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Figure S1: Box size dependence of tension fluc-

tuations

Figure S1: In the NVT ensemble, the bilayer tension fluctuates around its
average value. The standard deviation of the tension values plotted as a
function of the linear size L‖ of the simulation box. The magnitude of the
fluctuations decreases strongly with increasing system size up to L‖ ' 30r0,
and then seems to approach a constant value.
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Figure S2: Self-assembly of vesicle

Figure S2: Simulation snapshots from the self-assembly of a bilayer vesicle
from a random initial configuration of ∼ 1500 lipids with H3(C4)2 architec-
ture and interaction parameters as given in Table 1b in a box with sidelength
32 r0. The corresponding number of simulation timesteps ∆t is shown under
each snapshot. As further simulations are started from pre-assembled states
it is important to ensure that the model lipids form stable bilayers.
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Figure S3: Bead density profile across bilayer

membrane

Figure S3: The bead density profile ρ r3
0 of a tensionless bilayer as a function

of the Cartesian coordinate z. The bilayer midplane is located at z = 0. The
water density (solid line) drops to zero in the bilayer center and the head
beads (red/dashed peaks) accumulate at the interface between hydrophobic
tails (green/dotted) and the water.
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Figure S4: Lateral stress profiles of tensionless

bilayer

Figure S4: Stress profiles s(z) of an approximately tensionless bilayer as a
function of the Cartesian coordinate z. The bilayer midplane is located at
z = 0. (a) The total stress profile and (b) The individual contributions to
the total stress. Solid line/red: head-water interactions, dash-dotted/green:
tail-water interactions, dotted/black: bond forces and dashed/grey: bond-
pair forces. In (a), the positive peaks to the sides arise from head and tail
bead interactions with the solvent, while the bond potentials dominate the
negative contributions in the bilayer centre.
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Figure S5: Parameter dependence of the mem-

brane’s stretching behavior

Figure S5: (a) The effect of individual parameter changes on the stretching
behavior. Each plot shows the bilayer tension Σ̄ versus area per molecule Ā
under variation of the aij parameter specified in the inset. The values of all
other parameters are the same as in the old parameter set, which is shown
(b). The graph corresponding to this parameter set are drawn in red in each
plot. The last frame shows the effects of variation of the aHC parameter in
the new parameter set given in (c). Changing this parameter barely affects
the stretching behavior. Note that these graphs are recorded for short lipids
with 3 beads per chain, for which the bilayer structure is not stable at low
values of Ā. This is the reason, why there is no state with zero tension in
many cases.
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Data S1 - DPD Simulation Method

Dissipative particle dynamics (DPD) is a coarse grained, particle-based sim-
ulation technique. This appendix summarizes the main features of the sim-
ulation method, followed by a more detailed description of the simulation
setup.

The system in our DPD model is build up from N spherical simulation
particles or ’beads’ labeled i = 0, . . . , N − 1. These represent small fluid
volumes and thus contain several atoms and interact via soft potentials. A
bead’s position ri and velocity vi are defined for its center of mass, and its
size is determined by the cutoff radius of the interactions. Two beads i and j
experience three types of forces: (i) a conservative force FC

ij , which represents
a coarsegrained description of the intermolecular interaction between the
atoms or molecules contained in the beads; (ii) a random force FR

ij , which
represents thermal noise; and (iii) a dissipative force FD

ij , which must be
added in order to ensure the fluctuation-dissipation relation in equilibrium (?
). The force on a pair of beads i and j, with separation rij ≡| rj−ri | resulting
from the conservative interaction is given by

FC
ij = aij(1− rij/r0)r̂ij for rij ≤ r0. (1)

It is characterized by two parameters: (i) the force amplitude aij > 0, which
depends on the species of the two beads, and (ii) the range r0, which is taken
to be independent of the bead pair. All equilibrium properties of the system
are determined by the properties of FC .

The dissipative force is linearly related to the relative velocity vij = vj−vi

and takes the form

FD
ij = −γij(1− rij/r0)2(r̂ij · vij)r̂ij (2)

with friction coefficient γij. Finally, the random force FR
ij is given by

FR
ij =

√
2γijkBT (1− rij/r0)ζijr̂ij (3)

with thermal energy kBT and random variable ζij. These random variables
are distributed uniformly with 〈ζij(t)〉 = 0 and 〈ζij(t)ζi′j′(t

′)〉 = (δii′δjj′ +
δij′δji′)δ(t− t′) and symmetrically, so that ζij(t) = ζji(t).

All three force contributions act along the vector connecting the beads’
centres, r̂ij, and vanish outside the cutoff radius r0. They obey the symmetry
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Fij = −Fji, i.e. their effect on the two beads i and j is equal and opposite,
ensuring local momentum conservation in the system and producing the cor-
rect hydrodynamic behavior. The total force acting on a bead is given by
the sum over the contributions from all beads within the range r0 and the
system is updated according to the original integration scheme as introduced
by Hoogebrugge and Koelman (? ) and developed by Groot and Warren (?
).

Larger molecules are build up from several beads connected with har-
monic potentials of the form U2 = (1/2)k2(ri,i+1−l0)2, which are parametrized
by the spring constant k2 and the unstretched length l0. In addition, molecules
such as the hydrocarbon chains can be stiffened by means of a three-body
potential U3 = k3 [1− cos(ψ − ψ0)] between three consecutive beads along
the chain, where k3 is the bending constant and ψ and ψ0 are the tilt angle
defined by the scalar product of the two bonds and the preferred value of
that angle, respectively.

Data S2 - Stress Tensor calculation

To obtain the membrane tension in a simulation the components of a mi-
croscopic stress tensor σαβ at position R ≡ (X, Y, Z) are calculated, and
averaged over time. The interaction potential is devided into m-body inter-
action clusters with m-body interaction Potential U (m). The contribution

to the microscopic stress tensor from m-body interactions,
[
σαβ
](m)

(Z), is
given by (? )

[
σαβ
](m)

(Z) = − 1

m

1

L2
‖

∑
〈j〉

∑
〈k,l〉

(∇α
jk
U (m) −∇α

jl
U (m))

×
∫

Cjkjl

d`βkl δ(Z − `
z
kl) (4)

Here L‖ is the lateral size of the membrane, 〈j〉 denotes summation over
all m-clusters and 〈k, l〉 the sum over all possible pairs of particles within a
given m-cluster and the integral is over a straight-line contour `kl connecting
particles l and k.

In the method introduced by Goetz and Lipowsky, to obtain the stress
profile in simulations, the simulation box is subdivided into thin slices and the
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components are calculated for each one by multiplying the above expression
with two Heaviside step functions.

Instead of this subdivision, the components of the stress tensor can be
directly integrated over the Z coordinate of the simulation box. The contour
`kl is parametrized by λ as `kl = rjk +λ(rjl−rjk) ≡ rjk +λrjkjl with 0 ≤ λ ≤ 1,
so that it starts from particle jk with position rjk for λ=0 and ends at jl with
position rjl for λ=1. Changing variables from `β to λ in equation 4 produces

an additional factor rβjkjl
in the integral now given by

[
σαβ
](m)

(Z) = − 1

m

1

L2
‖

∑
〈j〉

∑
〈k,l〉

(∇α
jk
U (m) −∇α

jl
U (m))

×
∫ 1

0

dν rβjkjl
δ(Z − rzjk − λrzjkjl

) (5)

Integration over the Z coordinate yields the z-integrated components of the
stress tensor for the m-body interactions, Iαβm :

Iαβm ≡
∫ L⊥

0

dZ
[
σ̄αβ
](m)

(Z) (6)

= − 1

L2
‖

1

m

∑
〈j〉

∑
〈k,l〉

[∇α
jk
U (m) −∇α

jl
U (m)](rβjl − r

β
jk

)

Data S3 - Simulated Systems

The Simulations described here use different starting structures. Overall,
four types of simulations were performed. All of them are done in the NVT
ensemble with a density ρ = 3 beads/unit volume.

(i) a random mixture of lipids and solvent to test whether the lipids
self-assemble to a bilayer structure. This initial state starts from a random
distribution of the beads in a 32 r3

0 simulation box, subject only to the con-
straint that adjacent beads of an amphiphile cannot be separated by more
than a bead diameter to avoid artificially large forces.

(ii) Simulations characterizing the membrane properties and their param-
eter dependence start from a pre-assembled planar bilayer. The bilayer patch
is assembled to have a specific area per lipid A. As the box cross section is
fixed, A determines the number of lipids in the system. Most of these simu-
lations run in a cubic box with sides of 32 r0, but test in a larger box with
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area (72 r0)2 as used in the fusion simulations show that the results hold also
for these bilayers.

(iii) For fusion simulations a vesicle is assembled in close proximity to
a planar bilayer patch. Similar to the planar bilayer, the vesicles are as-
sembled with a prescribed area per molecule. The lipids are distributed on
two spherical shells defined by the outer radius of the vesicle and the bilayer
thickness, which yields the radius of the inner surface. To obtain the target

area per molecule (A)ve on both surfaces, Nex = 4πR2
ex

(A)ve
and Nin =

4πR2
in

(A)ve
lipids

are distributed on the outer and inner monolayer respectively. These are ar-
ranged as equally spaced as possible on the spheres, with their head groups
placed on the spherical shells defining the surfaces and their tails pointing
radially in and out, respectively, towards the bilayer midplane. In these sim-
ulations, fusion is induced by applying a lateral tension to the planar bilayer.
This is achieved by increasing the A which is directly related to the bilayer
tension. Most fusion simulations have been done for two different vesicle
diameters, 20 r0 and 40 r0, corresponding to approximately 14 and 28 nm,
respectively. The simulation box for these vesicle sizes had a box area of
(72 r0)2, i.e. ∼ (50 nm)2, and heights of 52 r0 and 72 r0 for the 20 r0 and the
40 r0 vesicle, respectively. Additional simulations of a vesicle with diameter
20 r0 in a smaller box of side length 36 r0 were performed to further explore
the dependence of the results on the vesicle size.

(iv) Finally, we use two adhering bilayers are assembled in contact with
each other to measure the work required to flipflop lipid tails between the
bilayers in the force spectroscopy simulations. To measure the energy bar-
rier for this process, a single lipid from the lower bilayer is selected and a
slowly moving, external harmonic potential is applied to one of its tail beads.
The potential starts out centered on the instantaneous z-coordinate of the
selected tail bead, which is chosen as the origin of the bead’s position co-
ordinate, zbead = 0. The potential moves slowly upwards at constant speed
0.0004r0/∆t or 0.009 nm/ns, until the tail has flipped into the other bilayer
and the lipid has assumed an extended or splayed conformation. During this
process, the harmonic force and the beads position zbead = 0 are recorded.
Once the bead has overcome the energy barrier, the harmonic force becomes
negative. To obtain the work expended to flip the lipid, the force is integrated
over zbead up to the point where it becomes negative.
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Data S4 - Geometry of Tense Membranes

Fluid bilayer membranes typically can have a large variety of different shapes,
which are determined by the bending elasticity and spontaneous curvature
under the constraints of constant membrane area and constant volume adapted
to the osmotic conditions. This makes vesicle equilibrium configurations, in
general, fundamentally different from those of liquid interfaces, as they are
not governed by interfacial tension.

In tense membranes, on the other hand, the effects of membrane tension
become relevant. The shape of an adhering vesicle with volume Vve and
surface area Ame with corresponding membrane tension Σme, is determined
by the free energy functional

F̃ve = Vve∆P + AmeΣme + F̃be + F̃ad. (7)

The last two terms represent the bending energy F̃be and the adhesion energy
F̃ad (? ).

Minimization gives a transversality condition for the contact principle
curvature Cco = (2|W |/κ)1/2 (? ). If the radius of this contact curvature,
Rco = (κ/2|W |)1/2, is small compared to the linear size, i.e. the radius, of the
spherical vesicle, (κ/2|W |)� Rve , the bending energy contribution becomes
negligible and membrane shapes are dominated by the tension. This is the
case either for large adhesion strength |W | compared to the bending energy κ,
or for large vesicles. In that case, vesicles have shapes approaching spheres or
spherical segments, comparable to those of liquid interfaces of droplets. An
effective contact angle θeff can be defined and the membranes obey effective
Young and Laplace equations (? ).

However there are important differences to the shape of a droplet. The
droplet’s volume is constant and its surface area can change. The membrane
area of a vesicle on the other hand, is fixed. Furthermore, the contact angle
of a droplet is fixed by the surface tensions, which depends only on mate-
rial properties, whereas for a vesicle the membrane tension depends on the
geometry, so that the angle can change.

Since the simulated membranes are more stretchable and their area can
be increased by about 20 % before they rupture the membrane shapes are
tension dominated despite their small size. In the simulation snapshots, the
DPD membranes assume shapes, which can be approximated as spherical
caps. In our fusion setup, the geometry consist of a planar membrane in con-
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tact with an originally spherical vesicle. Some simulations result in adhesion
or hemifusion between the vesicle and planar bilayer patch in mechanical
equilibrium. The geometry of both states consist of three membrane seg-
ments, two spherical cap regions for the vesicle and the contact or hemifused
area, and a segment of planar membrane (Fig. S6).

In the case of mechanically stable adhesion, the forces on the contact
line arising from the adhesion energy |W | and the membrane tensions must
be balanced. Assuming the membrane tensions Σpl and Σve are uniform
throughout the bilayer patch and the vesicle membrane, this force balance is
given by the Neumann equations

(Σpl + Σve − |W |) cos(θ1) + Σve cos(θ2)− Σpl = 0

(Σpl + Σve − |W |) sin(θ1)− Σve sin(θ2) = 0
(8)

A further constraint arises because the time scales of the simulation the
membranes are water impermeable, so that the interior volume of the vesicles
is constant. These conditions define the equilibrium shape of the membranes,
if the material properties Σpl, Σve and |W | are known. However, at least |W |
is unknown initially.

In the simulations, the initial molecular areas, Ā and (Ā)ve, are prescribed.
The number of molecules in the bilayer patch and vesicle, Npl and Nve, are
constant and thus, from the geometry of the system, the molecular areas in
the final state are known. As the relation between membrane tension and
molecular area is explicitly measured for planar bilayers, Σpl can be deduced
and the force balance equations can be solved for |W | and Σve in terms of
Σpl.

Therefore, to analyse the simulation results, circular arcs are fitted to the
simulation snapshots, as in Figure S6. These fits give values for both |W |
and the tension-free area per molecule in the vesicle, Āve, which might differ
from that of a planar bilayer, because of the relatively strong curvature.

The results for |W | can then be used with the equations 8, and the volume
constraint to predict the deformation of an adhering vesicle and the size of
the adhesion area for different tensions.

The estimates represents a lower limit of |W | and the tension-free Āve, as
other contributions, such as bending energies, also contribute to reduce the
deformation.
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Figure S6: The membrane configurations of mechanically stable adhesion
(left) and hemifusion (right), between the vesicle and planar bilayer patch.
The geometry of both states consist of three membrane segments, two spher-
ical cap regions for the vesicle and the contact or hemifused area, and a
segment of planar membrane. The figure illustrates the spherical fits to the
vesicle membrane (blue) and originally planar membrane (red), and the ef-
fective contact angles θ1 and θ2 that these make with the bilayer plane. In
practice, for stable adhesion only the planar membrane shape is used, to
obtain the adhesion strength |W | and the tension free Āve. These values are
then used together with the constraint of constant vesicle volume to predict
the vesicle shape for given initial molecular areas of the planar bilayer and
vesicle membranes. To describe the partially hemifused configuration (B),
in addition the extension of the hemifused diaphragm aHF, (green) has to be
measured. From the fully hemifused conformation (A), one can estimate line
energy Λ of the membrane junction.

For a hemifused vesicle, on the other hand, the number of molecules in
the aggregates is not fixed, as the bilayers merge in the hemifused patch.
Only the total number of lipids in the system, Ntotal and the vesicle volume
remain constant. Since the individual values of Ā are not accessible it can
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be instructive to calculate the net tension Σnet ≡ KA/A0(Atotal/Ntotal − Ā0)
from the total area Atotal of all monolayers to see if the bilayers in the system
are tension-free.

There are two possible geometries, illustrated in Figure S6, that a vesicle
hemifused to a planar bilayer patch can assume: the hemifused region can
span the entire contact area or the hemifused diaphragm has formed within
a region where the two membranes adhere. Since in the first case there is
no area of adhesion the adhesion energy |W | is no longer involved. In the
second case, the adhesive strength and the tension in the hemifused patch
have to be balanced.

On long time scales, cross monolayer exchange of lipids across small pores
enables equilibration of the monolayers. Therefore, in an equilibrated system
the tensions in all membrane segments should have the same magnitude Σ,
so that the force balance at the three-membrane contact line reduces to

Σ
(
cos(θ1) + cos(θ2)− 1

)
= 0 (9)

As a consequence, either Σ = 0 due to the area gained from hemifusion
or θ1 = θ2 = θHF = 60◦. In the latter case, different values of θ would suggest
the influence of a line tension Λ of the three-membrane line and allow to infer
its value by setting the above force balance (10) equal to 2

a
Λ:

Σ
(
cos(θ1) + cos(θ2)− 1

)
=

2

a
Λ (10)
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Figure S7: Work distributions for enforced in-

terbilayer flips of lipid molecules

Figure S7: Histograms showing the work distribution used for the Jarzinsky
relation for the molecular areas Ā = 1.25, Ā = 1.3, Ā = 1.35, Ā = 1.4,
Ā = 1.45 and Ā = 1.5. From the shape of these distributions, their exact
nature is difficult to determine. However, the very slow pulling rates leads
to the expectation that they are gaussian distributions, and the fact that
cumulants of orders greater than two are negligibly small seem to confirm
this expectation.
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Figure S8: Vesicle size dependence of average

fusion time

Figure S8: The average fusion times 〈tfu〉a as functions of the area per
molecule Ā for three different systems: (i) a vesicle with a diameter of 28
nm in a box with side length L‖ = 50 nm (diamonds), (ii) a vesicle with a
diameter of 14 nm in a box with side length L‖ = 50 nm (crosses) and (iii) a
vesicle with a diameter of 14 nm in a box with side length L‖ = 25 nm (open
diamonds). Note that the radius of the vesicle, Rve = 14 nm is the same in
systems (ii) and (iii) , whereas the ratio Rve/L‖ is the same for (i) and (iii).
The data shows that the fusion times of the two systems with the same ratio
Rve/L‖ between the vesicle radius and the linear size of the bilayer are much
more similar than for those which with the same vesicle radius.


