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Appendix A. Parametrization of transition rates

The transition rates ωij are equal to the number of
transitions |ij〉 from state i to state j per unit time.
These transition rates depend on four control parame-
ters: the load force F as well as on the molar concentra-
tions of ATP, ADP, and P. In general, these rates have
a finite value, ωij,0, for vanishing force F = 0, and can
thus be parametrized as

ωij ≡ ωij,0 Φij(F ) with Φij(0) ≡ 1 (A.1)

which defines the force-dependent factors Φij(F ). Fur-
thermore, all zero-force rates that describe the binding of
one of the chemical species ATP, ADP, or P to one of the
two motor heads depend on the corresponding molar con-
centrations [X] with [X] = [ATP], [ADP], or [P]. Thus,
the zero-force rates of those transitions |ij〉 that involve
binding of the chemical species X can be parametrized
according to

ωij,0 ≡ κij Iij([X]) ≈ κij [X] (A.2)

with rate constants κij where the second, asymptotic
equality corresponds to dilute solutions. [1] For all tran-
sitions |ij〉 that do not involve the binding of ATP, ADP,
or P, the factor Iij([X]) is simply given by Iij([X]) ≡ 1.

In the main text, the two relations (A.1) and (A.2)
have been combined into the single equation

ωij = κij Iij([X]) Φij(F ) . (1)

As an example, consider the 6-state model as intro-
duced in Fig. 1(c) of the main text and supplemented in
Fig. 4 by the binding and release of the chemical species
ATP, ADP, and P. In this case, the transitions |12〉 and
|45〉 describe binding of ATP which implies

ω12,0 = κ12 I12([ATP ]) ≈ κ12 [ATP ] (A.3)

and

ω45,0 = κ45 I45([ATP ]) ≈ κ45 [ATP ] (A.4)

where the asymptotic equalities again correspond to
dilute solutions. Likewise, for the 6-state model in
Fig. 1(c), ADP binding is described by the transitions
|65〉 and |32〉 and P binding by |16〉 and |43〉 which im-
plies the zero-force tansition rates

ω65,0 = κ65 I65([ADP ]) ≈ κ65 [ADP ], (A.5)
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FIG. 4: Binding and release of the chemical species ATP,
ADP, and P to and from the two motor heads within the 6-
state model as introduced in Fig. 1(c) of the main text. As
before, the broken line represents the mechanical forward step
|25〉 and the mechanical backward step |52〉. During these
mechanical transitions, the leading and the trailing head in-
terchange their positions. For the forward cycle F+, ATP is
bound to the leading head during the transition |12〉, ADP
is released from the new leading head during |56〉, and P is
released from the new trailing head during |61〉. For the re-
verse forward cycle F−, P is bound to the trailing head during
the transition |16〉, ADP is bound to the leading head during
|65〉, and ATP is released from the new leading head during
|21〉. For the backward cycle B+, ATP is bound to the trail-
ing head during the transition |45〉, ADP is released from the
new trailing head during |23〉, and P is released from the new
leading head during |34〉.

ω32,0 = κ32 I32([ADP ]) ≈ κ32 [ADP ], (A.6)

ω16,0 = κ16 I16([P ]) ≈ κ16 [P ], and (A.7)

ω43,0 = κ43 I43([P ]) ≈ κ43 [P ]. (A.8)

On the other hand, all transitions |ij〉 that describe ATP,
ADP, or P release are independent of the molar concen-
trations and described by zero-force rates ωij,0 = κij .
The latter feature also applies to the mechanical transi-
tions which are characterized by zero-force rates ω25,0 =
κ25 and ω52,0 = κ52.
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Appendix B. Steady state balance conditions

As discussed in the main text, each motor cycle Cν

within a network model represents two directed cycles or
dicycles, Cd

ν with d = ±, that differ in their orientation.
As we previously showed in Ref. [2], each of these dicycles
can be characterized by a steady state balance condition
of the form

kBT
∑′

ln
(

ωij

ωji

)
= Ech(Cd

ν )−Wme(Cd
ν ) (2)

where the prime at the summation sign indicates a sum-
mation over all di-edges |ij〉 of dicycle Cd

ν . In this way, one
obtains a nontrivial relationship between the transition
rates ωij , the chemical energy input Ech, and the me-
chanical work Wme for any dicycle of the network model.

In order to simplify the notation, it is convenient to
rewrite the steady state balance condition (2) in terms of
the transition energies [3]

Eij ≡ kBT ln(ωij/ωji) = −Eij . (B.1)

We then obtain the steady state balance condition in the
form ∑′

Eij = Ech(Cd
ν )−Wme(Cd

ν ) (B.2)

for each cycle Cν of the network. This condition charac-
terizes the cycle Cν rather than the dicycle C+

ν since all
terms in (B.2) merely change sign if we replace C+

ν by
C−ν .

Each dicycle Cd
ν may contain an integer number,

nh(Cd
ν ) ≥ 0, of transitions that involve ATP hydrolysis

as well as an integer number, ns(Cd
ν ) ≥ 0, of transitions

that correspond to ATP synthesis. Because the network
models contain all forward and backward transitions |ij〉
and |ji〉, these numbers satisfy ns(C−ν ) = nh(C+

ν ) and
nh(C−ν ) = ns(C+

ν ) for all cycles Cν . The chemical energy
input per completed dicycle now depends on the molar
concentrations [ATP], [ADP], and [P] and has the explicit
form

Ech(Cd
ν ) = [nh(Cd

ν )− ns(Cd
ν )]∆µ (B.3)

with the energy change

∆µ ≡ kBT ln(Keq[ATP ]/[ADP ][P ]) , (B.4)

per hydrolyzed ATP molecule where Keq is the corre-
sponding equilibrium constant. [4]

In addition, each dicycle leads to an integer number,
mf(Cd

ν ) ≥ 0, of forward mechanical steps and to an inte-
ger number, mb(Cd

ν ) ≥ 0, of backward mechanical steps.
Because all forward and backward transitions are in-
cluded, one has mf(C+

ν ) = mb(C−ν ). For the 6-state and
7-state networks considered here, which contain only a
single mechanical transition, the numbers mf and mb are

either 0 or 1. In the presence of an external load force,
F , the mechanical work performed by the motor during
one completed dicycle is then given by

Wme(Cd
ν ) = [mf(Cd

ν )−mb(Cd
ν )] ` F . (B.5)

where we have assumed that the step size of the motor
is fixed. The latter assumption applies to kinesin.

As an example, let us consider the 6-state model in
Fig. 1(c) and Fig. 4. The forward dicycle F+ = |12561〉
contains the ATP hydrolysis transition |61〉 and is, thus,
characterized by nh(F+) = 1 and ns(F+) = 0. As the
motor cycles through F+, the hydrolysis of a single ATP
molecule is coupled to a forward mechanical step of size
` corresponding to the mechanical transition |25〉. The
motor then performs the work Wme(F+) = +`F against
the external force F . The steady state balance condition
as given by (B.2) then has the form

E25 + E56 + E61 + E12 = ∆µ− `F for F . (B.6)

The backward dicycle B+ = |45234〉 contains the ATP
hydrolysis transition |34〉 and is again characterized by
nh(B+) = 1 and ns(B+) = 0. As the motor passes
through the dicycle B+, the hydrolysis of a single ATP
molecule is coupled to a backward mechanical step cor-
responding to the mechanical transition |52〉. The motor
now performs the work Wme(B+) = −`F . The resulting
balance condition becomes

E52 + E23 + E34 + E45 = ∆µ + `F for B . (B.7)

Finally, the purely dissipative dicycle D+ = |1234561〉 is
characterized by the hydrolysis of two ATP molecules
during the transitions |61〉 and |35〉 and, thus, by
nh(D+) = 2 and ns(D+) = 0. Since the motor does
not undergo any mechanical transition and, thus, does
not perform any work during this dicycle, we obtain the
balance condition

E23 +E34 +E45 +E56 +E61 +E12 = 2∆µ for D . (B.8)

The latter condition for D does not impose any additional
constraint on the transition energies since it can be ob-
tained by adding the two balance conditions (B.6) and
(B.7) for the two cycles F and B and using the identity
E25 + E52 = 0.

Appendix C. Force dependence of transition rates

If one inserts the parametrization of the transition
rates ωij as given by (A.1) into the steady state bal-
ance condition (2), one can decompose this latter con-
dition into a zero-part and a force-dependent part. For
force F = 0, the mechanical work Wme vanishes, and the
steady state balance condition (2) becomes

kBT
∑′ ln

(
ωij,0
ωji,0

)
= Ech(Cd

ν )

=
(
nh(Cd

ν )− ns(Cd
ν )

)
∆µ .

(C.1)
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which relates the zero-force transition rates ωij,0 to the
free energy change ∆µ per hydrolyzed ATP molecule.
Substracting the zero-force balance condition as given
by condition (C.1) from the full condition (2), we also
obtain

kBT
∑′ ln

(
Φij(F )
Φji(F )

)
= −Wme(Cd

ν )

= − [mf(Cd
ν )−mb(Cd

ν )] ` F
(C.2)

which relates the transition rate factors Φij(F ) to the
step size ` and the external force F .

Since no direct experimental information is available
on the force dependence of the rate factors Φij(F ), they
are parametrized in a particular simple way but required
to fulfill the condition (C.2). For the mechanical transi-
tions |25〉 and |52〉, we use the parametrization

Φ25(F ) = e−θF̄ and Φ52(F ) = e(1−θ)F̄ (C.3)

with the dimensionless force

F̄ ≡ `F/kBT (C.4)

and the dimensionless load distribution factor θ which
satisfies 0 ≤ θ ≤ 1 as in [5]. For all chemical transition
rates, we use

Φij(F ) ≡ 2/(1 + eχij F̄ ) ≡ Φji(F ) (C.5)

which involves the dimensionless force parameter χij =
χji ≥ 0. For kinesin with a step size of ` = 8 nm, the force
scale kBT/` in (C.4) has the numerical value 0.5 pN at
room temperature (corresponding to kBT = 4×10−21 J).

The symmetry Φij(F ) = Φji(F ) for the chemical tran-
sitions ensures that these latter transitions do not con-
tribute to the sum in (C.2) and that all mechanical work
is performed during the mechanical transitions. This in-
corporates the experimental observation in Ref. [6] that
there are no mechanical substeps.

The F–dependence of the chemical transition rates can
be obtained from the functional dependence of the mo-
tor velocity v on the load force F in the limit of small
F . In this latter limit, the mechanical stepping transi-
tion is not rate limiting as follows from the experimental
observations [6] that the stepping time, which is of the
order of (or smaller than) 15 µs, is much smaller than
the cycle time, which is of the order of 10 ms. Therefore,
for small F , the rate limiting transitions are ATP bind-
ing, ADP release and/or P release. This can be further
discriminated into two cases corresponding to small and
large ATP concentration.

For small ATP concentration, ATP binding is expected
to be rate limiting. Indeed, in the limit of small F and
small [ATP], the 6-state model leads to the simple ex-
pression

v/` ≈ ω12 = 2κ12 [ATP]/
(
1 + exp[χ12 F̄ ]

)
(C.6)

Exp θ χ12 = χ45 χ23 = χ56 χ34 = χ61

[6] 0.65 0.25 0.15 0.15

[7] 0.3 0.25 0.05 0.05

TABLE II: Numerical values of the dimensionless load dis-
tribution factor θ, which determines the force dependence of
the mechanical transitions, see (C.3), and of the dimension-
less force parameters χij , which govern the force dependence
of the chemical transition rates, see (C.5).

for the motor velocity v where ` is the step size of the
motor and the parametrization (C.5) has been used for
Φ12(F ). The dimensionless force parameter χ12 has been
determined by matching the expression (C.6) to the ex-
perimental data (i) in Fig. 2(a) with [ATP] = 10 µM as
obtained by Carter and Cross in [6] and (ii) in Fig. 2(c)
with [ATP] = 5 µM as measured by Visscher et al in [7].

For small load force and large ATP concentration,
ADP release and/or P release should be rate limiting.
The corresponding transition rates κ56 and κ61 are com-
parable, i.e., both for ADP release [8] and for the com-
bined process of hydrolysis and subsequent P release [9],
the literature values are in the range 100/s−300/s. With
the simplifying assumption that the two rates are equal,
i.e., that ω56 = ω61, the 6–state model leads to the motor
velocity

v/` ≈ 1
2 ω56 = κ56/(1 + exp[χ56 F̄ ]) (C.7)

for small F and large [ATP]. The dimensionless force pa-
rameter χ56 = χ61 has been determined by matching the
expression (C.7) to the experimental data (i) in Fig. 2(a)
with [ATP] = 1 mM [6] and (ii) in Fig. 2(c) with [ATP]
= 2 mM [7].

These matching procedures lead the parameter values
as shown in Table II where the force distribution factor
θ has also been included.

Appendix D. 7-state model

In order to quantitatively describe the [ADP]-
dependence of the motor velocity as observed by Schief
et al [8], we found it necessary to include the DD state
into our network description. We then obtain the ex-
tended network as shown in Fig. 5 where the DD state
is labeled by i = 7.

In general, the 7-state model has the four additional
edges 〈27〉, 〈47〉, 〈17〉, and 〈57〉 corresponding to eight
forward and backward transitions. At present, the ex-
perimental data on the [ADP] and [P] dependence of the
motor velocity are limited to small load forces [8] which
is not sufficient to specify all eight transition rates in a
unique way. For such a specification, experimental data
about the functional dependence of the hydrolysis rate on
load force F or on the concentrations [ATP], [ADP], and
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FIG. 5: 7–state model as obtained from the 6-state model in
Fig. 1(c) and Fig. 4 by including the DD state with i = 7
and the additional edges 〈17〉, 〈27〉, 〈47〉, and 〈57〉. As in
Fig. 1(c), the broken edge corresponds to the mechanical step-
ping transitions |25〉 and |52〉; the forward step |25〉 occurs in
the direction of the black arrow. In addition, the four chem-
ical transitions that involve ATP hydrolysis and P release
are indicated by white double-arrows. In the limit of small
load forces, the dynamics is dominated by the forward cycles
F+ = |12561〉 and F+

DD = |12571〉. In this regime, we find
good agreement with the experimental data if we ignore the
transitions corresponding to the edges 〈27〉 and 〈47〉 (dotted
lines) and focus on those corresponding to the edges 〈17〉 and
〈57〉. When calculating the average run length of the motor,
it is taken to unbind only from the weakly bound state DD.

[P] would also be very valuable but such data have not
been obtained so far. However, we will now argue that,
in the limit of small load force F , we may ignore the four
transitions represented by the two edges 〈47〉 and 〈27〉 or
the dotted lines in Fig. 5. In this way, we arrive at a re-
duced 7-state model for which we obtain good agreement
with all experimental data currently available.

In the limit of small load force F , the 6-state model is
dominated by the forward cycle F+, and the probability
P4 to find the motor in the state ED with i = 4 is small.
It is therefore plausible to ignore the flux arising from
the transition |47〉. In addition, for small F , the transi-
tion rate ω25 ≈ κ25 is several orders of magnitude larger
than all other transition rates of the 6-state model, see
Table I in the main text. If we assume that this property
remains valid in the 7-state model, the transition proba-
bility π25 ≡ ω25/

∑
j ω2j for the mechanical forward step

from state DT to state TD is close to one: Once the mo-
tor has arrived in state DT with i = 2, it is highly likely
to undergo the mechanical transition towards state TD
with i = 5. It is then also plausible to ignore the flux
arising from the transition |27〉.

Furthermore, the steady state balance conditions for
the new cycles 〈1271〉, 〈4574〉, and 〈17561〉, see Fig. 5,

can be used in order to get some insight into the relative
probabilities to leave the state DD with i = 7 towards
the other states with j = 1, 2, 4, or 5. For the new cycle
〈1271〉, the steady state balance condition is given by

E12 + E27 + E71 = ∆µ (D.1)

with Eij as defined in (B.1). Inserting the parametriza-
tion (A.1) for the transition rates and the expression
(B.4) for the energy change ∆µ per ATP hydrolysis, the
relation (D.1) becomes

κ12

κ21

κ27

κ72

κ71

κ17
= Keq for F = 0 (D.2)

with the equilibrium constant Keq ' 4.9 × 1011 µM for
ATP hydrolysis at room temperature. Likewise, for zero
load force F = 0, the balance conditions for the new
cycles 〈4574〉 and 〈17561〉 imply the relations

κ45

κ54

κ57

κ75

κ74

κ47
= Keq (D.3)

and
κ17

κ71

κ75

κ57

κ56

κ65

κ61

κ16
= 1 (D.4)

respectively. [10]
The transition rate constants κij have different physi-

cal dimensions 1/(s µM) or 1/s depending on whether or
not the corresponding transitions involve the binding of
one of the chemical species. It is then more transparent
to discuss the zero-force transition rates ωij,0 as defined
in (A.2) since all of these rates have the same physical di-
mension 1/s. In terms of these zero-force rates, the three
relations (D.2), (D.3), and (D.4) can be rewritten as

ω71,0

ω17,0
=

g1

[ADP][P]
ω75,0

ω57,0
with g1 ≡

κ56

κ65

κ61

κ16
, (D.5)

ω72,0

ω27,0
= ḡ2

ω75,0

ω57,0
with ḡ2 ≡

1
Keq

κ12

κ21
(D.6)

and
ω74,0

ω47,0
=

g4

[ADP][P]
ω75,0

ω57,0
with g4 ≡ Keq

κ54

κ45
. (D.7)

The three coefficients g1, ḡ2, and g4 depend only on the
equilibrium constant Keq and on the rate constants of
the 6-state model, which have already been determined,
see Table I in the main text. Using these latter values,
one obtains g1 ∼ 107 (µM)2, ḡ2 ∼ 10−6, and g4 ∼ 20
(µM)2. These numerical values for the coefficients g1, ḡ2,
and g4 imply the inequalities

ω71,0

ω17,0
=

g1

g4

ω74,0

ω47,0
� ω74,0

ω47,0
and (D.8)

ω75,0

ω57,0
=

1
ḡ2

ω72,0

ω27,0
� ω72,0

ω27,0
, (D.9)
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which indicate that, once the motor dwells in the state
DD with i = 7, it is more likely to visit (i) the state DE
with j = 1 rather than the state ED with j = 4 and (ii)
the state TD with j = 5 rather than the state DT with
j = 2.

If we ignore, in the limit of small load forces, the
transitions corresponding to the edges 〈27〉 and 〈47〉 or
the dotted lines in Fig. 5, the extension of the 6-state
model to the 7-state model only involves the four addi-
tional transition rates ω17,0 = κ17 [ADP ], ω71,0 = κ71,
ω57 = κ57, and ω75 = κ75 [P ]. [1] A quantitative de-
scription of the available experimental data is obtained
by the choice κ17 = 3.23/(µM s), κ71 = κ57 = 113/s, and
κ75 = 3.9× 10−4/(µM s). These values of the transition
rate constants have been used in order to calculate the
theoretical predictions of the 7-state model as displayed
by the broken lines in Fig. 3. Inspection of this figure
shows that these theoretical relationships are in quanti-
tative agreement with the experimental results.
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