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Abstract — In biomimetic and biological systems, interactions between surfaces are often mediated
by adhesive molecules, nanoparticles, or colloids dispersed in the surrounding solution. We present
here a general, statistical-mechanical model for two surfaces that interact via adhesive particles.
The effective, particle-mediated interaction potential of the surfaces is obtained by integrating
over the particles’ degrees of freedom in the partition function. Interestingly, the effective
adhesion energy of the surfaces exhibits a maximum at intermediate particle concentrations,
and is considerably smaller both at low and high concentrations. The effective adhesion energy
corresponds to a minimum in the interaction potential at surface separations slightly larger than
the particle diameter, while a secondary minimum at surface contact reflects depletion interactions.
Our results can be generalized to surfaces with specific receptors for solute particles, and have
direct implications for the adhesion of biomembranes and for phase transitions in colloidal systems.

Copyright © EPLA, 2008

Introduction. — The adjustment of surface interac-
tions is crucial for controlling the phase behavior of
colloidal systems [1] and the adhesiveness of biological cells
and membranes [2]. These interactions are often domi-
nated by the composition of the surfaces, which may be
charged, hydrophobic, etc. In some systems, the interac-
tions are also strongly affected by molecules or particles
in the surrounding medium. The concentration of these
particles is an additional control parameter for the surface
interactions, a parameter that is often easier to adjust than
the surface composition, and can be varied over a wider
range than external parameters such as temperature.

On the one hand, non-adhesive particles can induce
attractive “depletion” interactions between surfaces,
because close contact of the surfaces reduces the excluded
volume for the particles [3,4]. On the other hand, adhesive
particles can directly bind two surfaces together. For
example, the surface interactions and colloidal phase of
membrane-coated silica beads [5,6] and the force between
membrane-coated mica surfaces [7] have been altered by
adding soluble, adhesive proteins. Multivalent ions such
as chromium can induce the adhesion of lipid membranes,
presumably by crosslinking the polar headgroups of
lipids in apposing membranes [8]. Linker proteins that
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Fig. 1: Two surfaces in contact with a solution of adhesive
particles. A particle can bind the two surfaces together for
surface separations slightly larger than the particle diameter
(particle on the right). At large separations, the particles can
only bind to one of the surfaces (particles on the left).

interconnect membrane receptors are known to assist
biomembrane adhesion [2], which has also been utilized
in biomimetic experiments [9,10].

Adhesive particles can bind two surfaces together if the
separation of the surfaces is equal to or slightly larger than
the particle diameter, see fig. 1. At larger separations, the
particles can only bind to one of the surfaces. In this letter,
we consider particles that exhibit short-ranged, attractive
interactions with the surfaces, and repulsive hard-sphere
interactions with each other. Our central result is that the
effective, particle-mediated adhesion energy of the surfaces
is given by
T 14 qpe2V/T
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ef d2 (1+q¢€U/T)2
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Fig. 2: Effective adhesion energy Ues of the surfaces, given in eq. (1), as a function of the particle bulk volume fraction ¢
for the binding energy U =8T and ¢ =0.25. The effective adhesion energy is maximal at the optimal bulk volume fraction
F =~ e U/IT /q~1.34-10"3. At the optimal volume fraction, the particle coverage of two planar parallel surfaces is 50% for large
separations, and almost 100% for small separations at which particles can bind to both surfaces. The surface coverage at these
small separations remains close to 100% for volume fractions ¢*/10 < ¢ < 10 ¢*, while the coverage coo = ¢/(¢ + ¢*) for large
separations changes between approximately 9% and 90% in this example.

with a dimensionless coefficient ¢ for small bulk volume
fractions ¢ < 1 of the particles and large binding energies
U with eV/T >> 1. Here, d is the particle diameter, and T
denotes the temperature in energy units.

Interestingly, the effective adhesion energy (1) of the
surfaces exhibits a maximum at an optimum bulk volume
fraction of the particles, see fig. 2. At this volume fraction,
the particle coverage of two planar parallel surfaces turns
out to be close to 50% for large separations (“half
coverage”), and 100% (“full coverage”) for short, binding
separations, see fig. 2. Bringing the surfaces from large
separations within binding separations thus does not
“require” desorption or adsorption of particles at the
optimum volume fraction. The existence of an optimum
particle volume fraction has interesting, experimentally
testable implications, for example “re-entrant transitions”
in which surfaces or colloidal objects first bind with
increasing concentration of adhesive particles, and unbind
again when the concentration is further increased beyond
the optimum concentration.

Even though our derivations of eq. (1) are based on some
simplifying assumptions, the effective adhesion energy (1)
should be applicable in general since it can be understood
as the difference of two Langmuir adsorption free energies
per binding site: i) the adsorption free energy (T'/d?)In(1 +
qopeV/ T for small surface separations at which a particle
binds both surfaces with total binding energy 2U, and
ii) the adsorption free energy (7/d?)In(1+ qpeV/T) for
large surface separations, counted twice in (1) because
we have two surfaces. These Langmuir adsorption free
energies result from a simple two-state model in which a
particle is either absent (Boltzmann weight 1) or present
(Boltzmann weights g¢e?V/T and q¢eV/T, respectively)
at a given binding site, see, e.g., [11]. The factor ¢
depends on the degrees of freedom of a single adsorbed
particle and has to be determined from more detailed
binding models.

In the following, we will study particles of diameter d
that are attracted to the two surfaces within the binding
range r. We will first consider a 3-dimensional lattice gas
model with d=r that leads to relation (1) with ¢=1.
We will then study a more general tube model with
arbitrary values of d and r from which we obtain another
derivation of (1) with ¢ =r/d. Finally, we generalize our
main result (1) to surfaces with specific receptors for solute
particles or molecules.

Lattice gas model. — The simplest model for a gas
of adhesive particles between two parallel and planar
surfaces is obtained by discretizing the space between the
surfaces into a cubic lattice. In this model, the hard-
core interactions between the particles are incorporated
by choosing a lattice spacing d equal to the particle
diameter. Each lattice site then can contain only one
particle, and the bulk volume fraction of particles is ¢ =
e*/T /(14 e*T), where u is the chemical potential. If a
particle is located at a lattice site adjacent to one of the
two surfaces, it gains the binding energy U. The separation
of the surfaces is =n_ d, where n, is the number of
lattice layers between the surfaces. The total number of
lattice sites between the two surfaces is nn_.

The free energy F' of this lattice gas of particles between
the surfaces can be decomposed into a bulk and a surface
term. The bulk free energy f5, which is equal to the free
energy per lattice site in the limit of large n)n,, has
the simple form f,=—TIn(1+ e“/T) =TIn(1—¢). The
surface free energy f; = (F —nynify)/n| is the excess
free energy per pair of apposing surface sites in the limit
of large n. The surface free energy depends on the
separation of the surfaces, i.e. on the number of lattice
layers n, . The surface free energy is given by

1 + e(U+FL)/T

fs,nL:fs,oo:_QTln 1-|—6M/T
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for ny >2 and by

14 eQ@U+)/T
fs,l ——TIHW (3)

for n; = 1. The effective adhesion potential of the surfaces,
defined as V = f;,,, /d?, thus is constant for n; >2 and
has an attractive well of depth Ut = (fs,00 — f5,1)/d* at
n, = 1. After replacing the chemical potential x in egs. (2)
and (3) by the bulk volume fraction ¢ = e*/T /(14 e*/T),
we obtain

1—¢+¢62U/T
(ot gl

T
=—1In

Uef = 42

(4)

For small volume fractions ¢ < 1 and large binding ener-
gies U with eV/T > 1, the effective adhesion energy (4) is
identical with (1) for ¢ = 1.

Tube model. — We now consider a semi-continuous
model to obtain a realistic estimate of the factor ¢ in
eq. (1) from the separation-dependent effective interaction
potential of the surfaces. In this model, we discretize
the space between the surfaces into tubes of the same
diameter d as the particles. We assume that the two
apposing surfaces are on average parallel and nearly
planar, with local curvature radii much larger than the
diameter d of the adhesive particles. The tubes are
oriented perpendicular to both surfaces and contain the
particles. The length ¢ of the tubes thus corresponds to
the local separation of the surfaces. The particles can
exchange between the tubes and with the bulk solution,
see fig. 1. We assume that the attractive interaction of
a particle with the surfaces is short-ranged and model
this interaction by a square-well potential with binding
energy U and range r <d/2. A particle is thus bound
to a surface with binding energy U if the separation
between the surface and the center of the particle is smaller
than r +d/2. The pair interactions between particles are
purely repulsive hard-sphere interactions. For simplicity,
we assume that the tubes are arranged on a square
lattice. Each tube then occupies a volume d2¢. The
approximation implied by this discretization should be
valid for the experimentally relevant small particle bulk
volume fractions ¢ considered here. Since the particle-
surface interaction is short-ranged, the gas of particles
between the surfaces is as dilute as in the bulk for large
surface separations ¢ > d, except for the single adsorption
layers of particles at the surfaces. For large binding
energies U, these adsorption layers will fully cover the
surfaces.

In this model, the problem of determining the effective
adhesion potential of the surfaces is reduced to calculating
the partition function of a one-dimensional gas of particles
in a tube. Since the number of particles in a tube varies,
the suitable statistical ensemble is the grand-canonical
ensemble in which the chemical potential p of the particles

is fixed. The free energy is

1e/d]
F=-Tln |1+ Z e/ Tz,

n=1

(5)

where Z,, denotes the canonical partition function for a
system of n particles confined in the tube. The upper
limit of the sum, |[¢/d]|, equals the largest number of hard
spheres of diameter d that can be placed in the tube of
length ¢. The effective adhesion potential of the surfaces
is V = (F — fyd?()/d?, where f, =limy_,, F/(d?¢) denotes
the free energy density in the bulk. The effective adhesion
potential thus is again defined as the surface contribution
to the free energy F. With eq. (5), we obtain

L¢/d] 2
T /T fod*l
V= T In |1+ E Z,e"T | exp < T ) . (6)

n=1

One-dimensional models for hard spheres have been
studied extensively [11-16]. Two well-known results that
we will use in the following are: i) The hard-sphere gas
fugacity is e*/T ~ (¢ + 2¢?)A/d, up to second-order terms
in the bulk volume fraction ¢ [14]. Here, A denotes the
thermal de Broglie wavelength. ii) The bulk free energy
density is f,=—T¢/(d*(1—¢)), with the denominator
describing the volume accessible to a sphere [11]. In
contrast to previous studies, we are interested here in
the effective adhesion potential V' given by eq. (6). With
the relations i) and ii) above, a virial expansion of the
potential V' leads to

Va1 (0 + (0] ()

for ¢ <1 with the expansion coefficients

ap=[AZ,(0)—¥)/d and

az = [(2d — O)AZ1(€) + A*Z5(0) — Ld + 2 /2] /d?. ®)

The partition function Z; is given by

1 {—d/2
Zl = — / dfl?l eiH(ml)/T
A Jase

9)
with the one-particle configuration energy H(zi)=
-UOd/2+r—x1)—UO(x1 —L+d/2+7r). Here, 3
denotes the center-of-mass position of the particle in the
tube, and © is the Heaviside step function with ©(x) =1
for >0 and O(z)=0 for <0. We have assumed
here that the tube length ¢ is larger than the particle
diameter d. For tube lengths ¢ > 2d, the partition function
ZQ is

Zy

1 Z*d/Q Iz*d
d:zrg/ dxy e H@1z2)/T (10)
d

A2 3d/2 /2

with the two-particle configuration energy H(x1,x2)=
-UOd/2+r—x1)—UO(xa—L+d/2+71). For tube
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Fig. 3: Effective adhesion potential V' as a function of the
surface separation ¢ for the bulk volume fraction ¢ =0.01,
binding energy U =87, and binding range r=d/4 of the
particles with diameter d. The potential has a minimum at
the surface separation £ =r+d and attains a constant value
for separations £>2(r+d). The effective adhesion energy of
the surfaces, Uet, is the difference between the asymptotic and
minimum value of potential V' (¢). For large binding energies U
with e%/T > 1, the effective potential has a barrier of height
Ub. at surface separations d + 2r < £ < 2d.

lengths ¢<d and /¢<2d, respectively, the partition
functions Z; and Z5 are zero.

To perform the integrations in egs. (9) and (10), it
is helpful to rewrite the integrand by making use of
the simple relation eV®®@)/T =14 (eY/T —1)0(x). The
integrations then lead to

e2U/T
An
—2(1—e V)t (0 —7) +fn(€)]

Z, = [(1 - e*U/T)an (L—2r)

(11)

with the auxiliary function f, (1) = (I — nd)"©(l — nd)/n!.
The effective adhesion potential V'(¢) finally is obtained
from inserting this result into egs. (7) and (8).

For small bulk volume fractions ¢ considered here, the
effective adhesion potential is constant for separations
£>2(d+r), with the asymptotic value

Vo ~ — L [1+¢ (22(6U/T—1) —1)

d2

2
+¢2%(6U/T*1) (eU/TQ)}. (12)
The adhesion potential has a local minimum
T T (2U/T _ 1) _
Vinin ~ =25 In [146 (5 e n-1)] a3

at the surface separation £ = r + d, see figs. 3 and 4. At this
separation, terms of order ¢? are negligible since the two-
particle partition function Z, is 0. The virial expansion
coeflicients a; and as then are of the same magnitude,
and as¢? is much smaller than a;¢ for ¢ < 1.

Depletion interactions are reflected in a second mini-
mum of the effective potential at surface contact £ =0,

V[T/d?]
0.1
U=06T
0.05
U=09T
0
24 | 34 I

2r+d)

Fig. 4: Effective adhesion potential V' as a function of the
surface separation ¢ for the particle bulk volume fraction
¢=0.1, binding range r=d/4, and binding energies U =
0.97T (lower curve) and U =0.67 (upper curve). The global
minimum of potential V' (¢) is located at surface contact £ =0
for small energies U < 2T'In(1+d/r) (upper curve), and at
the separation £ = d + r for binding energies U > T In(1+d/r)
(lower curve).

see fig. 4. For surface separations 0 < £ < d, the potential
V() =tT¢/[(1—¢)d?] increases linearly with ¢ due to
the depletion forces. By definition, the effective potential
vanishes at surface contact £=0. The two minima thus
have equal depths for Vi, =0, i.e. at the binding energy
Up~iTIn(1+4d/r). For binding energies U > Uy, the
global minimum of the potential V(¢) is located at
{=r+d. The effective adhesion energy of the surfaces
then is Ues = Voo — Vinin with Vi, and Vi, as in eqs. (12)
and (13). For large binding energies U with eV/7 > 1, we
obtain the effective adhesion energy (1) with ¢ =r/d.

The adhesion energy Ut is maximal at the bulk volume
fraction ¢ = ¢* with ¢* ~e U/Td/r, see fig. 2. At this
optimal volume fraction, the coverage of the unbound
surfaces, Coo = —(d?/2)(0Vao /OU) = ¢ /(¢ + ¢*), is 50%. In
contrast, the coverage of the bound surfaces at separation
C=d+7is cin = —(d?/2)(OVinin /OU) = ¢/ (¢ + ¢p*eU/T)
and approaches 100% for ¢ =~ ¢*.

Besides the two minima at £ =0 and £ = d + r, the effec-
tive adhesion potential has a barrier at surface separations
d+2r <{<2(d+r) for large binding energies, see fig. 3.
At these separations, only a single particle fits between the
surfaces, but this particle can just bind one of the surfaces.
The particle thus “blocks” the binding site at the apposing
surface, see particles in the center of fig. 1. At the surface
separation £ = 2d within the potential barrier, the effective
adhesion potential V' (¢) attains the value

Voa ~ —%ln (140 (22T -1)-1)] (9

for small bulk volume fractions ¢. At large binding ener-
gies U with eV/T >> 1, the barrier height Upa = Via — Vo
then is

r, +¢el/Tr/d)’

Upa =~ — .
a2 T 06 U/ d

(15)
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Fig. 5: Two surfaces, e.g. lipid membranes, with specific
receptors for solute particles or molecules in the bulk. For small
surface separations, a particle can link the surfaces together by
binding to two receptors at apposing surface sites (particle on
the left).
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Surfaces with specific receptors. — The effective
adhesion energy (1) can be generalized to cases in which
the adhesive particles specifically bind to receptor sites
or molecules at the surfaces, e.g. to receptors in fluid lipid
membranes. An example are biotinylated lipids, which can
be crosslinked by streptavidin [17,18]. In principle, the two
membranes can contain the same type of receptors, as in
fig. 5, or different types of receptors. We characterize the
receptors in membrane 1 by their binding energy U; and
chemical potential 1, and the receptors in membrane 2
by the binding energy Us and chemical potential v,. For
simplicity, we assume the same binding range r for both
types of receptors. The chemical potential of the receptors
is the free energy difference between a membrane patch of
size d? containing a receptor molecule, and a membrane
patch of the same size without receptor [19]. In the absence
of adhesive particles, the chemical potentials v; and vy
are directly related to the area fractions oy = e**/T /(1 +
e’ /T) and ag = €2/ /(1 +e*2/T) of the receptors in the
two membranes.

Let us first consider the Langmuir adsorption free
energy of a single membrane with receptors. Since each
patch of the membrane can attain four possible states, the
Langmuir free energy per patch area d? is (T'/d*)In(1+
e’ /T 4 qp + qo e(Ui"’”i)/T) with ¢ =1 or 2. Here, e*/T is
the Boltzmann weight for the state in which a receptor
is present in the patch but no particle is within binding
range, q¢ is the Boltzmann weight for having a particle
within binding range in the absence of a receptor, and
q¢ eUit¥)/T is the Boltzmann weight for a receptor bound
to an adhesive particle. The prefactor ¢ depends on the
degrees of freedom of bound particles. In our model, we
obtain g =r/d, see previous section.

At large separations, the Langmuir adsorption free
energy of two membranes simply is the sum of the adsorp-
tion energies above. At the optimum binding separation,
however, the Langmuir adsorption energy of two appos-
ing membrane patches is (T'/d?)In[(1 + e*/T) (1 + e*2/T) +
g (14 eUrtv)/Ty (1 4 e(U2F12)/TY) - Ag before, the effec-
tive particle-mediated adhesion energy of the membranes
is the difference between the Langmuir adsorption energies
at large separation and the optimum binding separation.
In the symmetric case with binding energies U = Uy = U,

and chemical potentials v = 11 = 15, we obtain

T1 1+¢(1—a—|—an/T)2 r/d
n
d? (1+¢(1—a+ael/T) 7"/d)2

(16)

with a=e"/T/(14+e*/T). The effective adhesion
energy (16) can be obtained directly from eq. (1)
by replacing the Boltzmann factor eV/T with the term
1—a+ae’T. For a=1 where each membrane patch
contains a receptor, eqgs. (1) and (16) become identical.
The effective adhesion energy (16) is maximal at the bulk
volume fraction ¢* ~ (d/r)/(1 — a+ aeV/T).

Discussion and outlook. — We have determined the
effective interactions between two surfaces in contact with
adhesive particles. Our results apply to a wide range of
surfaces, which may be soft or rigid, and planar or non-
planar. For non-planar surfaces, the local surface separa-
tion ¢ varies, and the total particle-mediated interaction
energy is obtained by integration over the separation-
dependent local interaction V' (£) defined in (6). The overall
interaction potential of the surfaces is a superposition of
the particle-mediated interactions with direct interactions,
such as van der Waals, electrostatic and hydration forces.
For large particle diameters d, the particle-mediated inter-
actions should dominate since the particle-bound surfaces
have a separation close to d 4+ r, where r is the range of the
attractive surface-particle interaction. The interactions
induced by the particles then can be measured directly,
e.g. via the surface-force apparatus [7], or inferred from
the phase behavior of colloidal systems [5,6].

The effective adhesion energy (1) has been obtained
from two different models: i) from a 3-dimensional lattice
gas model; and ii) from a more elaborate tube model for
hard spheres. In both cases, we discretized the space in
order to incorporate the hard-core interaction between
the particles in an analytically tractable manner. In the
lattice gas, we discretized all three coordinates of the
particles. In the tube model, the coordinate perpendicular
to the two surfaces was taken to be continuous. As far
as relation (1) is concerned, the only difference between
the lattice gas model and the tube model is that they
give somewhat different expressions for the dimensionless
coefficient ¢. Thus, it is rather plausible that the effective
attractive interaction (1) also applies to hard spheres with
three continuous spatial coordinates. This proposition can
be checked by Monte Carlo or Molecular Dynamics simu-
lations, which have been previously used to study hard
spheres confined between nonadhesive surfaces [20-24].

We have neglected that flexible surfaces such as lipid
membranes can wrap around adhesive particles [25-28].
A partial wrapping leads to effective, surface-mediated
interactions between the adsorbed particles [29-31], and
to cooperativity effects in adsorption [32]. We have also
assumed that the receptors considered in the last section
are rigid molecules and not flexible tethers [33-35],
which seems to be a good assumption for most biological
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receptors. In addition, we have neglected direct, long-
ranged interactions of the adhesive particles, e.g.
electrostatic repulsion of charged particles. At small bulk
concentrations of the particles, repulsive interactions
will mainly affect the packing density of the adsorbed
particles and, thus, the concentration of available binding
sites. For charged solutes, such as multivalent ions [8] or
charged proteins [36] adhering to lipid membranes, the
average particle separation at maximum surface coverage
is affected by the salt-dependent screening length of the
solutes at the surfaces.

Thermal shape fluctuations of lipid membranes lead to
an unbinding transition if the fluctuation-induced repul-
sion exceeds the effective adhesion energy Ugs. The charac-
ter of the transition depends on the barrier in the effective
adhesion potential. According to scaling arguments [37],
the unbinding transition of the membranes is discontinu-
ous for strong barriers with Upal2, > ¢T?/k, where c is a
dimensionless coefficient of order 0.01 [38], and continuous
for weak potential barriers. The thickness of the barrier
here is Iy, =~ d, see fig. 3, and k is the bending rigidity
of the lipid membranes. At the optimum bulk volume
fraction ¢* ~e~YU/T d/r, the effective barrier strength is
Upad? = 0.3T and thus clearly beyond the threshold for
discontinuous unbinding, since the bending rigidity of
lipid membranes typically is between 10 and 20 T'.

In this letter, we have considered equilibrium aspects
of adhesion. The unbinding dynamics of surfaces with
multiple receptor-ligand bonds under a pulling force has
been studied in [39-41]. If receptors in apposing surfaces
are connected via adhesive solutes, each bond between
the surfaces consists of two molecular bonds in series.
Such serial bonds can break at either of their bonds, and
therefore have been found to break earlier than single
receptor-ligand bonds under an applied force [9,10].
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