, and fur-
ther equilibration is kinetically trapped suggesting that the
bundle is in a “glass” phase. Figure 4(b) shows the seg-
regation into sub-bundles in a typical configuration and
Figure 6(a) shows the corresponding rise in the mean bun-
dle energy per filament which approaches the N = 5 result.
In Figure 6(b) the pronounced rise of the mean separa-
tion for N > 5 with increasing potential strength and with
increasing N is due to the segregation. This behavior is
reminiscent of the experimentally observed F-actin struc-
tures consisting of networks of small bundles.11 Only when
starting from a sufficiently compact initial state, bundles
relax towards the equilibrium form in the MC simulation,
which is a roughly cylindrical bundle with a hexagonal
filament arrangement as shown in Figure 4(c). In contrast
to the segregated form, the bundle thickness and the mean
energy per filament of the equilibrium form decrease with
increasing N , as can be seen in Figure 6.

The critical potential strength �Wc corresponds to a criti-
cal crosslinker concentration X1� c. For weakly bound link-
ers �W � � T /a
, we have a simple linear relation �W ≈
2X1W such that X1� c ≈ �Wc/2W . The corresponding rela-
tion for strongly bound linkers is more complicated but
X1� c will increase monotonically with increasing �Wc.

Our simulations use periodic boundary conditions and
treat very long and essentially parallel filaments. In order
to include translational and rotational entropy we can map
the ensemble of semiflexible filaments considered here
onto an ensemble of rigid rods of finite length L and diam-
eter a⊥ at a certain concentration c. The effective pair-
wise attraction (per length) J is given by the bundling free
energy of the filaments with J ∼ �Wc − �W > 0 for � �W � >
� �Wc�. Using the results of Ref. [32], we find that the hard

F

∆x

∆x

x

Fig. 8. Schematic illustration of the zipping mechanism. Upon zipping
or bundling of filaments over an additional length /x they gain an adhe-
sion energy J/x. Motion of the wall over the same distance /x against
an external force f requires an energy f/x.

rod system separates into a high-density nematic phase
and a low-density nematic or isotropic phase above a crit-
ical attraction, which is in qualitative agreement with the
experimental results in Refs. [10–12].

4.3. Force-Generation by Bundling or Zipping

The adhesive energy which is gained during bundle forma-
tion can be used to generate forces. The basic mechanism
can be explained for two filaments which are bundling
or zipping due to a short-range attraction as discussed in
the previous section. As sketched in Figure 8, we start
with a bundle of two filaments which is oriented in the
x-direction. One end of the bundle—the lower end in
Figure 8—is spatially fixed and has a clamped orienta-
tion. At the other end of the bundle—the upper end in
Figure 8—the two filaments unbind and bend against a
rigid wall. The wall exerts a total force F in the negative
x-direction, such that each filament is loaded by a force
F /2. As the filaments bind or zip together over an addi-
tional length /x, they gain a free energy J/x, where J > 0
is the free energy of adhesion (per length) as introduced
in the previous section. In the absence of thermal shape
fluctuations of the filaments, the free energy is equal to the
energy of adhesion J ≈ � �W �. In the presence of thermal
fluctuations, this ‘bare’ adhesion energy is considerably
reduced by entropic contributions until it finally vanishes
as J ∼ �Wc − �W close to the unbundling transition as dis-
cussed above. Zipping together an additional length /x
implies that the wall moves by the same distance /x which
costs an energy F/x. The total zipping free energy gain is
Ezip = J − F �/x and zipping happens spontaneously for

J. Comput. Theor. Nanosci. 3, 1–14, 2006 7
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forces f that satisfy

F < Fzip = J (19)

where Fzip is the maximal force which can be generated
by this simple mechanism. Deep in the bundled phase,
we have

Fzip = J ≈ � �W �� for � �W � � � �Wc� (20)

The zipping mechanism does not rely on polymerization
forces but requires a length reservoir for the filaments in
front of the wall. This length reservoir has to be con-
stantly renewed by polymerization at the free polymer ends
as long as the zipping proceeds. Force generation by the
zipping mechanism is eventually limited by the buckling
instability of the bundled zipped stem. Similar zipping
mechanisms have been proposed to play an essential role
in the motility of nematode sperm cells.33�34

We have performed MC simulations of the zipping
mechanism for two identical filaments using an effective
Hamiltonian

� =∑
i

�b� i+
∑
i� j

��2

which we parameterize in terms of the contour length L
of the filaments. Each filament is discretized into L//s
equidistant points along its contour. Initially, we prepare a
bundle oriented in the x-direction parallel to the direction
of the force with one end fixed and clamped, and the other
end in a splayed configuration as shown in the snapshot
Figure 9 on the left. During the MC simulation additional
monomers can attach at the splayed ends (gaining a bind-
ing energy Em < 0), which provides the necessary reservoir
in polymer length. The wall is loaded with a force F and
moved instantaneously (or adiabatically) to the monomer
position with the largest x-coordinate after each MC step.
After a steady state has established for a given force F we
measure the mean velocity vw� of the pushing wall in the
positive x-direction. In the MC simulations we find indeed
a threshold behavior with a critical force Fzip in agreement
with our argument above. At low pushing forces F < Fzip,
we find vw� > 0, and the zipped part of the bundle is
constantly growing, whereas at high forces F >Fzip, it con-
stantly shrinks since vw�< 0. Our MC data are consistent
with the above estimate (20) for � �W � � � �Wc�, i.e., deep in
the bundled phase, see Figure 9 on the right.

For bundles consisting of N filaments we expect the free
energy gain from binding or zipping N filaments together
over an additional length /x to scale as NqJ/x/2 for large
N , where q is the number of nearest neighbors: Because
of the repulsive part of their interaction, filaments in large
bundles only interact with a limited number q of nearest
neighbors for short-range attractions. Moving the wall by
the same distance /x costs an energy F/x and, thus, we
expect Fzip ∼ NqJ/2 for the maximal force that can be
generated by the zipping of a bundle consisting of a large
number N of filaments.

0.6

0.4

0.2

0

0.2

0.4

0.6

0 20 40 60 80 100

v w

|Wc| |W|

F

growth

shrinking

(a)

(b)

Fig. 9. (a) Snapshot from MC simulations of zipping for two polymers
with Lp = 2000 (in units of /s), an adhesive potential of � �W � = 50, and
a force F = 50 (both in units of T //s), i.e., close to the critical force
Fzip. The wall is visible in dark grey, the immobilized clamped ends of
the filaments are outside the range of the picture in the front. (b) Mean
velocity vw� (in units of /s per MC time step) of the pushing wall for
an adhesive potential with � �W � = 50 as a function of the pushing force
F . The other parameters are as in Figure 6; the critical potential strength
for bundling is � �Wc� � 3�2, i.e., the simulations are performed deep in the
bundled phase. The arrow corresponds to the snapshot on the left. For
F < Fzip we find vw�> 0, and the zipped part of the bundle is growing.
For F > Fzip, it shrinks and vw� < 0. The MC data is consistent with
Fzip ≈ � �W � = 50, see (20).

5. FILAMENT ADSORPTION

The adsorption transition of a single filament onto a pla-
nar substrate is qualitatively similar to the bundle for-
mation for N = 2 filaments in 1+ 1 dimensions, where
the one-dimensional perpendicular distance zx� from
the surface is analogous to a one-dimensional separation
between filaments. The adsorption transition can be solved
analytically,15 which reveals that unbinding and desorption
represent two distinct universality classes with different
critical exponents.

Here we want to consider the adsorption of a filament
with persistence length Lp = 2�/T on a planar two-dimen-
sional substrate where molecular motors are adsorbed
with an areal density 7 . Each motor can bind to a fil-
ament within a capture radius �m and a binding energy
Wm < 0. Then each motor gives rise to an adsorption

8 J. Comput. Theor. Nanosci. 3, 1–14, 2006
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potential Vadz� of the same functional form as the
potential (17),

Vadz�=Wm for 0<z< �m and Vadz�= 0 otherwise
(21)

In the following we assume that the motor tail is flex-
ible such that the filament can bind at any orientation.
A rigid motor tail eventually gives rise to an orientation-
dependent adsorption potential because filaments could
bind only at a preferred angle. In Ref. [15] both cases have
been discussed, and it has been found that the orientation-
dependence can affect the order of the adsorption
transition. Whereas we find for orientation-independent
adsorption potentials a second order transition, the adsorp-
tion transition can become first order if the potential is
orientation-dependent.‡ In contrast to the case of the
annealed crosslinker ensemble considered previously, the
motors represent a partially quenched ensemble of adsorp-
tion points. In the following, we consider the typical exper-
imental situation of a rather uniform coverage with motor
proteins and also neglect effects from filament fluctuations
parallel to the surface. Then the array of motors gives rise
to an average adsorption potential �Vadz� of the same func-
tional form as the potential (21) with a potential strength
�Wad = Wm7�m. On length scales comparable or smaller
than Lp, the semiflexible polymer is only weakly bent by
thermal fluctuations and its configurations are governed by
the effective Hamiltonian

�ad =
∫ L


0
dx

[
�

2
#2
xz�

2 + �Vadzx��

]
(22)

We consider the limit of long filaments L
 �Wad � T ,
which can exhibit a desorption transition. Using the model
(22), this desorption transition has been studied by trans-
fer matrix techniques in Ref. [15]. The critical potential
strength for desorption is �Wad� c = −cT �−2/3

m L−1/3
p corre-

sponding to a critical motor density

7c = c
T

Wm�
5/3
m L

1/3
p

(23)

where c ≈ √
3�/2 ≈ 1�5. For motor densities above the

critical density, filaments adsorb onto the substrate with
anchored motors against the thermal fluctuations of fila-
ments. The critical motor density for adsorption is decreas-
ing with increasing filament rigidity �. Using estimates
Wm � 15T and �m � 10−2 �m for kinesin and Lp � 10 mm
for microtubules, we find a critical motor density 7c � 10
�m−2 for adsorption.

The transfer matrix treatment shows that the free energy
difference between adsorbed and unbound state vanishes
as �/f � ≈ � �Wad� c��w�/ ln �w�−1 where w ≡  �Wad −
�Wad� c�/ �Wad�c. Therefore, the correlation length 9
 =
T /�/f � ∝ �w�−: diverges with an exponent : = 1+ log.

‡The case of an orientation-independent adsorption potential (21) cor-
responds to the case /= 0 in Ref. [15].

The weak bending approximation is valid as long as gradi-
ents are small, i.e., #xz�2� ∼ 9
/Lp � 1, which is fulfilled
for � �Wad − �Wad� c� � T /Lp, which typically applies to stiff
filaments such as microtubules adsorbed by kinesins.

6. MOTILITY ASSAYS FOR
MOTOR PROTEINS

Motility assays are model systems, which allow to study
active filament dynamics in a controlled manner. In motility
assays, filaments are connected to the substrate by anchored
motors of sufficient density 7 > 7c. In the presence of
ATP, the motor heads start to perform a directed walk on
the filaments, which induces active dynamics of adsorbed
filaments. By analyzing the transport velocities of single
filaments gliding over the substrate, information can be
obtained about basic properties of molecular motors such
as their maximal velocity. If many interacting filaments are
studied interesting active ordering phenomena can occur.

6.1. Model

Our microscopic model for motility assays describes fil-
aments, motor heads, and polymeric motor tails as sepa-
rate degrees of freedom.25 One end of the motor tail is
anchored to the substrate and the motor head on the other
end can bind to a filament with the correct orientation
since the motor tail is rather flexible. Once bound the
motor head moves along the filament thereby stretching
the polymeric tail, which gives rise to a loading force act-
ing both on the motor head and the attached filament. This
force feeds back onto the motion of the bound motor head,
which moves with a load-dependent motor velocity.35�36

Filaments follow an overdamped dynamics with external
forces arising from the stretched motor tails and the repul-
sive filament–filament interaction.

To proceed, let us consider N rigid filaments of length L
on a planar two-dimensional substrate.¶ The configuration
of filament i (i = 1� � � � �N ) is then specified by the posi-
tion of its center of mass ri and its orientation angle ;i,
see Figure 10. The overdamped translational and rotational
dynamics of each filament i is described by the stochastic
Langevin-type equations of motion25

� · #tri =
Ni∑
<=1

F<i
N∑
j=1

Fij −� i (24)

and

=;#t;i =
Ni∑
<=1

M<
i +

N∑
j=1

Mij + >;� i (25)

where Ni is the number of motor heads attached to fila-
ment i and indexed by <. The vector ui = cos;i� sin ;i� is

¶The model can be extended to deformable filaments by modeling each
filament as a set of Ns segments connected by elastic springs and hinges,
see P. Kraikivski, Ph.D. Thesis, Universität Potsdam (2005).

J. Comput. Theor. Nanosci. 3, 1–14, 2006 9
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i

ui

riθi r0
α

ri
αα

Fig. 10. Schematic view onto substrate surface: A filament i attached
by two motors attached. The vector ri points towards the filament’s center
of mass, the parameters ;i and ui represent the orientational angle and
unit vector, respectively. The motor < is anchored at r<0 , and its head is
positioned at r<i .

the orientational unit vector of filament i. Friction forces
are governed by the matrix of translational friction coef-
ficients, � = =
ui⊗ui+ =⊥I−ui⊗ui�,

21 where I is the
unit matrix and =; is the rotational friction coefficient.
All friction coefficients =
, =⊥, and =; are known from
passive filament dynamics. The translational and angular
thermal random forces � it� and >;� it�, respectively, are
Gaussian distributed with correlations � it�⊗ � j t

′�� =
2T �?ij?t − t′� and >;� it�>;� j t′�� = 2T =;?ij?t − t′�.
The stretched tail motor < is exerting a force F<i onto the
filament. The end-to-end vector of the polymeric tail is
/r< ≡ r<i − r<0 , where the motor tail is anchored at r<0 and
the head position is r<i . We model the polymeric tail as
freely jointed chain such that F<i is pointing in the direc-
tion −/r< and its absolute value is obtained by invert-
ing the force-extension relation of a freely jointed chain.26

There is also a corresponding torque due to the motor
activity, M<

i = �r<i − ri�×F<i �. The interaction forces Fij
and torques Mij are due to the purely repulsive interactions
between filaments i and j corresponding to a hard-rod
interaction for filaments of diameter D.

The dynamics of motor heads is described by a deter-
ministic equation of motion, which has the form

#tx
<
i = vF<i � (26)

where �x<i � ≤ L/2 defines the position of the motor < on
the rod i, i.e., r<i = ri+ x<i ui and the filament polarity is
such that the motor head moves in the direction ui. The
motor velocity v is a function of the loading force F<i
which builds up as the motor tail becomes more and more
stretched. We use a piecewise linear force-velocity relation

vF<i � = vmax for F<i ·ui≥0

= vmax

(
1− �F<i �

Fst

)
for F<i ·ui <0 and �F<i �<Fst

= 0 for F<i ·ui <0 and �F<i �>Fst (27)

where vmax is the maximal motor velocity, which is
attained if the motor is pulled forward. The motor speed
decreases linearly if the motor is pulled backwards, until it
stalls if the backwards force exceeds the stall force Fst.

35�36

We assume that the motor binds to the filament when
the distance between the position of the fixed end of the

motor tail at r<0 and the filament is smaller than the cap-
ture radius �m. Apart from the stall force Fst the motor is
also characterized by its detachment force Fd, above which
the unbinding rate of the motor head becomes large. For
simplicity we assume in our model that the motor head
detaches whenever the force F <i exceeds a threshold value
Fd. We consider the case of processive motors with a high
duty ratio close to unity, i.e., motors detach from a fila-
ment only if they reach the filament end or if the force F
becomes larger than the detachment force Fd.

6.2. Simulation

Using the above model we can perform simulations of
gliding assays for different distributions of motors, i.e.,
random distributions or patterns of motors. We will first
focus on a random distribution of motors with a surface
density 7 and a system with periodic boundary condi-
tions. At each time step /t, we update the motor head
position x<i and filament position by using the discrete
version of the equations of motion (25) and (26). The
parameter values that we choose for the simulations are
comparable with experimental data on assays for conven-
tional kinesin. The simulation results presented in this arti-
cle have been obtained for assays of quadratic geometry
and area 25 �m2 with rigid filaments of length L= 1 �m
and diameter D = L/40. We simulate at room tempera-
ture T = 4�28×10−3 pN�m. The friction coefficients are
taken to be =⊥ = 2=
 = 4�AL/ lnL/D� and =; = =
L2/6,
where A is the viscosity of the surrounding liquid. We
use a value A = 0�5 pN s/�m2 much higher than the vis-
cosity of water, Awater ∼ 10−3 pN s/�m2, which allows to
take larger time steps and decreases the simulation time.
We checked that this does not affect results by performing
selected simulation runs also at the viscosity of water. We
use a maximum motor speed of vmax = 1 �m s−1 and a
stall force of Fst = 5 pN. The capture radius for motor pro-
teins is �m = 10−2 �m and the length of the fully stretched
motor tail Lm = 5×10−2 �m.

The motion of a single filament with contour length
L is characterized by stochastic switching between rota-
tional and translational diffusion if no motors are attached,
directed translation in rotationally diffusing directions if
one motor is attached, and directed translation in one
direction if two or more motors are attached. The relative
frequency of these types of motion depends on the average
number of motors attached to the filament or the average
distance dm� between bound motors and, thus, on the sur-
face motor concentration 7 .22 In the limit of high motor
concentration a filament has two or more bound motors on
average and dm� ∼ 1/7�m. The single filament performs
a persistent walk with the effective persistence length22

9p =
S;�

/;2�1/2
= L+2dm�
L+3dm�

L3

9�2
m

(
eL/dm� −1− L

dm�
)

(28)
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Fig. 11. (a) Simulation results for average distance S;� traveled by a
filament between successive rotations as a function of the filament length
L for high motor concentration. The solid line is the analytical result (28)
as derived in Ref. [22]. (b) and (c) Snapshots of a gliding assay of rod-
like filaments with filaments density C= 2/L2 on a motor coated substrate
with randomly distributed motors and periodic boundary conditions. For
detachment forces Fd = Fst , we find (b) an isotropic phase at low motor
surface density 7�mL = 0�03 and (c) active nematic ordering at high
motor surface density 7�mL= 0�09.

where S;� is the average distance traveled by a filament
between successive rotations and /;2�1/2 = 3/7L2 is the
average rotation angle at each rotation. The theoretical
result (28) is confirmed by our simulation as shown in
Figure 11(a). The average filament velocity vF = �ṙi�� can
be obtained by simultaneously equating (i) the filament
friction force with the total motor driving force and (ii) the
filament velocity with the motor velocity in the steady
state, which leads to vF = vmax1 + =
vmaxdm�/LFst�

−1.
This relation is confirmed by our simulations.

6.3. Enhanced Ordering

Our results for the simulation of many filaments with
hard-core interactions indicate that the motility assay

(b) (c)

nematic

isotropic
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0
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3
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Isotropic     S <0.2
Nematic 0.2< S <0.7
Nematic         S >0.7

Fig. 12. The phase diagram of the gliding assay as a function of the
dimensionless filament density CL2 and dimensionless surface motor
density 7�mL for a detachment force Fd = Fst and L/�m = 100. Each
simulation run corresponds to one data point; arrows correspond to the
snapshots in Figure 11. If the average order parameter S�< 0�2, the sys-
tem is in the isotropic phase (black squares, grey area), if S�> 0�2 it is
in the nematic phase (blue triangles, blue area). The solid line represents
the analytical result (30).

exhibits active nematic ordering if the motor density 7 is
increased as can be seen in the two simulation snapshots
Figures 11(b) and (c).25 Both the rod density C and the
motor density 7 are essential in order to determine the
phase behavior of the non-equilibrium motility assay. For
given L/�m, the corresponding phase diagram depends on
the dimensionless which can be described in the plane
of the two dimensionless parameters CL2 and 7�mL as
shown in Figure 12. Nematic ordering in a system of N
filaments can be characterized by the time averages of
the order parameter S ≡ ∑

i �=j cos 2;i−;j��/NN − 1�.
In equilibrium, i.e., in the absence of motors (7 = 0) we
find a continuous isotropic-nematic transition at a critical
density Cc�0 � 4�3/L2 in the simulation, which is in good
agreement with the analytic result Cc = 3�/2L2 � 4�7/L2

based on Onsager’s theory.37 The equilibrium transition is
found numerically from the inversion point of the curve
S� = S�C� for a value S� � 0�2, which we also use as
the threshold value for active nematic ordering if motors
are present and 7 > 0, see Figure 12. Snapshots of the
actively driven system in the isotropic and nematic phase
are shown in Figures 11(b) and (c), respectively. In the
resulting phase diagram in Figure 12, the critical density
Cc for active nematic ordering decreases with increasing
motor density, i.e., nematic ordering is favored if more
mechanical energy is fed into the system. The transition
is continuous also for non-zero motor-density. In the pres-
ence of motor activity, there is a non-vanishing filament
current in the nematic phase, which is characteristic for
a non-equilibrium phase. This filament current associated
with the nematic order breaks the rotational symmetry and
can be established only for periodic boundary conditions.

J. Comput. Theor. Nanosci. 3, 1–14, 2006 11
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For a closed system with hard wall boundary conditions,
on the other hand, we expect the formation of vortex-like
rotating filament patterns.

The simulation results can be explained using the con-
cept of an effectively increased filament length

Leff =
√
LL+9p� (29)

as compared to the equilibrium system, which explains
that motor activity actually favors nematic ordering. The
increased effective length is an effect of the persistent
motion of each filament, which effectively increases the
excluded volume area. This concept can be derived more
rigorously by coarse-graining in time and averaging over
time intervals of one persistence time tp = 9p/vF in the
framework of a dynamical mean-field approach. We finally
obtain the critical filament density for the active isotropic-
nematic transition,

Cc =
c

L�L+9pdm�� �m�L��
(30)

with c = 3�/2 from the analytical mean-field calculation.
In the absence of motors we have 9p = 0 and the rela-
tion (30) reduces to the equilibrium result of Ref. [37].
Using the expression (28) for the persistence length 9p =
9pdm�� �m�L�, we obtain an explicit expression of the
isotropic-nematic phase boundary in the active system in
terms of the microscopic model parameters, which is in
good agreement with the simulation data, see Figure 12.
Beyond mean-field, we expect an increased numerical
prefactor c in (30) but the same parameter dependence.
For thermally fluctuating filaments the phase diagram in
Figure 12 should be truncated for 7 < 7c, see Eq. (23),
where filaments can undergo thermal desorption from the
planar substrate.

6.4. Filament Sorting

An interesting application of motility assays is filament size
sorting or fractionation on the nanoscale using substrates
coated with particularly designed patterns of molecular
motor density. Using simple gradient patterns this possibil-
ity has already been explored experimentally in Ref. [38].
Here we propose a more efficient geometry and give a first
proof of principle using our simulation model.

If there are two spatial regions I and II on the substrate,
which are characterized by different motor densities 7I
and 7II with 7I < 7II, filaments tend to move to region I
of low motor density 7I. If the substrate contains an alter-
nating pattern of stripes of low and high motor density,
as shown in Figure 13, the filaments accumulate in the
stripes with low motor density, unless the width L7 of
the stripes of low motor density is larger than the fila-
ment length L. Then, filaments can “bridge” the stripes
of low motor density. This behavior can be used to con-
struct an assay for the sorting of filaments according to

Lα,1 Lα,2 Lα,3

Lα,1 Lα,2 Lα,3

(a)

(b)

Fig. 13. Snapshots of gliding assays of a ternary mixture of rod-like
filaments of different lengths on a substrate coated with an alternating
pattern of stripes of low (71 = 0) and high (72 > 0) motor density. Each
system of area 96�3 �m2 contains a ternary mixture of N = 120 filaments
with 40 filaments of length L1 = 0�5 �m, L2 = 1 �m, and L3 = 1�4 �m
each, which corresponds to a total filament density of CL2

2 = 1�25. The
stripes have increasing width from left to right with L7�1/L1 = 0�58,
L7�2/L1 = 1�165, and L7�3/L1 = 1�73. The motor density 72 outside the
stripes is high with 72�mL2 = 0�24 for the assay (a) and 72�mL2 = 0�3
for (b). Both snapshots clearly indicate the sorting of filaments according
to their lengths within the different stripes.

their lengths by patterning the substrate with low motor
density stripes which are arranged with increasing width
as shown in Figure 13 for three stripes. In general we can
sort filaments into N7 stripes with widths L7�1 < L7�2 <
· · ·<L7�N7 . A filaments of length L can bridge all narrow
stripes until it encounters a stripe s with L7�s−1 <L<L7�s ,
which is sufficiently broad to “trap” the filament. Figure 13
demonstrates that this sorting principle works for an assay
consisting of a ternary mixture of filaments.

7. CONCLUSION AND OUTLOOK

Semiflexible polymers and filaments, which are ubiquitous
both in natural biological systems and synthetic biomimetic
chemical systems, are nanorods which are subject to ther-
mal fluctuations and external forces. In this review we cov-
ered some of the cooperative phenomena that can arise
from the presence of a large number of internal bending
modes or by interactions in filament assemblies.

We discussed the persistence length of a single fila-
ment using a renormalization group approach and some
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characteristics of the buckling instability of a single fila-
ment. Then we moved on to systems containing ensem-
bles of filaments and presented simulations and analytical
results for bundling transitions, which can also be used
to generate forces on the nanoscale by means of zipping
mechanisms. Finally we presented a simulation model for
motility assays where filaments are subject to active fluc-
tuations from motor proteins that are immobilized on a
substrate. This active driving leads to an enhanced ten-
dency for nematic ordering.

In this review, we focused on thermally fluctuating bio-
logical filaments. Principles which are realized in nature
can guide the design of artificial or synthetic devices,
which fulfill similar tasks as their biological counterparts.
One particularly interesting example might be force gen-
eration on the nanoscale, where nature uses polymerizing
or zipping forces which could be imitated in synthetic or
biomimetic polymer systems in the future. Another exam-
ple where experimental work has already started are size
sorting assays for the fractionation of filaments.38 For syn-
thetic metal nanorods, also quantum fluctuations might
play a role in future experiments (see Ref. [39] for an
example), which have not been discussed in this review.
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LIST OF SYMBOLS

cx crosslinker conc. in solution
D filament diameter
dm� mean distance between bound motors
/r< end-to-end vector of motor tail
� bending rigidity
� RG length scale
�b bond length
�a range of linker potential
�m motor capture radius
�r hard core size
A viscosity of the surrounding liquid
F compressional force
Fc critical force for buckling
Fd detachment force
F<i loading force onto filament i from motor

head <
Fij filament interaction forces
Fst stall force
Fzip maximal zipping force
=
, =⊥ filament friction coefficients
=; rotational friction coefficient
 s� tangent angles
J free energy of adhesion
L filament contour length
L
 filament projected length

Lc critical length for buckling
Leff effective filament length (29)
Lp persistence length (4)
L7 width of stripe of low motor density
M bond number
M<
i torque onto filament i from motor head <

Mij filament interaction torques
ni�k crosslinker occupation on site k of filament i
N number of filaments in a bundle or assay
N7 number of stripes
ri center of mass of filament i
r<0 anchor point of tail of motor <
r<i position of head of motor < on filament i
R RG step number
C filament density
Cc critical filament density for ordering
s arc length
S nematic order parameter
S;� mean distance traveled by a filament

between rotations
7 motor density
t tangent vector
t time
tp persistence time of filament motion
T temperature (in energy units)
;i angle of filament i
ui orientation of filament i
vF mean filament velocity
vmax maximal motor velocity
vw� mean zipping velocity
Vaz� linker-mediated potential (17)
Vadz� adsorption potential (21)
Vrz� hard-core repulsion
W adhesive energy (per length) of one

linker end group
�W effective potential strength (18)
Wm motor binding energy
�Wad effective adsorption potential strength
�Wc critical potential strength for bundling
x 1-dim. coordinate parallel to filament
x<i position of motor < on filament i
X1 crosslinker conc. per filament site
X1� c critical crosslinker conc. per site for bundling
9p persistence length of filament motion (28)
z d−1�-dim. coordinate perp. to filament
� it� translational thermal random force
>;� it� rotational thermal random torque
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