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motor proteins, which hydrolyze adenine triphosphate (ATP). In order to under-

stand the underlying principles of motor-driven filament dynamics it is necessary to

study simple model systems in vitro. One such model system, which has been inten-

sively studied in vitro, are bulk solutions of microtubules and two-headed kinesin

motor proteins4,5,6, in which the formation of patterns such as asters and vortices is

observed. Theoretical studies of such patterns7,8,9,10,11 have used a coarse-grained

continuum description with kinetic equations for filament density and orientation

fields and a motor-density field. In these approaches it is inherently difficult to relate

the macroscopic transport coefficients to the experimentally accessible microscopic

parameters of the system. Based on experimental work on actin solutions containing

myosin motor mini-filaments12 it has also been suggested that the effect of motor ac-

tivity can be described by an increased effective temperature in the nonequilibrium

system.13

In this article, we consider the dynamics and pattern formation by many fil-

aments in motility assays, in which the tails of motor proteins are adsorbed and

anchored to a two-dimensional surface and filaments glide over this surface if the

molecular motors are active. Motility or gliding assays are by now a standard tool to

characterize motor proteins by analyzing the transport velocities of single filaments

gliding over the substrate.14 We focus on the cooperative behavior of many filaments,

which have a mutual repulsive interaction.15 Repulsive interactions originate from

the steric interaction of filaments, which gives rise to an additional bending energy

cost associated with each crossing of two filaments. This crossing energy cost can be-

come large if the filaments are effectively confined to two dimensions by decreasing

the height in the direction perpendicular to the surface below two filament diam-

eters. In this case, a hard-core repulsion between filaments is effective. Because of

their reduced dimensionality and the quenched motor concentration field, motility

assays represent a slightly simpler model system in comparison to systems consisting

of solutions of filaments and two-headed motor proteins. The equilibrium system

corresponding to the confined motility assay with hard-core repulsion in the absence

of motors is the two-dimensional hard-rod fluid, which exhibits an isotropic-nematic

ordering transition above a critical density of filaments.16,17

We show both numerically using a microscopic simulation model and by ana-

lytical arguments that the nematic ordering is enhanced by the presence of motor

activity due to the combined effect of repulsive filament interactions and active

forces exerted by the motors; see Fig. 1. Using previous results for the persistent

motion of single filaments18,19,20 we extend the dynamic mean-field theory for ne-

matic ordering21 to active systems. From the theoretical treatment, we derive the

concept of an increased effective length, which successfully explains our simulation

data for filaments with a hard-core repulsion characterized by an infinite filament

crossing energy and allows to obtain the phase behavior in terms of the experi-

mentally accessible microscopic model parameters. In the presence of a repulsive

interaction characterized by a finite crossing energy for filaments, we discuss the
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phase behavior using the additional concept of an effective temperature, which is

also increased by the motor activity. Our results show that the concept of an ef-

fective temperature is rather subtle and does not apply in the limit of large energy

barriers where the system becomes effectively athermal, i.e., is governed by steric

interactions only.

In the presence of additional filament cross-linking molecules, we observe the

formation of filament bundles similar to the bundling transition of filaments in

thermal equilibrium.22,23 At high detachment forces of motors, we observe the for-

mation of filament clusters because of blocking effects. Inactive motors increase the

tendency to form clusters. At low detachment forces, cluster formation can therefore

be controlled by the concentration of inactive motors.

2. Model

Our microscopic model for motility assays describes filament configurations, motor

heads, and polymeric motor tails as separate degrees of freedom. One end of the

motor tail is anchored to the substrate, and the motor head on the other end can

bind to a filament in the correct orientation due to the tail flexibility. Once bound,

the motor head moves along the filament thereby stretching the polymeric tail,

which gives rise to a loading force acting both on the motor head and the attached

filament. This force feeds back onto the motion of the bound motor head, which

moves with a load-dependent motor velocity.24,25 Filaments follow an overdamped

dynamics with external forces from the stretched motor tails and the repulsive

filament-filament interaction, which are characterized by an energy barrier Eba for

filament crossing. In the limit of large crossing energies Eba the filament interaction

becomes a hard-core repulsion.

To proceed, let us considerN rigid filaments of length L (with index i = 1, ..., N)

Fig. 1. Snapshots of rodlike filaments with hard-core repulsion on a motor coated substrate with
randomly distributed motors and periodic boundary conditions. The filament concentration is
ρ = 2/L2, i.e., below the critical concentration of the equilibrium isotropic-nematic transition.
For detachment forces Fd = Fst, we find (a) an isotropic phase at low motor surface density
σ`mL = 0.03 and (b) active nematic ordering at high motor surface density σ`mL = 0.09.
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Fig. 2. Schematic top view of a filament i in the motility assay with two motors attached. ri is

the filament’s center of mass, θi and ui its orientational angle and unit vector, respectively. The
attached motor α is anchored at rα0 , and its head is positioned at rαi .

on a planar two-dimensional surface. The configuration of filament i can then be

specified by the two-dimensional vector ri for its center of mass and by the angle θi
or the unit vector ui = (cos θi, sin θi) for its orientation; see Fig. 2. The filament is

subject to forces Fαi from Ni attached motors (with index α = 1, ..., Ni) with motor

heads positioned at rαi . Each such force arises from the polymeric tail of motor

α, which is stretched by the directed motion of the motor head on the filament,

as described below. The motor tail is anchored at rα0 and the head position is rαi .

We model the polymeric tail as a freely jointed chain such that Fα
i is obtained by

inverting the force-extension relation of a freely jointed chain.a In addition to motor

forces, the filaments are subject to interaction forces Fij arising from the purely

repulsive interactions between filaments i and j27. If two filaments of diameter D

cross each other, these forces give rise to a crossing energy cost Eba.

Under the influence of the motor forces Fαi and the interaction forces Fij each

filament i performs an overdamped translational motion, which is described by the

stochastic Langevin-type equation of motion

Γ · ∂tri =
∑Ni

α=1
Fαi +

∑N

j=1
Fij + ζi , (1)

where

Γ ≡ Γ‖ui ⊗ ui + Γ⊥(I− ui ⊗ ui), (2)

is the matrix of translational friction coefficients, which is given by friction coeffi-

cients Γ‖ and Γ⊥ for motion parallel and perpendicular to the filament orientation

ui, respectively, and ζi(t) are the Gaussian distributed thermal random forces.3 In

eq. (2), I is the unit matrix and ⊗ the dyadic vector product. The thermal noise

ζi(t) has correlations 〈ζi(t)⊗ ζj(t′)〉 = 2TΓδijδ(t− t′).
In addition to filament translation, motor and interaction forces give also rise to

the torques Mα
i ≡ |(rαi − ri) × Fαi | and Mij , respectively27. These torques lead to

aIf the motor tail is anchored at rα0 , the force −Fαi is pointing in the direction ∆rα ≡ rαi − rα0
and |∆rα|/Lm = fFJC(|Fαi |bm/T ), where Lm is the contour and bm the monomer length of the
polymeric motor tail, and fFJC(x) ≡ 1/ tanh x− 1/x, cf. Ref. 26.
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an overdamped rotational dynamics, which is described by

Γθ∂tθi =
∑Ni

α=1
Mα
i +

∑N

j=1
Mij + ζθ,i, (3)

where Γθ is the rotational friction coefficient and ζθ,i(t) is a Gaussian distributed

thermal random torque. The thermal torque ζθ,i(t) has correlations 〈ζθ,i(t)ζθ,j(t′)〉 =

2TΓθδijδ(t− t′).
Note that all friction coefficients Γ‖, Γ⊥ and Γθ are identical to those of the

passive filament dynamics, see Ref. 3.

The dynamics of motor heads is described by a deterministic equation of motion

∂tx
α
i = v(Fαi ), (4)

where |xαi | ≤ L/2 defines the position of the motor α along the rod i, i.e., rαi = ri+

xαi ui, and the filament polarity is such that the motor head moves in the direction

ui. The motor velocity v is a function of the loading force Fα
i which builds up due

to stretching of the motor tail. We use a force-velocity relation with a maximum

value vmax for forces Fαi · ui ≥ 0 pulling the motor forward, a linear decrease for

forces Fαi ·ui < 0 pulling the motor backwards, and v = 0 for Fαi ·ui < −Fst, where

Fst is the stall force.24,25

We assume that the motor binds to the filament when the distance between the

anchored end of the motor tail at rα0 and the filament is smaller than a capture

radius `m. Apart from the stall force Fst the motor is also characterized by its

detachment force Fd, above which the unbinding rate of the motor head becomes

large. For simplicity we assume in our model that the motor head detaches whenever

the force Fαi exceeds a threshold value Fd. We consider the case of processive motors

with a high duty ratio close to unity, i.e., motors detach from a filament only if they

reach the filament end or if the total force becomes larger than the detachment force

Fd.

3. Simulation

Using the above model we performed simulations of gliding assays for a random

distribution of motors with a surface density σ and periodic boundary conditions.

At each time step ∆t, we update the motor head positions xαi and filament positions

and orientations using the discretized versions of the equations of motions described

above. The parameter values that we choose for the simulations are comparable

with experimental data on assays for conventional kinesin. The simulation results

presented in Figs. 1 and 3 have been obtained for quadratic assays of area 25µm2

with filaments of length L = 1µm and diameter D = L/40 at room temperature T '
4×10−3pNµm. The friction coefficients are taken to be Γ⊥ = 2Γ‖ = 4πηL/ ln(L/D)

and Γθ = Γ‖L2/6, where η is the viscosity of the surrounding liquid.3 We use a value

η = 0.5pN s/µm2 much higher than the viscosity of water, ηwater ∼ 10−3pN s/µm
2
,

which allows to take larger simulation time steps. We checked that this does not

affect results. We use a maximum motor speed of vmax = 1µm/s and a stall force of
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Fig. 3. The phase diagram for the gliding assay as a function of the dimensionless filament
density ρL2 and the dimensionless surface motor density σ`mL for detachment force Fd = Fst,
and L/`m = 100, and a hard-core repulsion between filaments. All data points correspond to
separate simulation runs, the two arrows (a) and (b) to the snapshots in Fig. 1. If the average
order parameter 〈S〉 < 0.2, the system is in the isotropic phase (black squares, grey area), if
〈S〉 > 0.2 it is in the nematic phase (green triangles, green area). The solid line represents the
analytical result as given by (7).

Fst = 5pN. The capture radius for motor proteins is `m = 10−2µm and the length

of the fully stretched motor tail Lm = 5 × 10−2µm. Each data point in the phase

diagram in Figs. 3 and 4 corresponds to a simulation run over 106 time steps. In

the simulation we take time steps ∆t = 10−3s such that 106 simulation time steps

correspond to 103s.

4. Phase behavior for hard-core filament repulsion

First we consider the phase behavior in the limit of a large filament crossing energy

Eba, where a hard-core repulsion between filaments is effective. Motor activity then

strongly modifies the nematic ordering of rigid filaments of length L in a motility

assay. Therefore, both the rod density ρ and the motor density σ are essential in

order to determine the phase behavior, which can be described in the plane of the

two dimensionless parameters ρL2 and σ`mL as shown in Fig. 3. Nematic ordering

in a system of N filaments can be characterized by the time averages of the order

parameter S ≡ ∑i 6=j cos (2(θi − θj))/N(N − 1). In an infinite system, we expect

〈S〉 = 0 in the isotropic phase and 〈S〉 = 1 for perfect nematic order. In equilib-

rium, i.e., in the absence of motors (σ = 0) we find a continuous isotropic-nematic
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transition at a critical density ρc,0 ' 4.3/L2 in the simulation, which is in good

agreement with the analytic result ρc = 3π/2L2 based on Onsager’s theory for the

two-dimensional hard-rod fluid.17 The equilibrium transition is found numerically

from the inversion point of the curve 〈S〉 = 〈S〉(ρ) for a value 〈S〉 ' 0.2, which

we also use as the threshold value for active nematic ordering if motors are present

(σ > 0), see Fig. 4. Snapshots of the actively driven system in the isotropic and

nematic phase are shown in Figs. 1(a) and (b), respectively. In the resulting phase

diagram Fig. 3, the critical density ρc for active nematic ordering decreases with

increasing motor density, i.e., nematic ordering is favored if more energy is fed into

the system. The transition is continuous also for non-zero motor-density, see the

order parameter plots in Fig. 4.

Each driven filament gives a contribution Ji = N−1ρvFui to the filament cur-

rent, where vF is the mean filament velocity. This velocity can be obtained by

simultaneously equating (i) the filament friction force with the total motor driving

force and (ii) the filament velocity with the motor velocity in the steady state, which

gives vF = vmax(1 + Γ‖vmax〈dm〉/LFst)−1. In the presence of motor activity and in

the nematic phase, the contributions to the total filament current become correlated

along a preferred direction given by the unit vector n leading to a non-vanishing

expectation value
∑

i 6=j〈(Ji ·Jj)2〉/N(N − 1) = N−4ρ4v4
F 〈S〉. This gives rise to two

macroscopic filament currents 〈J±n〉 = ±ρvFn/2 of opposite directions ±n with

zero total current, 0 =
∑

i〈Ji〉 = 〈Jn〉 + 〈J−n〉. The existence of such macroscopic

currents is characteristic for a non-equilibrium phase. These currents vanish (i) for

small motor density, i.e., upon approaching the vertical axis σ`mL = 0 in the phase

diagram Fig. 3 and (ii) upon approaching the isotropic-nematic phase boundary in

the phase diagram Fig. 3, which is given by (7).

The motion of a filament is characterized by stochastic switching between rota-

tional and translational diffusion if no motors are attached, directed translation in

rotationally diffusing directions if one motor is attached, and directed translation if

two or more motors are attached. The relative frequency of these types of motion

depends on the mean distance 〈dm〉 between bound motors and, thus, on the sur-

face motor concentration σ.18 For high motor concentrations a filament has two or

more bound motors on average and 〈dm〉∼ 1/σ`m. The single filament performs a

persistent walk with a persistence length18

ξp =
L+ 2〈dm〉
L+ 3〈dm〉

L3

9`2m

(
eL/〈dm〉 − 1− L

〈dm〉

)
(5)

corresponding to a persistence time tp = ξp/vF . A coarse-graining in time by aver-

aging over time intervals of one persistence time tp leads to an effective random walk

of a single filament. On time scales larger than tp the dynamics of a filament is again

described by a diffusion equation as for passive dynamics. After coarse-graining to

one persistence time we can adapt the mean-field treatment of the hard-rod fluid21

to obtain an analytical result for the phase boundary.15 The effective excluded area

governing the steric interaction between two motor-driven filaments with center of
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Fig. 4. Plots of the order parameter 〈S〉 crossing the isotropic-nematic transition. (Left) The
order parameter as a function of the dimensionless filament density ρL2 at zero motor density.
The transition point is at ρL2 = 4.3. (Right) The order parameter as a function of the dimensionless
motor density σ`mL for a filament density ρL2 = 2 and L/`m = 100 (which is the same as for the
snapshots in Fig. 1 of the article). The transition point is at σ`mL = 0.047. In each plot we can
identify the transition points as inflection points of the order parameter curve. Each data point in
the order parameter plots corresponds to the average value of the order parameter taken over 106

time steps.

masses and orientations (r,u) and (r′,u′) on the surface of the motility assay is

Aexc = |u× u′|
∫∫ L/2+ξp

−L/2
dξdηΘL(ξ − η)δ(r−r′ + uξ + u′η) = |u× u′|L(L+ ξp),(6)

where ΘL(ξ − η) equals one if |ξ − η| < L/2 and zero otherwise. Performing an

analogous stability analysis as in Ref. 21 using this effective excluded are we finally

obtain the critical filament density of the active isotropic-nematic transition,

ρc = c/L[L+ ξp(〈dm〉, `m, L)] (7)

with c = 3π/2 from the analytical mean-field calculation.b

In the absence of motors we have ξp = 0 and the result (7) reduces to

the equilibrium result of Ref. 17. Using the result (5) for the persistence length

ξp = ξp(〈dm〉, `m, L), we obtain an explicit expression of the isotropic-nematic phase

boundary in the active system in terms of the microscopic model parameters, which

is in good agreement with all simulation data, see Fig. 3. Beyond mean-field, we

expect a larger numerical prefactor c in (7) but the same parameter dependence.

The result (7) corresponds to an effectively increased filament length Leff =√
L(L+ ξp) as compared to the equilibrium system, which explains that motor

activity actually favors nematic ordering. In deriving the phase boundary (7), we

have established a mapping of the nonequilibrium driven system onto an equilibrium

bThe analogous calculation for filaments moving in a quenched array of motors in three spatial
dimensions gives a critical filament density ρ3d

c = c3d/DL[L + ξ3d
p ] for active nematic ordering,

where ξ3d
p = ξpπ2L2/4`2m and c3d = 4π/3.
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system with larger effective filament length. This mapping only applies within the

isotropic phase as it is based on the statistical properties of the motion of a single

filament (or non-interacting filaments) but can be used to calculate the stability

boundary (7) of the isotropic phase.

5. Phase behavior for finite filament crossing energy

The motor-activity also increases the effective diffusion constant of single filaments

to Deff ∼ DF + ξpvF
18,19,20 from its bare value DF . Thus, using the Einstein

relation3 Deff = Teff(Γ−1
‖ + 2Γ−1

⊥ )/3 we might define an increased effective tem-

perature Teff ∼ T + 3ξpvF /(Γ
−1
‖ + 2Γ−1

⊥ ) for the isotropic phase. For steric fila-

ment interactions, i.e., in the limit of an athermal system with infinite crossing

energy Eba, this effective temperature does not influence the excluded area (6)

and, thus, the phase behavior. For a finite filament crossing energy Eba, how-

ever, the suppression of filament crossings depends on the ratio Eba/Teff . Fila-

ment crossing remains rare in the limit of large Eba/Teff � 1, becomes increas-

ingly frequent upon reducing Eba/Teff and, finally, filaments become effectively non-

interacting for Eba/Teff � 1. This effect can be analytically described by deriving

the appropriate excluded volume for a finite filament crossing energy, which gives

Aexc = |u×u′|L(L+ξp)(1−e−Eba/Teff ), and we expect a modified phase boundary for

the active nematic ordering at a critical density ρc = c[L(L+ ξp)(1− e−Eba/Teff )]−1.

At high motor density, where ξp becomes large, the phase boundary approaches a

finite value ρc,∞ ≈ 3cvF /(Γ
−1
‖ + 2Γ−1

⊥ )Eba.

6. Bundle formation

In thermal equilibrium, i.e., in the absence of motor forces, filaments can undergo a

discontinuous bundling transition in the presence of additional short-range attrac-

tive interactions mediated by crosslinkers.22,23 We observe a similar transition for

filaments in the motility assay if we add crosslinking molecules with two adhesive

end groups to our microscopic simulation model.

In order to include such linker molecules into the simulation, we discretize each

filament into segments of length a‖. At each segment a crosslinking molecule can

adsorb with one sticky end. We choose the discretization length equal to the filament

diameter, a‖ = D, and consider a hard-core interaction between linkers, i.e., each

adsorption site can be occupied by at most one linker molecule. Upon adsorption of

one linker end on a filament the crosslinker gains an adhesive energy a‖W < 0. If an

empty adsorption site on a second filament approaches the adsorbed linker end, the

other end domain of the crosslinker can gain an energy a‖W +WFJC(|∆rij,k |) upon

adsorbing to this empty site: The first contribution is again the adhesive energy of

a linker end group, whereas the second contribution is the stretching energy of the

polymeric linker domain of the crosslinking molecule, which is modeled as a freely

jointed chain. Integrating the force-extension relation of a freely jointed chain,26
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we find WFJC(|∆rij,k |) ' (TLl/bl)wFJC(|∆rij,k |/Ll), where Ll is the contour, bl
is the monomer length of the polymeric linker domain, and wFJC(x) ≡= − ln(1 −
x)−x+x2. After connecting two filaments, this polymeric spring connection exerts

additional forces onto each of the two filaments. The adsorption and desorption of

linker-domains is simulated using a Monte-Carlo-like algorithm.

Using this simulation model for additional crosslinking molecules we observe

the formation of filament bundles above a critical crosslinker concentration, similar

to the corresponding equilibrium system.22,23 Simulations also indicate that these

filament bundles dissolve if the motor density and, thus, the effective temperature

is sufficiently increased.

7. Cluster formation

Mutual blocking of filaments can lead to kinetically arrested filament clusters as

shown in Fig. 5. We find that stable clusters appear if the detachment force Fd
is large compared to the stall force Fst such that the maximal force transmitted

to a filament through collisions does not lead to detachment of the filament and

dissolution of the cluster. Because collisions between filaments are exceptional in

the isotropic phase, clusters occur primarily in the nematic phase region.

The formation of such clusters is sensitively controlled by the presence of inac-

tive motors, whose motor heads attach to filaments but which are inactive, either

because of a lack of ATP or because they are dysfunctional. Such inactive motors

simply bind filaments to the anchoring point of the motor tail without pulling them

forward. Our simulations indicate that inactive motors increase the tendency of the

system to form clusters. At low detachment forces, cluster formation can therefore

be controlled by the concentration of inactive motors. In a crude estimate we can

consider the maximal pushing force that a filament in a cluster can generate as

FstL/〈dm,ac〉, where 〈dm,ac〉 ∼ 1/σac`m is the mean distance between bound ac-

Fig. 5. Snapshot of a cluster of mutually blocking filaments for large detachment force Fd = 10Fst
using otherwise the same parameters as in Fig. 1(b) [ρ = 2/L2, σ`mL = 0.09].
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tive motors on a filament and σac the surface concentration of active motors. This

pushing force is only generated by active motors. On the other hand, the maximal

force for detachment of a filament in a cluster is FdL(1/〈dm,ac〉+ 1/〈dm,in〉, where

〈dm,in〉∼1/σin`m is the mean distance between bound inactive motors on a filament

and σin the surface concentration of inactive motors. Detachment has to happen

against active and inactive motors binding a filament to the surface. Equating these

forces we find a criterion Fst/Fd < 1 + 〈dm,ac〉/〈dm,in〉 = 1 + σin/σac for cluster

formation, which demonstrates that a high ratio of inactive motors on the surface,

σin/σac � 1, can promote the formation of clusters even for stall forces larger than

detachments forces, i.e., even if Fst/Fd > 1.

8. Experimental realization

Confinement of filaments to strictly two dimensions is hard to realize experimentally

but it has been observed that microtubules in a dynein motility assay exhibit hard-

core interactions also in the absence of such a confinement.28 Our results for finite

filament crossing energies indicate that a small mean filament velocity vF favors the

nematic phase if filament crossing is possible.

Alternatively, we propose to consider a three-dimensional filament solution that

is confined between two plates with anchored motors. The motor activity can induce

an active surface nematic ordering of the filaments, which eventually propagates

into the bulk if the filament density is sufficiently close to the critical density of the

equilibrium Onsager transition in three dimensions.

9. Conclusion

We have presented simulations and a theoretical description of the phase behavior

of filaments in a two-dimensional motility assay. The corresponding equilibrium

system is the two-dimensional hard-rod fluid, which exhibits an isotropic-nematic

phase transition. We have found that actively driven systems undergo an analogous

phase transition and the motor activity enhances the tendency for nematic ordering.

A similar enhancement is found in three-dimensional active filament solutions.8 For

the two-dimensional motility assays we have quantitatively determined the phase

boundary (7) for active nematic ordering by motors in terms of experimentally

accessible microscopic model parameters. For high motor detachment forces Fd �
Fst, we also find kinetically arrested filament clusters within the nematic phase

region.
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