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We investigate morphologies of semiflexible polymer rings, such as circular DNA, which are adsorbed

onto topographically or chemically structured substrate surfaces. We classify all equilibrium

morphologies for two striped surface structures, (i) topographical surface grooves and (ii) chemically

structured surface domains. For both types of stripes, we find four equilibrium shapes: a round toroidal

and a confined elongated shape as well as two shapes containing bulges. We determine the complete

bifurcation diagram of these morphologies as a function of their contour length and the ratio of

adhesive strength to bending rigidity. For more complex geometries consisting of several stripes we find

a cascade of transitions between elongated shapes. Finally, we compare our findings to ring

condensation by attractive interactions.
1 Introduction

Bionanotechnology requires the immobilization and controlled

manipulation of DNA and other semiflexible polymers.

Adsorption is the simplest technique to immobilize single poly-

mers and a first step towards further visualization and manipu-

lation using, e.g., modern scanning probe techniques.1,2 For

manipulation, control over the shape of the adsorbed polymer is

needed. In this article, we explore the possibility to achieve such

shape control for semiflexible polymer rings using simple striped

surface structures, which can be realized by topographical or

chemical structuring. Whereas flexible polymers are governed by

conformational entropy and typically adsorb in random coil

configurations, the morphologies of semiflexible polymers with

large persistence lengths are dominated by their bending rigidity,

which gives rise to well-defined shapes: An open polymer adsorbs

in a straight configuration, whereas a closed polymer ring forms

a circular loop. Examples of such semiflexible rings are provided

by DNA minicircles,3 carbon nanotubes4 filamentous actin,5 and

amyloid fibrils.6 The shape of such semiflexible rings is of

importance for biological issues such as the accessibility in

transcription of viral genomes or plasmids or their transport

properties.

In the absence of thermal fluctuations or external forces closed

semiflexible rings assume a well-defined circular shape. It has

been shown that thermal fluctuations lead to interesting effects

such as a gradual crossover from oblate spherically symmetric

ring shapes at low temperatures or high stiffness to prolate

shapes for increasingly flexible rings with a maximal asphericity

at intermediate stiffnesses.7 Semiflexible rings may also be viewed

as one-dimensional analogues of two-dimensional vesicles, for

which thermal fluctuations gives rise to shape asphericity as

well.8 In this article, we focus on the influence of external forces
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or potentials, which tend to confine the semiflexible ring. This

issue is of general importance not only to control the shape of

semiflexible polymers for further manipulation but also to

understand how semiflexible polymers or elastic sheets can be

packaged and which forces or potentials are necessary to achieve

a given packaging configuration.

In this article, we present a quantitative analysis of shapes of

a strongly adsorbed semiflexible polymer ring in the presence of

an additional substrate structure, which can be either a topo-

graphical surface groove with rectangular cross section, see

Fig. 1(a), or a striped domain of increased adhesion energy, see

Fig. 1(b). Topographical surface steps have been employed in

recent manipulation experiments on semiflexible polymer rings.9

Adsorption of DNA on grooved, periodically structured

substrates has also been investigated in ref. 10,11. Both striped

structures introduce a laterally modulated adhesion potential,

which attracts the ring to the stripe. We find that, for persistence

lengths larger than the stripe width, the competition between its

bending rigidity and the attraction to the striped domain allows

a controlled switching between four distinct stable morphologies,

see Fig. 1. Apart from a weakly bound almost circular shape and

a strongly bound elongated shape, bulged intermediate shapes

become stable for large contour lengths. We determine the full

bifurcation diagrams for semiflexible ring shapes both analyti-

cally and numerically. This analysis can be used to (i) control the

ring shape and (ii) analyze material properties of the substrate or

the semiflexible polymer ring experimentally. Flexible polymer

rings, on the other hand, exhibit random coil configurations and

do not undergo such morphological transitions. Finally, we

generalize our findings to semiflexible polymer rings on a periodic

stripe pattern, which serves as a model for the interaction

between a polymer and the atomic lattice structure of substrate

surface.

The condensation of semiflexible polymers such as DNA12–15

or actin filaments5,16 is a closely related transition phenomenon

that is caused by the competition between attractive interactions

and bending energy. In poor solvent, in the presence of

condensing agents or depletion forces, polymer-polymer contacts
Soft Matter, 2010, 6, 5461–5475 | 5461
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Fig. 1 Adsorbed polymer on a striped surface containing (a) a rectangular topographical surface groove of width ast and (b) a chemically structured

surface domain of width ado. Both in (a) and (b), the first perspective drawings illustrate the system geometry whereas the remaining four subfigures

represent top views of all four stable ring morphologies I, II1, II0, and II2 as obtained by energy minimization for contour lengths L/ast¼ 20 and L/ado¼
20; the perspective drawings correspond to the elongated shape II0.
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become favorable, but the bending rigidity of a semiflexible

polymer inhibits its collapse towards a tightly packed globular

structure, which is common for flexible polymers. As a result,

semiflexible polymers form toroidal bundles5,13,16 via a cascade of

metastable racquet states.14 At the end of the article, we compare

our findings for morphological transitions on structured

substrates to the condensation of a semiflexible ring by attractive

polymer–polymer interactions.
2 Topographical surface groove

2.1 Model

We consider a semiflexible polymer ring of fixed contour length L

adsorbed to a planar substrate in the xy-plane that contains two

parallel topographical surface steps at x ¼ �ast/2 forming an

infinitely long rectangular surface groove of width ast, see

Fig. 1(a). It is further assumed that the overall adhesion is so

strong, that the polymer is firmly adsorbed to the substrate

surface. We will first focus on polymer morphologies at zero

temperature T ¼ 0 and discuss the effect of thermal fluctuations

in the end. The polymer gains an additional adsorption energy

Wst < 0 per polymer length only at the corners of the rectangular

surface groove, where it can bind to two adjacent surfaces as

shown in Fig. 1(a). The resulting lateral adsorption potential can

be described by Vst(x) ¼ Wst for |x � ast/2| < l/2 and Vst(x) ¼
0 otherwise, where l denotes the adhesive range of the surface

steps, which is of the order of the polymer diameter and assumed

to be small compared to the groove width, l� ast.

The bending energy of the polymer is given by

Eb ¼ ðk=2Þ
ðL

0

dsðvsqðsÞÞ2 (1)

where k is the bending rigidity, and the contour is parameterized

by the arc length s (0 < s < L) using the tangent angles q(s). The

adhered length Lst is given by the polymer length on the edges at

x ¼ �ast/2, and the adhesion energy is

Ead ¼ �|Wst|Lst (2)

In the following we often use dimensionless quantities by

measuring lengths in units of the groove width, and energies in

units of the typical bending energy,

�L ^ L/ast and �E ^ East/k (3)

This leads to �Ead ¼ �|wst| �Lst with a reduced adhesion strength
5462 | Soft Matter, 2010, 6, 5461–5475
|wst| ^ |Wst|a
2
st/k (4)

The polymer configuration is determined by minimizing the

total energy Etot ¼ Eb + Ead under the constraints imposed by

ring closure, i.e.,

ðL

0

ds ðcos qðsÞ; sin qðsÞÞ ¼ ð0; 0Þ. This yields

a shape equation for q(s) and an implicit equation for the

Lagrange multiplier associated with the ring closure constraint.

Solving these equations, the polymer shape and the resulting

energies can be calculated analytically.

We assume the surface step height to be comparable to the

polymer diameter and neglect small energy corrections arising if

the polymer crosses the surface steps. For large step heights and

large bending rigidity k these corrections become important, and

a polymer crossing two parallel topographical surface steps can

even lift from the groove in this limit.17
2.2 Energy minima for fixed adhered length

For a single value of the adhesion strength Wst we often find

several metastable ring shapes apart from the ring shape repre-

senting the stable global energy minimum. In order to determine

all metastable states of the total energy Etot ¼ Eb + Ead and

discuss bifurcations of these metastable states, we minimize the

constrained energy Etot(Lst), where we also fix the adhered length

Lst and, thus, the adhesion energy. Then, each metastable state

represents a local minimum in the energy landscape given by the

function Etot(Lst). If a local minimum vanishes, the corre-

sponding metastable state becomes unstable. If the global

minimum exchanges between two local minima, we are at

a transition point between two morphologies. Maxima in the

constrained energy also allow us to discuss possible transition

states of these shape transitions.

For a topographical groove all metastable states consist of one

or two straight adhered segments at the corners of the groove and

with total length Lst, which are connected by one or two curved

segments, respectively. The curved segments are bending energy

minimizers, i.e., planar Euler elastica. More than two curved

segments are unfavorable. We find four possible metastable

morphologies: For small Lst, the ring will adhere only to one

corner of the groove and adopt the rather round toroidal

configuration I, see Fig. 1. For Lst T L/2, conformations of the

type II, where the ring binds to both corners, will become rele-

vant. These shapes consist of two round segments connecting

straight adhered segments. The round segments can have either

the form of a round cap staying completely inside the groove or
This journal is ª The Royal Society of Chemistry 2010
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contain bulges, which are round segments outside the groove. All

shapes adhering to both corners of the groove may be classified

by the number of bulges and are referred to as II0, II1, and II2,

accordingly, see Fig. 1.

In order to minimize bending energy, curved segments in

shapes of type II will only bulge to one side of the groove. In

principle, also curved segments extending bulges to both sides of

the groove resulting in a configuration with reflection symmetry

with respect to the x-axis represent a metastable state. As derived

in the appendix, the bending energy of an asymmetric one-sided

bulge is lower in bending energy for the same adhered length Lst

for all possible adhered lengths. Therefore, we neglect this type of

bulges in the following and consider only the remaining four

relevant metastable shapes I, II0, II1, and II2.

The curved segments on both sides of a ring in shapes II can

exchange length even if the total adhered length Lst is fixed. This

results in the transversality condition that the curvatures at the

contact points have to be equal in all four contact points of

shapes II. Therefore, bulges or caps on both sides of the ring have

to have the same size in shapes II0 and II2. In shape II2 bulges at

both ends can be on either side of the groove, therefore two
Fig. 2 (a) The dimensionless bending energy �Eb as defined in (3) of the

metastable states I (red), II0 (blue), II1 (violet), and II2 (green), as

a function of the adhered length Lst/ast for a semiflexible ring of length

L/ast ¼ 20 adsorbing on a topographical surface groove of width ast. Solid

lines are analytical results, dots represent data from numerical energy

minimization. The arrows correspond to the shapes shown in Fig.1(a). (b)

The dimensionless bending energy �Eb as defined in (19) of the metastable

states as a function of the adhered length Ldo (in units of ado) for

a semiflexible ring of length L/ado¼ 20 adhering to a chemically structured

stripe of width ado from numerical energy minimization. There is an

approximately constant shift in the adhered length D �L compared to the

results for the topographical stripe in (a). The arrows point to shapes that

are displayed in Fig. 1(b).

This journal is ª The Royal Society of Chemistry 2010
energetically degenerate shapes II2 exist for a topographical

groove. The shape with both bulges on the same side has

reflection symmetry with respect to the y-axis, the shape with

both bulges on opposite sides, which is shown in Fig. 1(a), is

antisymmetric with respect to the center of the shape.

For a topographical stripe the energies of the four types of

shapes can be obtained by analytical energy minimization. For

fixed adhered length Lst the adhesion energy �Ead ¼ �|wst| �Lst is

a constant contribution to the constrained energy Etot(Lst).

Therefore, the analytical calculation starts by calculating the

bending energy �Eb( �Lst) of all four metastable states as a function

of the adhered length �Lst. This bending energy arises from the

curved segments of the ring shape, which take the shape of Euler

elastica. To calculate these shapes a constraint for ring closure

has to be imposed, which is associated with an additional

Lagrange multiplier. For the resulting second order Euler

Lagrange equations describing the shapes of curved segments

can always find one first integral. We can express contour length

L, adhered length Lst and bending energy Eb parametrically as

functions of a single parameter which is related to the integration

constant of the shape equations. Using this method, we derive

analytical parametric representations of the bending energy

landscape �Eb( �Lst) in terms of this integration constant parameter

in the appendix. In Fig. 2(a) we show the main result of this

calculation, which is the bending energy landscape �Eb( �Lst) con-

sisting of four bending energy branches corresponding to the

four different morphologies.

Our analytical results are confirmed by numerical energy

minimization using the dynamical discretization algorithm of the

SURFACE EVOLVER 2.14.18 In Fig. 2(a), the bending energy

landscapes �Eb( �Lst) of all four morphologies as obtained from the

exact analytical energy minimization are shown as solid lines; the

results from numerical energy minimization as colored dots and

completely agree with the analytical results.
2.3 Unconstrained energy minima

The total energy landscape �Etot( �Lst,|wst|) for each morphology is

obtained by adding the linearly decreasing adhesion energy �Ead¼
�|wst| �Lst to the corresponding bending energy branch, i.e., by

a simple tilt of the bending energy landscape in Fig. 2(a). The

local minimum of each branch of the resulting energy landscape
�Etot( �Lst,|wst|) with respect to the adhered length �Lst gives the

equilibrium total energy of the corresponding morphology I, II0,

II1, or II2. These energy minima depend on the tilt of the bending

energy landscape and are, thus, a function of the adhesion

strength |wst|,

�EtotðjwstjÞ ¼ min
�Lst

ð �Ebð �LstÞ � jwstj �LstÞ (5)

Therefore, the equilibrium total energy �Etot(|wst|) is a Legendre

transform of the bending energy �Eb( �Lst) with respect to the

adhered length �Lst. The resulting energy bifurcation diagram

Fig. 3(a,b) shows the four branches of the equilibrium total

energy �Etot for the four local minima as a function of |wst| for

a contour length �L ¼ 20.

If the constraint on the total adhered length is lifted and the

total energy minimized with respect to the adhered length,

a transversality condition arises at the contact points where the
Soft Matter, 2010, 6, 5461–5475 | 5463
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Fig. 3 (a) The dimensionless total energy �Etot of all metastable states

versus the reduced potential |wst| for a semiflexible ring of contour length

L/ast ¼ 20 adsorbing on a topographical surface groove of width ast. The

graph shows analytical results for the shapes I, II0, II1, and II2 as red,

blue, violet, and green solid lines, respectively. Analytical estimates for

these energy curves as derived in the appendix are shown as dashed lines.

Lines end where a metastable shape become unstable. (b) A magnification

of the upper left corner of (a) including the unstable transition states II*
1

and II*
2 as violet and green dashed line, respectively. The analytical esti-

mates are omitted for clarity. (c) Analogous numerical results of the

dimensionless total energy �Etot as a function of |wdo| for a semiflexible ring

adhered to a chemically structured stripe with L/ado¼ 20 and magnified in

(d). The unbound circle is never stable and therefore absent for the

chemical domain.
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curved segments join the straight segments adhered on the

surface steps. According to this transversality condition the

curvature at the contact points is given by the inverse contact

radius19,20

1/Rco ¼ (2|Wst|/k)1/2 (6)

In the limit of small bending rigidity k and large adhesion

strength |Wst| the contact radius becomes small compared to the

groove width, Rco � ast, corresponding to |wst| [ 1 for the

reduced adhesion strength (4). In this limit, the ring assumes an

effectively kinked shape II0, in which caps on both sides of the

ring become almost straight and the ring shape resembles

a rectangle with sharp kinks, similar to shapes that have been

observed in ref. 10,11. Only on length scales smaller than the

contact radius Rco these sharp kinks can be resolved as smooth

bends.

In the appendix we present exact analytical results for the

unconstrained total energy �Etot(|wst|): using the condition of

contact curvature at the end points of all curved segments, we
5464 | Soft Matter, 2010, 6, 5461–5475
derive analytical parametric representations of the total energy
�Etot(|wst|) in terms of the same integration constant parameter

which we used for the bending energy landscapes �Eb( �Lst). In

the following, we focus on approximate results for the total

energy and outline the main features of the bifurcation

diagram.

In the bifurcation diagram Fig. 3(a,b), the globally stable ring

shape is the shape with the lowest energy �Etot for a given adhe-

sion strength |wst|. If two branches of local minima in the bifur-

cation diagrams in Fig. 3 cross or merge, a morphological

transition between the corresponding shapes occurs. If the

branches cross at a finite angle, this transition is discontinuous

with hysteresis effects and jumps in the adhered length Lst, which

is given by the negative slope Lst ¼ �v|wst|
�Etot(|wst|) according to

(5). As can be seen from the bifurcation diagram Fig. 3(a,b) all

shape transition between the four metastable states are discon-

tinuous, which gives rise to many metastable shapes and shape

hysteresis. A metastable state becomes unstable if the corre-

sponding branch ends. In particular, this happens for the two

bulged shapes II1 and II2, which are only metastable for a limited

range of adhesion strengths |wst|.

Apart from discontinuous transitions between the four shapes,

shape I undergoes an additional continuous unbinding transition

from a single surface step, which is also known for vesicles adhering

to a surface, where the interplay between adhesion and bending

energy leads to an unbinding transition, which is not driven by

thermal fluctuations.19,20 A transversality condition enforces the

curvature at the contact point to be 1/Rco ¼ (2|wst|)
1/2/ast, see

eqn (6), such that rings of contour length L can only bind to the

contact line for �L $ �Lub with

�Lub ¼
ffiffiffi
2
p

pjwstj�1=2
(7)

In the energy bifurcation diagrams Fig. 3(a,b) the round

configuration I (red line) represents the global energy minimum

for small |wst|, whereas the adhesion energy gain dominates for

large |wst|, and the elongated shape II0 (blue line) becomes the

globally stable conformation. For adhesion strengths |wst| �L2 [

2p2 corresponding to contour lengths much larger than the

contact radius, L [ Rco, shape I can be approximated by two

semicircles of contact radius Rco connected by two straight

segments, one of which is adhered to one step edge. This results in
�EIz� jwstj �L=2þ 3pjwstj1=2=

ffiffiffi
2
p

for the total energy. The exact

calculation in the appendix gives a total energy

�EIz� jwstj �L=2þ 4
ffiffiffi
2
p
jwstj1=2

(8)

for |wst| �L
2 [ 2p2, which only differs in one prefactor.

Shape II0 can be approximated by two semicircular caps of

diameter ast, which contribute a bending energy �Eb z 2p, con-

nected by two straight adhered segments of length Lst¼ L�past.

This gives a total energy

�EII0
z 2p � |wst|( �L � p) (9)

for the total energy of shape II0. Note that shape II0 can only be

realized for rings with �L > p such that the ring can touch both

step edges if it assumes a circular form. For intermediate adhe-

sion strengths |wst| z 2, this result agrees with the exact calcu-

lation. For weak adhesion strengths |wst| � 1, the exact

calculation in the appendix gives a total energy
This journal is ª The Royal Society of Chemistry 2010
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Fig. 4 Morphology diagram for a ring of length L adhering to a topo-

graphical surface groove of width ast as a function of (a) the contour

length L/ast and the reduced potential strength |wst| as defined in (4) and

(b) L/ast and |Wst|L
2/k ¼ |wst|L

2/ast
2. For a chemical domain of width ado,

the morphological diagram is shown as a function of (c) L/ado and |wdo| as

defined in (17) or (d) L/ado and |Wdo|L2/k. The parameter choice in (b) and

(d) is advantageous if the structure width ast and ado is varied, while the

other system parameters are kept constant. Morphological transitions as

obtained from analytical energy minimization in (a) and (b) and from

numerical energy minimization in (c) and (d) are represented by stars,

triangles, diamonds and dots. The results (12), (13), and (15) for these

transitions are indicated as dot-dashed, dotted and dashed lines,

respectively. In (a) and (b) the dashed line marks the unbinding transi-

tion, whereas in (c) and (d) the dashed line marks the reentrant transition

for small rings.
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�EII0
z 5.74 � |wst|( �L � 4.38) � 1.31|wst|

3/2 (10)

which differs only slightly in the numerical prefactors.

The energy branches corresponding to shapes I and II0 cross

resulting in a discontinuous morphological transition between

these two shapes with a jump in the adhered length Lst. In the

vicinity of this transition also the shapes II1 and II2 become stable

or metastable, which develop from the elongated shape II0 by the

formation of one and two bulges, respectively. We can approxi-

mate the bulge by a semicircle with diameter dbul > ast and

a weakly bent desorbed segments connecting this semicircle to the

stripe edge, and determine the diameter dbul and the length of the

desorbed segment by optimizing the sum of bending energy gain

and adhesion energy cost. For small |wst|, this approximation

gives an optimal bulge diameter dbul � ast|wst|
�1/2 � Rco, which is

proportional to the contact radius, and a total energy cost

D �Ebul z �p + 7.46 |wst|
1/2 � 2.92 |wst| for creating one bulge

starting from the confined shape II0, which is independent of L.

The exact calculation in the appendix gives

D �Ebul z �2.87 + 7.50|wst|
1/2 � 3.72|wst| + 0.30|wst|

3/2 (11)

for |wst| � 1, which only slightly differs in the numerical pre-

factors. The resulting energies of both bulged shapes IIm are

exactly given by �EIIm
¼ �EII0

+ mD �Ebul (m ¼ 0, 1, 2) as shown in

the appendix. The bulges are thus localized and non-interacting

excitations of shape II0. The energy branches of shapes IIm thus

all intersect in a single point in the bifurcation diagram

Fig. 3(a,b), which is determined by the condition D �Ebul ¼ 0. For

D �Ebul < 0, shape II2 with two bulges is energetically favorable,

whereas for D �Ebul > 0, shape II0 without bulges is energetically

favorable. Therefore, shape II1 with one bulge is never globally

stable and, thus, there are only bulging transitions from shape II0

directly into shape II2. Moreover, the shape transitions from

shape II2 into shapes II0 or I are discontinuous.

We also show in the appendix analytically that bulges are only

metastable for a limited range of adhesion strengths wmin( �L) <

|wst| < wmax. For the upper stability limit we find the universal

value wmax z 0.35, which holds both for shape II1 with a single

bulge and shape II2 with two bulges. For |wst| > wmax, bulges

become unstable with respect shrinking to zero size, and the

bulged shapes become unstable with respect to a spontaneous

transition into shape II0. The lower stability limit wmin( �L)

depends on the contour length of the ring and slightly differs for

shapes II1 and II2. For |wst| < wmin( �L), the bulges become so large

that the adhered length on one or both of the surface steps

shrinks to zero length, and the bulged shapes become unstable

with respect to a spontaneous transition into shape I. For �L ¼ 20

as in the bifurcation diagram Fig. 3(a,b), we find wmin z 0.10 for

shape II2 and wmin z 0.07 for shape II1.

The energies of the four metastable shapes can be probed in an

ensemble of adsorbed polymer rings of equal length L. The

relative frequency of each shape is proportional to the Boltz-

mann weight associated with its energy.
2.4 Morphology diagram

The full morphology diagrams Fig. 4(a,b) shows how the

stability of the four shapes I, II0, II1 and II2 is controlled by the
This journal is ª The Royal Society of Chemistry 2010
parameters |Wst|, L, and ast. Phase boundaries from numerical

minimization are denoted by symbols. The dashed line corre-

sponds to the continuous unbinding transition (7) and agrees

with the numerical results. The main feature of the morphology

diagrams is the discontinuous transition between morphologies I

and II0, (stars). Going through this transition with increasing

|wst|, the ring goes from the round toroidal configuration I into

the confined elongated configuration II0. The location of this

transition can be derived from the condition �EI ¼ �EII0
. Using the

estimates (8) and (9) given above we find a transition line

�LI�II0
z2p� 8

ffiffiffi
2
p
jwstj�1=2 þ 4pjwstj�1

(12)

valid for |wst| ( 2 and shown as dash-dotted line in Fig. 4(a,b).

This transition line terminates at �L ¼ p and |wst| ¼ 2 where it

intersects the unbinding transition line. For strong adhesion with

|wst| > 2 a short ring first adheres to one corner of the groove for
�L ¼ �Lub < p in a round shape I, which, however, lies completely

inside the groove. Only for �L > p, the ring touches the opposite

corner of the groove and immediately assumes the elongated

shape II0 because shape I is unstable in this regime, see

Fig. 4(a,b).
Soft Matter, 2010, 6, 5461–5475 | 5465
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At the transition line between configurations II0 and II2 (dia-

monds), which occurs for large �L, it becomes energetically

favorable to form bulges on top of the confined shape II0, i.e., the

energy difference D �Ebul becomes negative. Also this bulging

transition is discontinuous. Because both the caps of shape II0

and the bulges of shape II2 have a finite length, the bulge energy

D �Ebul only depends on |wst| and is independent of the contour

length L. Therefore the transition line between between config-

urations II0 and II2 is also independent of L and, thus, vertical in

Fig. 4(a). The exact location of the bulging transition line can be

found numerically by equating the exact parametric representa-

tions of the total energies �Etot,II0
and �Etot,II2

and the corre-

sponding parametric representations of |wst| given in the

appendix, which gives

|wII0�II2
| x 0.27 (13)

and is shown as dotted line in Fig. 4(a,b). Stable bulges form if

the energy of a single bulge is negative for |wst| < |wII0�II2
|.

Because bulges are non-interacting, it is always energetically

favorable to create two bulges such that shape II1 is only meta-

stable and absent in the morphology diagrams, as already

mentioned above.

The bulged configuration II2 can become stable only above

a triple point, where the three shapes I, II0, and II2 coexist. The

exact location of the triple point can be found numerically by

equating the parametric representations of the total energies
�Etot,I, �Etot,II0

, and �Etot,II2
and the corresponding parametric

representations of |wst| given in the appendix. This gives

|wtri| ¼ |wII0�II2
| and �Ltri x 29.2 (14)

Only sufficiently large rings �L > �Ltri can undergo a bulging

transition. For shorter rings bulges are unstable and the ring

directly assumes the round shape I.

For short rings �L > �Ltri, we can obtain the transition line

between shapes II2 and I (triangles) using the condition �EI ¼ �EII2

¼ �EII0
+ 2 �Ebul. Using the estimates (8), (10) and (11) given above

we find a transition line

�LI�II2
z �6.13 + 18.68|wst|

�1/2 � 1.44|wst|
1/2 (15)

for |wst| � 1 shown as dashed line in Fig. 4(a,b).

The results (13) and (14) for the bulging transition and the

triple point are exact and the approximate formulas (12) for the

transition between shapes I and II0 and (15) for the transition

between shapes I and II2 are in good agreement with the

numerical results and exact analytical results derived in the

appendix as can be seen in the morphology diagrams in

Fig. 4(a,b).

The transition lines depend on the control parameters of the

system, hence, measurements of these transition lines can be used

to determine material parameters, such as |Wst| or k, experi-

mentally. As opposed to other experimental methods to deter-

mine the bending rigidity no external forces, e.g. via an AFM tip,

have to be applied to the polymer, but the substrate pattern itself

exerts forces on the ring. In the morphology diagram Fig. 4(a) we

use the reduced contour length �L and the reduced adhesion

strength |wst| as control parameters. In an experiment, the tran-

sition lines in the morphological diagram Fig. 4(a) are crossed in
5466 | Soft Matter, 2010, 6, 5461–5475
horizontal direction by changing the adhesion strength |Wst| of

the substrate, which could be achieved by changing the substrate

chemistry or surface charge. On the other hand, one could use

rings of different length on the same substrate and thereby

observe ring morphologies along a vertical line in Fig. 4(a). The

last and maybe simplest experiment is to fabricate substrates with

several grooves of different width ast. In this case, one would

change the ratio of the involved length scales �L and the reduced

adhesion strength |wst| at the same time. Therefore, it is much

more convenient to characterize the system by �L and the control

parameter |Wst|L
2/k ¼ |wst| �L2 as in the morphology diagram

Fig. 4(b). Changing the groove width and thus �L ¼ L/ast corre-

sponds to a vertical trajectory in this diagram.

All shape transitions between shapes I, II0, and II2 are

discontinuous. Therefore shapes remain metastable over

a considerable parameter range, which gives rise to strong shape

hysteresis along if any transition line is crossed in the

morphology diagrams Fig. 4(a,b). For a shape transition from

a metastable state to another metastable or stable state a transi-

tion state corresponding to a saddle in the energy landscape has

to be crossed. For some of the transitions this transition state

should also belong to one of the four classes of shapes I, II0, II1,

or II2. For example, state II0 remains metastable down to

adhesion strengths |wst| ¼ 0. The transition states for transitions

from II0 into states IIi should also be bulged states. Starting from

shape II0, bulged states form by crossing the maxima II*
1 or II*

2

containing small unstable bulges. The shape II*
2 corresponds to

a shape with two identical small bulges which are unstable with

respect to shrinking to zero size to a shape II0 or to expanding to

its equilibrium size in state II2. Likewise, the shape II*
1 contains

a single small bulge which is unstable with respect shrinking to

zero size to a shape II0 or to expanding to its equilibrium size in

state II1. There will be an additional transition state between

states II1 to II2 containing one small and one large bulge, where

the small bulge is unstable with respect to shrinking to zero size

to shape II1 or expanding to equilibrium size to state II2.

State I remains metastable for large adhesion strengths until

the round unbound segment touches the opposite corner of the

groove in its midpoint, which happens for |wst| x 14.2. For

transitions between states I and IIi, where the round unbound

segment attaches to the opposite corner of the groove, the

transition state will presumably not fall into one of the four

classes of stable states. For large |wst| state I will attach to the

second corner of the groove by deforming asymmetrically.
2.5 Thermal fluctuations

The transition states represent local maxima in the energy

landscape. Energy differences between the transition state and

the corresponding minima give energy barriers for shape trans-

formations. Thermal fluctuations allow the polymer ring to

overcome these energy barriers if DE < T (kB ^ 1), which is

equivalent to D �E < 2ast/Lp for a semiflexible polymer with

a persistence length Lp ¼ 2k/T. Therefore, the influence of

thermal fluctuations crucially depends on the ratio Lp/ast: Our

results apply for persistence lengths much larger than the stripe

width, Lp/ast [ 1, where energy barriers are relevant. Then all

four (meta-)stable ring shapes are observable, and their

morphological transitions exhibit a pronounced hysteretic
This journal is ª The Royal Society of Chemistry 2010
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behaviour. For flexible polymers with Lp/ast � 1, on the other

hand, thermal fluctuations allow the polymer to change orien-

tation within the groove such that the four morphologies can no

longer be clearly distinguished.

A single surface step represents a potential well of depth |Wst|

and width l comparable to the polymer diameter. Strong thermal

fluctuations can give rise to a thermal unbinding transition from

a single step if the potential strength is smaller than a critical

value, |Wst| < |Wst, c| ¼ cT/Lp
1/3l2/3 with a prefactor c of order

unity,21,22 which is equivalent to a critical value

|wst| < |wst,c| ¼ 2ca2
st/Lp

4/3l2/3 (16)

for the reduced adhesion strength. For |Wst| < |Wst,c| binding to

surface steps is prevented by thermal fluctuations and no

morphological transitions can be observed. Before but close to

thermal unbinding, |Wst| ( |Wst,c|, a reduced free binding energy

per length fst � Wst � Wst,c, which includes also entropic

contribution should be used instead of the bare adhesion strength

Wst.
22

All morphological transitions derived above in the absence of

thermal fluctuations happen for reduced adhesion strength

of order unity. Therefore, these results apply also in the presence

of thermal fluctuations under the condition |wst,c|� 1, such that

thermal unbinding does not interfere with the morphological

transitions. The condition |wst,c|� 1 is equivalent to sufficiently

small polymer diameters l/ast � a2
st/L

2
p or sufficiently wide

grooves ast [ l1/3L2/3
p . For typical polymer diameters in the

nanometer regime and persistence lengths in the range of 50 nm

(DNA) up to 10 mm (filamentous actin), this condition is fulfilled

for groove widths ast [ 10 nm for DNA and ast [ 500 nm for

filamentous actin, respectively. Even if morphological transitions

are not modified, thermal unbinding can preempt the bending

energy induced ring unbinding transition with �Lub f |wst|
�1/2, see

eqn (7), but only for large ring contour lengths �L > |wst,c|
�1/2.
3 Chemically structured striped surface domain

The chemically structured stripe of width ado is modeled by an

additional adhesion energy gain Wdo < 0 per polymer length for

|x| # ado/2, which leads to a generic square well adsorption

potential with Vdo(x) ¼ 0 for |x| > ado/2 and V(x) ¼Wdo for |x| #

ado/2. The adhered length Ldo is given by the polymer

length within the stripe |x| # ado/2, and the adhesion energy is

Ead ¼ �|Wdo|Ldo.

The analytical energy minimization becomes involved for the

chemical surface domain because adhered segments are no longer

perfectly straight as for the topographical groove. Therefore, we

performed the energy minimization numerically using the

SURFACE EVOLVER. We find the same four types of

morphologies I, II0, II1, and II2 as for the topographical groove,

see Fig. 1(b). Also for the chemically structured stripe, there are

two possible shapes II2, one with bulges on the same side and one

with bulges on opposite sides. Both configurations have very

similar energies but are no longer strictly degenerate as for the

topographical groove: The antisymmetric shape with bulges on

opposite sides as shown in Fig. 1(b) has a slightly lower energy

for the chemically structured stripe.
This journal is ª The Royal Society of Chemistry 2010
Remarkably, ring shapes minimizing the bending energy are

almost identical as compared to a topographical groove of the

same width ast ¼ ado, see Fig. 1. Furthermore, the bending

energies of constrained equilibrium shapes agree to a good

approximation if the adhered length Ldo z Lst + DLad is shifted

by a constant amount DLad: In contrast to the groove, the stripe

domain is also adhesive between its boundaries for |x| < ado/2

such that the same ring shape has a larger adhered length. As

a result of this shift, the bifurcation diagram for the total energies

of all local extrema as a function of the reduced adhesion

strength

|wdo| ^ |Wdo|a2
do/k (17)

resembles the corresponding diagram Fig. 3 for a surface groove.

For shape II0 we can show this quantitatively because the total

energy of shape II0 can be exactly calculated for the chemical

domain,

�EII0
¼ 5.74 � |wdo| �L (18)

where we used the reduced length and reduced energies

�L ^ L/ado and �E ^ Eado/k (19)

analogously to the topographical groove. As compared to

the result (10) for the topographical groove we notice the

agreement in the limit of small adhesion strengths with

a constant shift D �Lad¼ 4.38 of the adhered length. For the shape

II0 this shift corresponds exactly to the length of the curved caps

in the limit of weak adhesion as discussed in the appendix.

As a result of this approximate mapping of shapes and energies

between the two types of adhesive stripes, the morphology

diagrams in the plane spanned by the reduced potential strength

|wdo| and �L, as shown in Fig. 4(c,d), look very similar for the

chemical stripe and the topographical surface groove. In

particular, our results (12) for the transition between shapes I

and II0 (dash-dotted line in Fig. 4(c,d)), (13) for the appearance

of bulged states (dotted line), and (15) for the transition between

shapes I and II2 (dashed line) remain valid and agree well

with the numerical results (stars, diamonds, and triangles,

respectively).

However, the unbinding transition of shape I is absent for the

chemical stripe domain: it is always energetically favorable for

the ring to adhere to the striped domain. Furthermore, the two

phase diagrams differ in the behavior of small rings. Small rings

can fully bind to the chemical stripe without deformation and

shapes I and II0 become equivalent, which leads to the re-

entrance of shape II0 close to �L ¼ p. We estimate the location

of this re-entrant transition can by approximating small

rings in shape I by a circle. The adhered length of such a circle is
�Ldo ¼ �Larccos(1 � 2p/ �L)/p so that the total energy is

�EI x 2p2/ �L � |wdo| �Ldo (20)

Equating this energy with the total energy (18) of shape II0 we

find

jwI�II0
jx pð5:74 �L� 2p2Þ

�L2arccosð2p= �L� 1Þ (21)
Soft Matter, 2010, 6, 5461–5475 | 5467
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for �L > 3.44. This result is also shown as dash-dotted line in

Fig. 4(c,d) and gives remarkable agreement with the exact

numerical results (stars) also for lengths up to the triple point.

Because of the re-entrance the elongated shape II0 is the stable

state for adhesion strengths |wdo| > 0.86.
4 Periodic stripe structures

An important generalization of our system, which can serve as

a model for the atomic lattice structure of substrates, is a periodic

stripe pattern. Specifically, we consider an array of equidistant

parallel topographical surface steps located at x ¼ iast as they

occur, e.g. on vicinal surfaces, see Fig. 5. For surface step heights

smaller or comparable to the polymer diameter we can neglect

small energy corrections arising if the polymer crosses the surface

steps. Then upward and downward steps have the same effect on

ring shapes and the two surface step patterns shown in Fig. 5 give

rise to approximately identical metastable ring morphologies

with almost identical energies.

Such surface structures drastically increase the number of

metastable polymer shapes. Before presenting general results for

the full periodic pattern, we start by adding a single parallel

surface step to the groove shown in Fig. 1(a) at distance ast. The

resulting metastable ring morphologies can be classified into

conformations that adhere to one (I), two (II) or three (III) edges

plus the unbound circular shape. Clearly, the shapes I are the

same as for the single stripe, as the remaining steps (up to small

corrections) do not contribute to the energy and also the

unbinding transition applies without modifications to the three-

step-geometry.

Moreover, if the ring binds to two edges, it should attain

shapes that correspond to the morphologies II0 and II2 we found

before but now the ring can adhere either to two neighboring

steps (at a distance ast) or to the two outer steps (at a distance

2ast). Formally, we will distinguish these two cases via a super-

script that indicates the distance between the relevant edges in

units of ast, i.e., II1
0, II2

0 etc. By analyzing the corresponding

energy estimates Etot(|wst|) one finds, that shape II2
0 is always

energetically favorable compared to shape II1
2. Furthermore,

shape II2
2 becomes only stable for very large rings, i.e. L/2ast > �Ltri x

29.2. Therefore, shapes with bulges can be neglected altogether to

a good approximation.

Now we address the full periodic stripe pattern. Neglecting the

formation of bulges the possible stable states are shape I and
Fig. 5 Adsorbed polymer ring on two periodic stripe patterns (a) and (b)

consisting of several equidistant topographical surface steps with distance

ast. On both patterns (a) and (b), the ring is shown in configuration II3
0

connecting two surface steps at distance 3ast. For small surface step

heights both configurations are approximately identical.

5468 | Soft Matter, 2010, 6, 5461–5475
elongated shapes IIn
0 where the ring binds to two surface steps i

and i + n (shape II1
0 is identical to shape II0). All shapes IIn

0 can be

approximated by two semicircles of diameter nast, connected by

two straight adhered segments of length Lst ¼ L � npast, which

gives a total energy

�EIIn
0

z 2p=n� jwstjð �L� npÞ (22)

For a ring of contour length L, only states with n # nmax ¼ [ �L/p]

are accessible. At small |wst| the round shape I is stable. The

criterion �EI ¼ �EIInmax
0

gives a first transition at

jwI�IInmax
0
jz 2p

�Lnmax

(23)

from shape I into shape IInmax

0 . The criterion �EIInþ1
0
¼ �EIIn

0
gives

a cascade of nmax � 1 further morphological transitions from

shape IIn+1
0 into shape IIn

0 at adhesion strengths

jwIIn
0
�IIn�1

0
jz 2

nðn� 1Þ ð2 # n # nmaxÞ (24)

which are independent of the contour length L. For strong

adhesion jwstj.jwII2
0�II1

0
j ¼ 1, shape II1

0 remains the ground state.

In the limit |wst| [ 1, the contact radius becomes small

compared to the distance ast between surface steps such that

shapes IIn
0 become effectively kinked with sharp bends. Accord-

ing to the result (24), only shape II1
0 connecting neighboring

surface steps is stable in this limit and, thus, sharp kinks should

be observable only for this shape.

We summarize our findings in a morphology diagram in Fig. 6

using the control parameters �L and |wst| in Fig. 6(a) or �L and

|Wst|L
2/k ¼ |wst| �L

2 in Fig. 6(b). Changing the adhesion strength

|wst| corresponds to horizontal paths in Fig. 6(a,b) and results in

a cascade of transitions between different shapes IIn
0. The same

transition cascade is encountered when changing the surface step

spacing and thus �L ¼ L/ast corresponding to a vertical line in

Fig. 6(b).

For periodic stripe structures thermal fluctuations can play an

important role. As discussed already for the surface groove they
Fig. 6 Morphology diagrams of a ring adhering to a substrate with n

equidistant surface topographical steps at distance ast as a function of (a)

the contour length L/ast and the reduced potential strength |wst| as defined

in (4) and (b) L/ast and |Wst|L
2/k ¼ |wst|L

2/a2
st. Shapes IIn

0 with n $ 2

represent elongated rings which bind to two surface steps that are sepa-

rated by n terraces: the stability regimes of these shapes are shown in

different colors of blue. The dashed line marks the unbinding transition,

and the dot-dashed and dotted lines indicate the morphological transi-

tions as estimated in eqn (23) and (24), respectively.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 7 Metastable racquet shape of a condensed ring. Segments that

adhere to each other are colored in blue.
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can give rise to a complete thermal unbinding from individual

surface steps such that no morphological transitions can be

observed below the critical reduced adhesion strength |wst, c|, see

eqn (16). For a periodic stripe pattern, all morphological tran-

sitions jwIIn
0�IIn�1

0
j � 1=n2 with n < |wst,c|

�1/2 should be observable

before thermal unbinding happens. As discussed above we find

|wst,c| � 1 for small polymer diameters and sufficiently large

distances ast [ l1/3L2/3
p between surface steps.

Another effect of thermal fluctuations are additional kink-like

excitations connecting neighboring surface steps.10,11,23,24 In the

absence of thermal fluctuations such kink excitations are absent

as they cost an additional kink energy Ekink. Thermal fluctua-

tions create kinks with an average density

rkink � e�Ekink=T ¼ e�
�EkinkLp=2ast (25)

along the ring contour.24

If step distances are small compared to the contact radius, ast

� Rco ¼ (k/2|Wst|)
1/2 or |wst| � 1, the kink is elongated with

a length Lkink � a1/2
st R1/2

co � ast|wst|
�1/4 along the surface steps. The

kink energy is Ekink � a1/2
st k1/4|Wst|

3/4 or �Ekink � |wst|
3/4 in this

regime.23,24 Therefore the thermal kink density is exponentially

low according to eqn (25) if |wst| [ (ast/Lp)4/3, and kinks do not

modify morphological transitions jwIIn
0�IIn�1

0
j � 1=n2 with n < (Lp/

ast)
2/3. For persistence lengths much larger than the step

distances, Lp/ast [ 1, a large cascade of transitions should

remain observable. According to eqn (23) and (24) most of the

morphological transitions for the periodic stripe pattern take

place in the regime |wst| � 1 corresponding to ast� Rco.

If step distances are large compared to the contact radius, ast

[ Rco or |wst| [ 1, the kink crosses the potential barrier of

width ast in a right angle with two small curved segments of

contact radius Rco connecting to the surfaces edges.† This gives

rise to a kink length Lkink � ast and a kink energy Ekink � ast|Wst|

or �Ekink� |wst| [ 1. Also in this regime the thermal kink density

is exponentially low according to eqn (25) for persistence lengths

much larger than the step distances, Lp/ast [ 1.

5 Ring condensation

Finally, our model is applied to the condensation transition of

semiflexible polymer rings in poor solvent or in the presence of

condensing agents giving rise an effective polymer-polymer

attraction with a condensation energy gain Wcon < 0 per contact

length.

For small condensation energies, the semiflexible ring will

remain in a round ring configuration with its total energy given

by the bending energy

Ering ¼ Eb,ring ¼ 2p2k/L (26)

For strong attractive interactions between polymer segments,

one expects the polymer ring to form a toroid, similar to open

polymers.12,13 The radius of the toroid will be L/2pn, where n is

the winding number and L the contour length of the ring. In

comparison to the ring adsorbed to the stripe structures, the

length scale of the stripe width is absent, and the morphologies in

the presence of a condensing potential are characterized by only
† In ref. 10,11 such kink excitations have been called ‘‘crossings’’.

This journal is ª The Royal Society of Chemistry 2010
one parameter, namely |Wcon|L2/k (if Lp is large such that thermal

unbinding can be neglected21). The total energy of a toroidal

configuration with winding number n ¼ 2 is

Etor ¼
k

2L

�
16p2 � jWconjL2

k

�
(27)

For toroids with n > 2 the packing structure, which is commonly

assumed to be hexagonal,12–15 has to be taken into account.

Comparing the energies of toroids and rings, we find that

a discontinuous transition from a ring to the first condensed

toroidal state with n¼ 2 windings occurs at |Wcon,tor|L
2/k¼ 12p2.

Finally the ring can also assume racquet-shaped metastable

configurations as shown in Fig. 7, which resemble the elongated

shapes II2 containing two bulges. Performing a similar calcula-

tion as for the bulged shapes, which is contained in appendix, we

can calculate the total energy of the racquet shapes as

Etot;rac ¼
k

2L

 
12:85

�
jWconjL2

k

�1=2

� 1

2

jWconjL2

k

!
(28)

which is valid for |Wcon|L2/k > 73.33 sufficiently large that the

contact length is nonzero. Comparing with the energy (27) of the

toroidal configurations, we find that the racquet shape has

a higher energy for |Wcon|L2/k > 82.49, i.e., for all |Wcon| >

|Wcon,tor|. Comparing with the energy (26) of the uncondensed

ring, we find that the racquet shape has a higher energy for

|Wcon|L2/k < 578.34, i.e., for all |Wcon| < |Wcon,tor|. Therefore,

either the uncondensed ring or the toroidal configuration

represent the global energy minimum, and racquet-like shapes

are only metastable configurations in ring condensation. In

contrast, the analogous bulged elongated shapes II2 can repre-

sent globally stable states of semiflexible rings adsorbed on stri-

ped substrates.
6 Conclusion

We showed that morphologies of adsorbed semiflexible polymer

ring on a substrate containing an adhesive stripe domain can be

completely classified. Whereas a flexible polymer ring assumes

a random coil configurations, which can easily adapt its shape to

fit into the adhesive stripe as long as the persistence length of the

flexible polymer is much smaller than the stripe width, the

bending energy of a semiflexible polymer ring leads to the exis-

tence of only four distinct metastable states as shown in Fig. 1: A

round toroidal configuration I, a confined elongated shape II, as

well as two shapes II1 and II2 containing one or two bulges,

respectively.

Specifically we considered two types of adhesive stripe

domains, topographical surface grooves and chemically struc-

tured surface domains. Both types of structures lead to very

similar behavior: a discontinuous morphological transition

between the two dominant shapes I and II0, as well as
Soft Matter, 2010, 6, 5461–5475 | 5469
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intermediate bulge shapes II1 and II2 for large contour lengths, of

which only shape II2 containing two bulges can be globally

stable.

Estimates for all transition lines were derived, see Fig. 4, which

could serve to determine material properties of the substrate or

the polymer ring experimentally. The discontinuous transitions

display shape hysteresis and are observable for persistence

lengths exceeding the stripe width.

For a periodic array of topographic steps we find a cascade of

morphological shape transitions as displayed in Fig. 6.

Appendix

A Analytical energy minimization for topographical surface

steps

In this appendix we derive exact analytical results for the meta-

stable shapes of a ring adhering to a topographical surface

groove with two adhesive edges. All four metastable ring shapes

consist of one or two straight segments (with tangent angles

q(s) ¼ 0 or q(s) ¼ p) of total length Lst, which adhere to the

straight stripe edges and one or two curved segments of total

length L � Lst. The total energy of the ring is

Etot(Lst) ¼ Eb(Lst) � |Wst|Lst (29)

Only the curved segments contribute to the bending energy

Eb ¼ ðk=2Þ
ðL

0

dsðvsqðsÞÞ2, whereas only the straight adhered

segment contribute to the adhesion energy Ead ¼ �|Wst|Lst.

For each shape additional constraints have to be imposed for

ring closure, which take on slightly different forms for the shapes

of type I adhering to one edge and shapes II adhering to both

edges of the stripe.

The total energy is minimized with respect to variations of the

tangent angle configuration q(s) with 0 # s # L. For each metastable

shape we first minimize the bending energy under the additional

constraint of fixed adhered length Lst to obtain the constrained

bending energy minimum Eb¼Eb(Lst) as a function of Lst. Then we

minimize the total energy (29) also with respect to Lst to obtain the

unconstrained minimal energy Etot¼Etot(Wst) as a function of |Wst|,

which is equivalent to a Legendre transform of the bending energy

Eb( �Lst) with respect to the adhered length Lst. We obtain exact

results for energy minima Eb ¼ Eb(Lst) and Etot ¼ Etot(Wst) in
Fig. 8 Shapes I, II0, II1 and II2 in Fig. 1(a) can be divided into straight (adso

three types shown in this figure. Configuration I consists of two curved segm

unbulged caps as shown in (c). Shape II1 consists of two straight segments an

Shape II2 consists of two straight segments and two bulged caps as shown in

5470 | Soft Matter, 2010, 6, 5461–5475
parametric form and can solve for explicit formulae in the limits of

strong and weak adhesion.

A.1 Shape I. Shape I contains one round segment of length

Lr and one adhered segment with Lr + Lst ¼ L. Shape I is

parameterized with one half of the curved segment at arc lengths

0 # s # Lr/2 as shown in Fig. 8(a). Considering one half of the

symmetric configuration, the ring closure constraint for the

coordinate parallel to the groove can be written asðLr=2

0

ds cos qðsÞ þ Lst

2
¼ 0 (30)

We associate this constraint with a Lagrange multiplier m. The

resulting Euler–Lagrange equation minimizing the bending

energy of the round segment is

kv2
sq + m sin q ¼ 0 (31)

Integrating once we find

k

2
ðvsqÞ2�m cosq ¼ c

ds ¼ dq

�
2m

k
ðqþ cosqÞ

��1=2 (32)

with an integration constant c and the parameter q ^ c/m. We

have two equations for the two unknown parameters q and m:

The first equation gives the length of the round segment

Lr ¼ L� Lst ¼ 2

�
2k

m

�1=2

f1ðqÞ

f1ðqÞ h

ðp

0

dqðqþ cosqÞ�1=2

(33)

The second equation is given by the constraint (30)

Lst ¼ 2

�
2k

m

�1=2

f2ðqÞ

f2ðqÞ h �
ðp

0

dq cosqðqþ cosqÞ�1=2

(34)

The functions f1(q) and f2(q) can be expressed by elliptic integrals,

which converge for q > 1.

Instead of solving explicitly for q and m, we will express all

quantities of interest parametrically as functions of q using the

two eqn (33) and (34). This gives
rbed) segments of total length Lst and curved (desorbed) segments of the

ents as shown in (a). Shape II0, consists of two straight segment and two

d one bulged cap as shown in (b) and on unbulged cap as shown in (c).

(b).

This journal is ª The Royal Society of Chemistry 2010
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Lst

L
¼ 1� Lr

L
¼ f2ðqÞ

f1ðqÞ þ f2ðqÞ
(35)

2mL2

k
¼ 4ðf1ðqÞ þ f2ðqÞÞ2 (36)

In addition, the bending energy can be rewritten as

Eb ¼ ð2kmÞ1=2
f3ðqÞ

f3ðqÞ h

ðp

0

dqðqþ cosqÞ1=2 (37)

where also the function f3(q) can be expressed by elliptic inte-

grals. It follows that the bending energy is given by

EbL

k
¼ 2ðf1ðqÞ þ f2ðqÞÞ f3ðqÞ (38)

Eqn (38) and (35) give a parametric representation of Eb(Lst)

using the parameter q > 1. The corresponding curve is shown in

Fig. 2(a) as red line.

For q z 1, both f1(q) and f2(q) diverge while

f1ðqÞ � f2ðqÞz f3ðqÞz2
ffiffiffi
2
p

, such that Lst z L/2 and

EbL

k
z8LðL=2� LstÞ�1

(39)

diverges corresponding to the limit of maximal adhered length

and an maximally elongated ring configuration. In the limit of

large q [ 1, we find f1(q) z pq�1/2, f2(q) z pq�3/2, and f3(q) z
pq1/2 such that Lst z 0 and EbL/k z 2p2 corresponding to

a circular ring adhering in a single point.

If the constraint of fixed adhered length Lst is lifted, we have to

minimize the total energy (29) also with respect to variations of

Lst. This gives a transversality condition for the contact curva-

ture at each contact point where a curved segment joins the

straight adhered segments

jvsqðscoÞj ¼
1

Rco

¼
�

2jWstj
k

�1=2

(40)

Using this condition in (32) we find c ¼ |Wst| � m or

q ¼ jWstj
m
� 1 (41)

which allows us to express also |Wst| as a function of the

parameter q using (36),

jWstjL2

k
¼ 2ðqþ 1Þðf1ðqÞ þ f2ðqÞÞ2 (42)

and to obtain together with (38) and (35) a parametric repre-

sentation of Etot(|Wst|) using the parameter q. The corresponding

curve is shown in Fig. 3(a,b) as red line.

The limiting case q z 1 with Lst z L/2 corresponds to adhe-

sion strengths |Wst|L
2/k ¼ L2/2R2

co [ 2p2. Using the asymptotics

of the functions fi(q) we find

Etot;IL

k
z4

ffiffiffi
2
p �

jWstjL2

k

�1=2

� 1

2

jWstjL2

k
(43)

in this limit. Large q [ 1 with Lst z 0 corresponds to |Wst|L
2/k z

2p2, which is the critical value for the unbinding transition

from a single surface step, which is also known for vesicles

adhering to a surface.19,20 In the vicinity of this critical value we

find
This journal is ª The Royal Society of Chemistry 2010
Etot;IL

k
z2p2 � 1

24p2

�
jWstjL2

k
� 2p2

�2

(44)

which shows that the unbinding transition is continuous. The

asymptotic estimate (43) is shown in Fig. 3(a) as dashed line.

A.2 Shape II0. Shape II0 consists of two round caps of

lengths Lcap,1 and Lcap,2 and two adhered segments with total

length Lst such that Lcap,1 + Lcap,2 + Lst ¼ L. The caps have

reflection symmetry with respect to the axis x ¼ ast/2. The ring

closure constraints for the coordinate perpendicular to the

groove ensure that the curved segments connect both groove

edges, ð
Lcap;i

ds sinqðsÞ � ast ¼ 0 (45)

for each cap i ¼ 1, 2. The constraints are associated with

Lagrange multipliers ni. The Euler Lagrange equations for the

shape of the caps become

kv2
sq � ni cos q ¼ 0 (46)

Integrating once we find

k

2
ðvsqÞ2�nisinq ¼ ci

ds ¼ dq

�
2ni

k
ðpi þ sinqÞ

��1=2 (47)

with integration constants ci and parameters pi ^ ci/ni. In total

we have to determine six unknown parameters Lcap, i, pi, and ni.

These parameters have to fulfill four equations

2Lcap;i ¼
�

2k

ni

�1=2

g1ðpiÞ

g1ðpÞh
ðp

0

dqðpþ sinqÞ�1=2

(48)

for the cap lengths and

ast ¼ 2

�
k

2ni

�1=2

g2ðpiÞ

g2ðpÞh�
ðp

0

dq sinqðpþ sinqÞ�1=2

(49)

for the constraints (45), The functions g1(p) and g2(p) can be

expressed by elliptic integrals, which converge for p > 0 and

p < �1. Note that for p < �1 the functions g1(p) and g2(p) are

imaginary.

In addition the cap lengths have to fulfill Lcap,1 + Lcap,2 + Lst¼
L. A sixth equation arises because the two caps can exchange

length while the adhered length Lst stays fixed. This leads to the

additional transversality condition that the contact curvatures of

the two caps have to be equal. This condition enforces that both

caps are identical: Because at all four contact points sin q(sco)¼ 0,

the Euler Lagrange eqn (47) lead to equal integration constants ci

are equal for both caps, c ^ c1¼ c2 or ni¼ c/pi. Together with the

two equations for the constraints (49) it follows that p ^ p1¼ p2.

Therefore, both caps are identical and also have the same size

Lcap¼ Lcap,1¼ Lcap,2. As a result we are left with two parameters

p and n to be determined with Lcap fixed by 2Lcap ¼ L � Lst for

a prescribed adhered length.
Soft Matter, 2010, 6, 5461–5475 | 5471
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Instead of explicitly solving for p and n, we express all quan-

tities of interest as functions of p using (48) and (49):

�Lcap ¼
Lcap

ast

¼ g1ðpÞ
g2ðpÞ

(50)

�Lst ¼
Lst

ast

¼ �L� 2g1ðpÞ
g2ðpÞ

(51)

na2
st

k
¼ 1

2
g2ðpÞ2 (52)

The bending energy of the caps becomes

Eb ¼ 2Ecap ¼ ð2knÞ1=2
g3ðpÞ

g3ðpÞh
ðp

0

dqðpþ sinqÞ1=2 (53)

where the function g3(p) can be expressed by elliptic integrals.

For p < �1 all three functions gi(p) are imaginary but physical

quantities remain real-valued. It follows that

�Eb ¼
Ebast

k
¼ g2ðpÞg3ðpÞ (54)

which gives together with (51) a parametric representation of

Eb(Lst) using the parameter p in the range p > 0 and p < �1. The

corresponding curve is shown in Fig. 2(a) as blue line.

For p z �1 both g1(p) and g2(p) diverge on the negative

imaginary axis, whereas g3ð�1Þz� i4ð
ffiffiffi
2
p
� 1Þ such that �Lst z

�L � 2 or Lcap z ast corresponding to the limit of maximal

adhered length and a ring configuration approaching a rectan-

gular shape. Accordingly Eb diverges in this limit,

�Eb ¼ 2 �Eb;capz32ðp2� 1Þ2ð �L� 2� �LstÞ�1
(55)

For p [ 1 (and similarly for p� �1), we have g1(p) z pp�1/2,

g2(p) z pp�1/2, and g3(p) z pp1/2 such that �Lst z �L�p or Lcap z
past/2 corresponding to exactly semicircular caps with radius

Rco ¼ ast/2. The bending energy is

�Eb ¼ 2 �Ecap z 2p (56)

For p z 0, finally, the caps become very elongated with large

contact radius Rco and g1(0) z 5.24, g2(0) ¼ g3(0) z 2.40 such

that the adhered length assumes its minimal value �Lst z �L� 4.38

or �Lcap z 2.19, and the bending energy becomes

�Eb ¼ 2 �Eb,cap z 5.74 (57)

If the constraint of fixed adhered length Lst is lifted the

transversality condition of contact curvature at the contact

points gives c ¼ |Wst| or

p ¼ jWstj
n

(58)

which leads to

jwstj ¼
jWstja2

st

k
¼ 1

2
pg2

2ðpÞ (59)

Together with (54) this gives a parametric representation of
�Etot(|wst|) using the parameter p in the range p > 0 and p < �1.

The corresponding curve is shown in Fig. 3(a,b) as blue line.
5472 | Soft Matter, 2010, 6, 5461–5475
The limiting case p z �1 with �Lst z �L � 2 corresponds to

strong adhesion with |wst| [ 2 and

�Etot;II0
z8

ffiffiffi
2
p
ð
ffiffiffi
2
p
� 1Þjwstj1=2 � jwstjð �L� 2Þ (60)

For |p| [ 1 we find intermediate adhesion strengths |wst| z 2 and

�Etot,II0
z 2p � |wst|( �L � p) (61)

The limiting case p z 0 with �Lst z �L� 4.38 corresponds to weak

adhesion with |wst| � 1 and

�Etot,II0
z 5.74 � |wst|( �L � 4.38) � 1.31|wst|

3/2 (62)

The asymptotic estimate (62) is shown in Fig. 3(a) as dashed line.

A.3 Shape II2. Shape II2 consists of two bulges of lengths

Lbul,1 and Lbul,2 and two adhered segments with total length Lst

and Lbul,1 + Lbul,2 + Lst ¼ L. As opposed to the caps of shape II0

bulges have no reflection symmetry. Also the bulges of shape II2

can exchange length with the adhered length Lst fixed. As for the

caps, this leads to a transversality constraint that curvatures at

contact points connected by an adhered segment have to be

equal. Using analogous arguments as for caps in shape II0 this

leads to the conclusion that both bulges must be identical in size,

Lbul¼ Lbul,1¼ Lbul,2. The bulge length is fixed by 2Lbul¼ L� Lst

for a prescribed adhered length.

There are two energetically degenerate configurations of the

two bulges in shape II2: An arrangement with reflection

symmetry with respect to the y-axis and both bulges on the same

side of the stripe, and an antisymmetric arrangement with both

bulges on opposite sides.

The ring closure constraint for the coordinate perpendicular to

the groove is ð
Lbul

ds sinqðsÞ � ast ¼ 0 (63)

which we associate with a Lagrange multiplier n. The Euler

Lagrange equations and their first integral are identical to eqn

(46) and (47) for the shape II0, the integration constant c also

defines a parameter p ^ c/n. The two unknown parameters p and

n are determined by the two equations

2Lbul ¼ L� Lst ¼
�

2k

n

�1=2

h1ðpÞ

h1ðpÞh
�ðp

0

þ 2

ðqinf

p

�
dqðpþ sinqÞ�1=2

(64)

for the bulge length and

ast ¼ 2
� k

2n

�1=2

h2ðpÞ

h2ðpÞh�
�ðp

0

þ 2

ðqinf

p

�
dq cosqðpþ sinqÞ�1=2

(65)

for the constraint (63). Here, qinf is the tangent angle in the

inflection point of the bulge configuration, see Fig. 8(c). It is

determined from vsqinf ¼ 0 which gives qinf ¼ arcsin(– p) with p

< qinf < 3p/2, which restricts p to 0 < p < 1. Also the functions

h1(p) and h2(p) can be expressed by elliptic integrals. The
This journal is ª The Royal Society of Chemistry 2010
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function h2(p) becomes negative for p > pN z 0.652, which

restricts p to 0 < p < pN.

We express all quantities of interest as functions of p using (64)

and (65):

�Lbul ¼
Lbul

ast

¼ h1ðpÞ
h2ðpÞ

(66)

�Lst ¼
Lst

ast

¼ �L� 2h1ðpÞ
h2ðpÞ

(67)

na2
st

k
¼ 1

2
h2ðpÞ2 (68)

According to (66) the length of the bulge diverges for p z pN as
�Lbul z 5.72/(pN � p). Therefore, we can determine a �L-depen-

dent value pL( �L) < pN such that �Lst < 0 for p > pL( �L), which sets

the range 0 < p < pL( �L) of accessible bulged states for a ring of

finite length. For very large �L, pL( �L) z pN. For �L ¼ 20 as in

Fig. 2 and 3, we find pL z 0.53.

The bending energy can be rewritten as

Eb ¼ 2Eb;bul ¼ ð2knÞ1=2
h3ðpÞ

h3ðpÞh
�ðp

0

þ 2

ðqinf

p

�
dqðpþ sinqÞ1=2

(69)

where also the function h3(p) can be expressed by elliptic inte-

grals. It follows that

�Eb ¼
Ebast

k
¼ h2ðpÞh3ðpÞ (70)

which gives together with (67) a parametric representation of

Eb(Lst) using the parameter p in the range 0 < p < pL( �L) of

accessible parameters p. The corresponding curve is shown in

Fig. 2(a) as green line.

For p z 0 the bulge of shape II2 approaches the maximally

elongated cap of shape II0, and the adhered length approaches

the above result �Lst z �L � 4.38 or �Lbul ¼ �Lcap z 2.19 with

a bending energy �Eb ¼ 2 �Eb,bul z 5.74.

If the constraint of fixed adhered length Lst is lifted

the condition of contact curvature at the contact points gives

c ¼ |Wst| or

p ¼ jWstj
n

(71)

which leads to

jwstj ¼
1

2
ph2

2ðpÞ (72)

This relation gives a maximal value |wst| ¼ wmax z 0.35 which is

realized for p ¼ pmax z 0.25. For |wst| > wmax, eqn (72) has no

solution because bulged shapes II2 are no longer metastable

states and are unstable with respect to transitions into shape II0.

For |wst| < wmax, there are two solutions p to eqn(72). The solu-

tion branch with p > pmax corresponds to the local energy

minimum representing shape II2 whereas the solution branch

with p < pmax corresponds to a local maximum of the total energy

and, thus, represents a possible transition state II*
2 for shape

transitions into shapes II1 or II0. This maximum corresponds to

a shape with two identical small bulges which are unstable with
This journal is ª The Royal Society of Chemistry 2010
respect to shrinking to zero size to a shape II0 or to expanding to

its equilibrium size in state II2. Eqn (72) and (70) give a para-

metric representation of �Etot(|wst|) for a metastable shape II2

using the parameter p in the range pmax < p < pL( �L). The value

p ¼ pL( �L) corresponds to a minimal value |wst| ¼ wmin( �L), which

is �L-dependent. For |wst| > wmin, bulged shapes II2 become

unstable with respect to transitions into shape I because bulged

become so large that the adhered length �Lst vanishes. For �L ¼ 20

we find wmin z 0.10. The corresponding curve is shown in

Fig. 3(a,b) for �L ¼ 20 as green line in the corresponding range

wmin < |wst| < wmax. For the range 0 < p < pmax the parametric

representation gives the additional branch of transition states II*
2

shown in Fig. 3(b) as green dashed line in the corresponding

range 0 < |wst| < wmax.

For p z pN the bulge length diverges. This limit corresponds

to weak adhesion with |wst| � 1. Expanding the functions hi(p)

around p z pN we find

�Lbulzjwstj�1=2
�

3:75� 1:53
			wstj1=2 � 0:54

			wst

			�

�Eb;bulzjwstj1=2ð3:75þ 0:18jwstjÞ

�Etot;II2
z15:00jwstj1=2 � jwstjð �Lþ 3:07Þ � 0:72jwstj3=2

(73)

This asymptotic estimate is shown in Fig. 3(a) for �L ¼ 20 as

dashed line in the accessible range pmax < p < pL( �L) corre-

sponding to 0.10 < |wst| < wmax.

We can also define an energy D �Ebul for creating a bulge

starting from the shape II0. This energy includes the bending

energy gain of a bulge as compared to a cap as well as the

adhesion energy cost from desorbing additional length,

D �Ebul ¼


Etot;II2

� Etot;II0

��
2

z� 2:87þ 7:50jwstj1=2 � 3:72jwstj þ 0:30jwstj3=2
(74)

where the last approximation holds for |wst|� 1.

A.4 Shape II1. Shape II1 consists of one bulge of length Lbul,

one cap of length Lcap, and two adhered segments with total

length Lst such that Lbul + Lcap + Lst ¼ L. We have to consider

bulge and cap separately and apply two constraintsð
Lbul

sin qðsÞ � ast ¼ 0

ð
Lcap

sin qðsÞ � ast ¼ 0

(75)

which we associate with two Lagrange multipliers nbul and ncap.

The Euler Lagrange equations and their first integral are iden-

tical to eqn (46) and (47) for the shapes II0 and II2. Because the

adhered length between bulge and cap can be adjusted in shape

II1 we have an additional transversality condition that the

contact curvatures have to be equal. Because at all four contact

points sin q(sco) ¼ 0, the Euler Lagrange eqn (47) lead to the

equivalent condition that the integration constants are equal for

bulge and cap, c ¼ cbul ¼ ccap. We introduce two corresponding

parameters p1 and p2 such that

c ¼ p1nbul ¼ p2ncap (76)
Soft Matter, 2010, 6, 5461–5475 | 5473
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This relation together with Lbul + Lcap + Lst ¼ L and the four

equations for cap and bulge length and constraints,

Lbul ¼
�

k

2nbul

�1=2

h1ðp1Þ (77)

Lcap ¼
�

k

2ncap

�1=2

g1ðp2Þ (78)

ast ¼ 2

�
k

2nbul

�1=2

h2ðp1Þ (79)

ast ¼ 2

�
k

2ncap

�1=2

g2ðp2Þ (80)

give six equations for the six parameters Lbul, Lcap, p1, p2, nbul,

and ncap.

From these equations we find

�Lbul ¼
h1ðp1Þ
h2ðp1Þ

; �Lcap ¼
g1ðp2Þ
g2ðp2Þ

p1h2
2ðp1Þ ¼ p2g2

2ðp2Þ (81)

Using the last equation we can solve numerically for p2 which

allows us to express the adhered length Lst ¼ L � Lbul � Lcap

parametrically as a function of p1. It follows that the adhered

length of shape II1 with one bulge and one cap for given p1 and

corresponding p2 is the mean value of the adhered lengths of

shapes II2 with two bulges for p ¼ p1 and II0 two caps for p ¼ p2,

Lst;II1
ðp1Þ ¼

1

2



Lst;II2

ðp1Þ þ Lst;II0
ðp2Þ

�
(82)

Therefore, as for the shape II2, the length of the bulge diverges

for p1 z pN. There exists a �L-dependent value p1,L( �L) < pN such

that the adhered length on one of the stripe edges shrinks to zero,

which sets the range 0 < p < p1,L( �L) of accessible bulged states for

a ring of finite length. For very large �L, p1,L( �L) z pN. For �L¼ 20

as in Fig. 2 and 3, we find p1, L z 0.55.

Furthermore the bending energy becomes

Eb ¼ Ebul þ Ecap

¼ ð2knbulÞ1=2
h3ðp1Þ þ



2kncap

�1=2
g3ðp2Þ

(83)

Using (81) we can express also the bending energy parametrically

as a function of p1. The bending energy in shape II1 is given by

the mean value of the bending energies of shapes II2 with two

bulges for p ¼ p1 and II0 two caps for p ¼ p2,

Eb;II1
ðp1Þ ¼

1

2



Eb;II2

ðp1Þ þ Eb;II0
ðp2Þ

�
(84)

Together with the parametric result for Lst we obtain a para-

metric representation of Eb(Lst) using the parameter p1 in the

range 0 < p1 < p1,L( �L) of accessible parameters p1. The corre-

sponding curve is shown in Fig. 2(a) as violet line.

If the constraint of fixed adhered length Lst is lifted

the condition of contact curvature at the contact points gives

c ¼ |Wst| or

p1 ¼
jWstj
nbul

and p2 ¼
jWstj
ncap

(85)
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which leads to

jwstj ¼
1

2
p1h2

2ðp1Þ ¼
1

2
p2g2

2ðp2Þ (86)

which is equivalent to the above relation (81) between p1 and p2.

It follows that for a given value of wst the condition of the same

contact curvature at all four contact points automatically leads

to values p1 and p2 satisfying (81). According to (82) and (84), we

conclude that the total energy of shape II1 is exactly the mean

value of the total energies of shape II0 and shape II2,

Etot;II1
¼ 1

2



Etot;II2

þ Etot;II0

�
¼ Etot;II0

þ DEbul

(87)

for the same value of the adhesion strength wst. The shape II1

exists for pmax < p1 < p1,L( �L) corresponding to wmin( �L) < |wst| <

wmax with wmin z 0.07 for �L¼ 20. The resulting curve is shown in

Fig. 3(a,b) as violet solid line. A corresponding asymptotic esti-

mate is shown in Fig. 3(a) as dashed line. There is also a shape II*
1

corresponding to local maximum, which plays the role of

a possible transition state, for which we find the analogous result

Etot;II*
1
¼ 1

2

�
Etot;II*

2
þ Etot;II0

�
(88)

This maximum corresponds to a shape with a small bulge which

is unstable with respect to shrinking to zero size to a shape II0 or

to expanding to its equilibrium size in state II1. The shape II*
1

exists for 0 < p1 < pmax corresponding to 0 < |wst| < wmax and is

shown in Fig. 3(b) as violet dashed line.

A.5 Other bulged shapes. In principle, there exists also

metastable states with bulges that extend to both sides of the

groove on the same curved segment. Analogously to the results

for shape II2, we can calculate the length L*
bul of such a bulge and

the energy of a state II4 with two such bulges for fixed total

adhered length Lst ¼ L � 2L*
bul from

2L*
bul ¼ L� Lst ¼

�
2k

n

�1=2

k1ðpÞ (89)

k1ðpÞh
�ðp

0

þ 4

ðqinf

p

�
dqðpþ sinqÞ�1=2

ast ¼ 2
� k

2n

�1=2

h2ðpÞ

(90)

k2ðpÞh�
�ðp

0

þ 4

ðqinf

p

�
dq cosqðpþ sinqÞ�1=2

(91)

resulting in

�L
*

bul ¼
k1ðpÞ
k2ðpÞ

(92)

�Lst ¼ �L� 2k1ðpÞ
k2ðpÞ

(93)

na2
st

k
¼ 1

2
k2ðpÞ2 (94)
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and Eb ¼ 2E* ¼ ð2knÞ1=2
k3ðpÞ
bul

�Eb ¼ k2ðpÞk3ðpÞ

k3ðpÞh
�ðp

0

þ
ðqinf

p

�
dqðpþ sinqÞ1=2

(95)

This gives together with (93) a parametric representation of

Eb(Lst) using the parameter p in the range 0 < p < p4,L( �L) of

accessible parameters p, where p4,L( �L) is determined by the

condition that �Lst < 0 for p > pL,4( �L).

The resulting parametric representation of Eb(Lst) shows that

Eb,II4(Lst) > Eb,II2(Lst) for all possible values of Lst. Therefore, the

bending energies of bulges which extend to both sides of the

groove are always higher in bending energy for the same adhered

length Lst.

B Analytical energy minimization for ring condensation

In this appendix we derive exact analytical result for the meta-

stable racquet shape of a ring in the presence of a polymer-

polymer attraction Wcon < 0 per contact length.

The racquet shape consists of two round bulges, which assume

the same length Lbul in equilibrium according to analogous

arguments as for rings on the topographical stripe, and two

adhering straight segments with total length Lcon, which are in

contact with contact energy – |Wcon|Lcon/2.

The ring closure constraint for the coordinate perpendicular to

the adhering segments isð
Lbul

ds sinqðsÞ ¼ 0 (96)

which we associate with a Lagrange multiplier n. The Euler

Lagrange equations and their first integral are identical to eqn

(46) and (47) for the shape II0, the integration constant c also

defines a parameter p ^ c/n.

The bulges of the racquet shape can be treated analogously to

the bulges of shape II4 for the topographical surface groove, and

we find

2Lbul ¼ L� Lcon ¼
�

2k

n

�1=2

k1ðpÞ (97)

The ring closure constraint (96) gives

0 ¼
� k

2n

�1=2

k2ðpÞ (98)

such that p ¼ p0 z 0.46 must be a zero of the elliptic function

k2(p) defined in (91). Eqn (97) with p¼ p0 then gives the Lagrange

multiplier n as a function of the contact length Lcon. The bending

energy is

Eb ¼ (2kn)1/2k3(p0) (99)

as a function of n.

If the constraint of fixed contact length Lcon is lifted the

condition of contact curvature at the contact points gives c ¼
|Wcon| and, thus, determines the Lagrange multiplier n ¼ |Wcon|/

p0. Using this we obtain for the contact length from eqn (97),
This journal is ª The Royal Society of Chemistry 2010
Lcon

L
¼ 1�

�
k

jWconjL2

�1=2

ð2p0Þ1=2
k1ðp0Þ (100)

and for the bending energy

EbL

k
¼
�
jWconjL2

k

�1=2
21=2k3ðp0Þ

p
1=2
0

(101)

The total energy Etot, rac ¼ Eb � |Wcon|Lcon/2 is obtained as

Etot;racL

k
¼
�
jWconjL2

k

�1=2

ð2p0Þ1=2

�
k3ðp0Þ

p0

þ k1ðp0Þ
2

�

� 1

2

jWconjL2

k

(102)

with (2p0)1/2(k3(p0)/p0 + k1(p0)/2) z 12.85. This result holds for

nonzero contact length Lcon > 0 or |Wcon|L2/k > 2p0k1
2(p0) z

73.33.
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