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Abstract – Many real-world networks exhibit scale-free degree distributions together with
dissortative degree correlations. Such networks exhibit interesting structural and dynamical
features, especially in the limit of maximal correlations. In the latter case, the network vertices
are shown to form nested bilayers, the number of which grows with network size N but saturates
for large N . This bilayer structure strongly affects the properties of dynamical processes on such
networks and implies a large number of attractors that govern the long-time behavior of these
processes. Surprisingly, the most complex dynamical behavior is found for intermediate rather
than for large network sizes.

Copyright c© EPLA, 2010

Introduction. – During the last decade, many
complex systems have been described as networks of
interacting units that evolve with time [1,2]. Biological
examples include transcriptional gene networks [3], cell-
cycle regulation [4], neural networks [5], and the immune
system [6]. The long-time behavior of these dynamical
processes is governed by their so-called attractors. In this
article, we study the attractors for generic processes on
networks that exhibit two widespread structural features.
First, many networks have been found to have a scale-free
degree distribution, i.e., the probability that a randomly
chosen vertex has k neighbors or degree k behaves
as P (k)∼ k−γ [7,8]. Second, especially biological and
technological networks often exhibit so-called dissortative
mixing [9,10], i.e., the tendency that high-degree vertices
are preferably connected to low-degree vertices.
It turns out, however, that the possible correlation

profiles of scale-free networks are restricted by the degree
distribution of these networks. In this article, we introduce
and study maximally dissortative networks, which exhibit
particularly interesting structural and dynamical proper-
ties. We first show that their vertices form nested bilay-
ers, the number of which grows with network size N but
saturates for large N . We then study generic dynamical
processes on these networks and find that these processes
are strongly affected by the networks’ bilayer structure.
Indeed, the different vertex bilayers can be dynamically
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decoupled giving rise to complex dynamical behavior with
a large number of attractors.
Dynamical systems can often be described by two-state

systems. Biological examples are provided by firing and
nonfiring neurons in neural networks or the regulation
of genetic networks with patterns of active and inac-
tive genes. Of particular interest are the properties of
the dynamical attractors, since they correspond to rele-
vant states of the underlying systems. For the identifica-
tion and understanding of generic features, it is advan-
tageous to study relatively simple processes. One of the
simplest dynamical processes is provided by majority rule
dynamics. The local updating rule corresponds to Glauber
dynamics at zero temperature in Ising-spin systems [11]
and has been studied in various contexts for different
network topologies, see, e.g., [3–6,11–18]. For scale-free
networks without degree-degree correlations, majority rule
dynamics was found to be governed by only two stable
fixed points [15,16].
In this article, we study majority rule dynamics on

dissortative scale-free networks and focus on the case
of maximal dissortativity. We show that these latter
networks are characterized by a huge number of attrac-
tors in contrast to the uncorrelated case. Using exten-
sive numerical computations, we estimate the number of
attractors NA as a function of network size N . We derive
an upper bound on NA that attains a constant value for
large N . In addition, we find that the total number of
attractors attains a maximum at intermediate values of N .
This nonmonotonic behavior in the overall dynamical
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Fig. 1: Structural properties: (a) average nearest-neighbor degree Knn as a function of degree k for different N with γ = 2.5,
k0 = 4, averaged over 100 networks; (b), (c) adjacency matrices A for two networks with N = 256 and N = 1024 vertices, both
for γ = 2.9 and k0 = 6. The vertices are ordered according to their degree k with k0 <k1 <k2 < · · ·<kmax. The bars at the left
and upper boundary have a length proportional to the number of vertices with the indicated degree. Each red dot represents a
nonzero matrix element Aij = 1. Because of Aji =Aij , the diagrams are symmetric with respect to the dashed diagonal and to
the central kce-cluster with kce = k4 and kce = k5 in (b) and (c). As explained in the text, the rectangular nondiagonal clusters
correspond to bilayers, in which vertices of the low degree kn are connected to vertices with high degrees κn <k < κn− 1.

complexity is robust and does not depend on the struc-
tural details of the networks as described at the end of
this letter.

Network structure. – The networks considered here
have the scale-free degree distribution

P (k) =
1

Ak
−γ for k0 � k� kmax, (1)

with the normalization constant A≡∑k k−γ . The
structural parameters of these networks are the size N ,
the exponent γ of the degree distribution, and the
lower cut-off k0. In our simulations, we explore the
range 2< γ < 3, which is the range of most real-world
networks [7,8]. We will explicitly describe our results for
undirected, simple networks without multiple edges and
self-connections and with the so-called natural cut-off
kmax =min(N − 1, k0N

1

γ−1 ) [19]. Several extensions will
also be discussed.
The most widely used measures for dissortative correla-

tions in networks are i) the Pearson correlation coefficient
r for the degrees of the vertices at the two ends of an
edge [9,10], ii) the conditional probability P (k|k′) that an
edge emerging from a vertex with degree k′ points to a
vertex with degree k [20], and iii) the average degree of
the nearest neighbors of a randomly picked vertex with
degree k as defined by Knn(k)≡

∑

kkP (k|k′) [21].
The networks are constructed in two steps, starting with

the well-known configuration model [22]: first, the degrees
k1, k2, . . . , kN are drawn from the distribution P (k) in (1)
and attached to the vertices as half-edges or “stubs”.
Then, randomly chosen pairs of such stubs are combined
into full edges. The construction of simple networks
without multiple edges and self-connections requires an
additional intermediate check: if a randomly chosen pair
of stubs leads to multiple edges or self-connections, this
pair is simply discarded and a new one is drawn until all
stubs are connected.

In a second step, dissortative correlations are incorpo-
rated into this network by applying a rewiring scheme as
described in [23]. In each iteration of this algorithm, two
edges that connect four different vertices are chosen at
random. These edges are broken up again into half edges
and rewired, in such a way that the two vertices with the
highest and the lowest degrees are connected. For simple
networks, we again discard forbidden connections. The
procedure does not change the degree distribution and
ultimately leads to a maximally dissortative network, for
which r attains its minimal negative value and the average
nearest-neighbor degree Knn strongly decreases with k,
see fig. 1(a).
Further analysis shows that the structure of small

networks is dominated by the highly connected hubs. For

simple networks with N <N1 ≡ k(γ−1)/(γ−2)0 , the vertex
with maximal degree kmax =N − 1 is connected to all
other vertices in the network. This property leads to the
small increase of Knn(k) close to k= kmax, see fig. 1(a)
for N =N1 = 2

6 and N = 27. For network size N >N1,
the hubs do no longer span the entire networks, but are
still connected to several layers of low-degree vertices with
k0 � k� kA and

kA ≡ k0
[

1−
(

1− 1
N

)

k0N
2−γ

γ−1

]
1

1−γ

, (2)

which behaves as kA ≈ k0 for large N .
In addition to these subgraphs connected by the hubs,

the vertices of dissortative scale-free networks are found to
form nested bilayers, the number of which grows with N .
This property can be directly visualized by the adjacency
matrix A, which has N ×N entries Aij with Aij = 1 if the
vertices i and j are connected and Aij = 0, otherwise.
When the vertices are ordered according to their degree,

the nonzero entries Aij = 1 form a “necklace” of clusters
that correspond to groups of vertices with the same

18002-p2



Dynamical processes on dissortative scale-free networks

degree, see fig. 1(b) and (c). Because the adjacency matrix
is symmetric with Aji =Aij , the “necklace” contains a
central cluster with degree kce. The remaining rectangular
clusters correspond to bilayers, in which vertices of low
degree k < kce on one side are connected to vertices with
high degree k > kce on the other side. In each bilayer,
all low-degree vertices have the same degree k, while the
high-degree vertices cover a whole range of k-values. We
denote the two boundary values of this range by κn and
κn−1, such that a bilayer consists of vertices with low-
degree kn and vertices with high-degrees κn <k < κn−1.
Furhermore, we define κ−1 ≡ kmax, so that the outermost
bilayer consists of the k0-vertices that are connected to the
high-degree vertices with κ0 < k < kmax. The next bilayer
consists of all vertices with degree k1 and all vertices
with κ1 < k < κ0 and so forth. Note that κn−1 >κn, since
the enumeration starts from the outermost bilayer. The
kn-cluster then contains all edges between the low-degree
kn-vertices and the high-degree κn-band corresponding to
a rectangular region in fig. 1(b) and (c). The kn-cluster
of edges together with the kn-vertices and the vertices of
the κn-band form a bipartite subgraph of the network.
Further inspection of fig. 1(b) and (c) also shows that the
number of edges that i) emanate from the kn-vertices or
from the κn-band and ii) do not belong to the kn-cluster
is relatively small. In this way, the kn-vertices and the
κn-band form a bilayer in k-space with many interior and
relatively few exterior connections.
The values of the boundary degrees κn can be obtained

iteratively from a bipartite approximation, in which we
ignore the exterior connections between the bilayers. Thus,
assume that all edges emanating from the k0-vertices
provide connections to the κ0-band with κ0 � k� kmax
and vice versa. This assumption leads to the implicit equa-
tion P (k0) k0 =

∑kmax
k=κ0

P (k) k for κ0. Likewise, the value

of κ1 then follows from P (k1) k1 =
∑κ0
k=κ1

P (k) k, etc.
Using the degree distribution P (k) as in (1) and approx-

imating the sums by integrals, the boundary degrees κn
can be calculated explicitly. The boundary degree κ0, e.g.,
is found to behave as

κ0 ≈ κ∞0 ≡ k(γ−1)/(γ−2)0 (γ− 2)1/(2−γ) (3)

for large N . The N -independent value of κ∞0 agrees very
well with the numerical results in fig. 1(a).
The bipartite approximation just described ignores the

exterior connections between the bilayers. In general, these
latter connections play an important role as well since they
ensure that the networks are fully connected and cannot
be decomposed into disjoint subgraphs.
For large N , the central degree kce can be estimated

by the boundary degree κce as obtained from the implicit
equation

∫ κce

k0

dk P (k) k=

∫ kmax

κce

dk P (k) k, (4)

{σ
i
}

00 022 244 466 6
t t t

fixed pointcycles

kmax

k0

k1

k2

...

Fig. 2: Evolution of three spin patterns {σi} with time t on a
small network with N = 64, γ = 2.9 and k0 = 6. Each column
contains all the vertices of the network, The vertices are ordered
according to their degree, starting from the k0-vertices at the
top to the kmax-vertex at the bottom, see bar on the right.
Spin-up and spin-down states are shown in red and blue,
respectively.

which represents the condition that the vertices with
degrees k < κce are connected to the same number of edges
as the vertices with degrees k > κce.
Using the scale-free degree distribution (1) in (4), the

central degree kce is found to behave as

kce ≈ κce = 2
1

γ−2 k0(1+N
2−γ

γ−1 )
1

2−γ � 2
1

γ−2 k0 (5)

for large N . Therefore, the number Nbi of bilayers behaves
as

Nbi = kce− k0 ≈ (2
1

γ−2 − 1)k0 for large N. (6)

This number diverges as γ approaches two from above.

Majority rule dynamics. – Now, we place binary
variables or spins σi =±1 on each vertex i. The pattern
{σi(t)} of all spins is taken to evolve according to the
majority rule

σi(t+1) = sgn

⎡

⎣

N
∑

j=1

Aijσj(t)

⎤

⎦ ; (7)

in the special case
∑N
j=1Aijσj(t) = 0, we choose

σi(t+1) =±1 with equal probability. All σi are updated
simultaneously. For uncorrelated scale-free networks,
the majority rule dynamics exhibits only two attractors
corresponding to patterns with all spins pointing either
up or down [15,16]. When we rewire these networks to
obtain dissortative mixing, we find a completely different
behavior. Figure 2 illustrates the time evolution of three
random initial patterns on a small, maximally dissortative
network. First, we observe that the three initial patterns
do not evolve towards one of the two completely ordered
states, but that additional attractors emerge, in our
example two cycles and one fixed point. Indeed, we find
that attractors consist, in general, of two alternating
patterns denoted by {Σ} and {Σ∗}. A global fixed point
represents a special case with {Σ∗}= {Σ}.
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Fig. 3: Visualization of attractors as obtained from nini = 1000
initial patterns for two networks with γ = 2.9, k0 = 6 and
different sizes (a) N = 210 and (b) N = 216. All attractors
consist of two alternating spin patterns {Σ} and {Σ∗}, which
are shown in panels (i) and (ii). Each column represents the
states of all N vertices, which are ordered by degree as in fig. 2.
The x-axis corresponds to different initial configurations. For
clarity, the different attractors are ordered by their Hamming-
distance to the all-spin-up pattern. Panels (iii) combine the
two attractor states in (i) and (ii): vertices within bilayer fixed
points and bilayer blinkers are shown in light grey and black,
respectively.

Second, all attractors can be characterized by the
behavior of the bilayers as introduced above. Indeed, all
kn-vertices attain the same spin value as do all vertices
within the κn-band. The corresponding subset of spins will
be denoted by {Σ}n. For each bilayer, the kn-vertices can
exhibit two types of dynamical behavior: i) the spins of all
kn-vertices remain unchanged with {Σ∗}n = {Σ}n, which
implies a bilayer fixed point, for which the spins of the
κn-band have the same value as those of the kn-vertices;
and ii) the spin pattern of the kn-vertices alternates at
every time step with {Σ∗}n =−{Σ}n corresponding to a
blinking bilayer, for which the spins of the κn-band have
opposite values to those of the kn-vertices.

Dependence of attractor number on network

size. – In order to determine the total number of attrac-
tors, we have performed extensive computer simulations
starting from a large number of different initial patterns.
It is hardly possible to explore all 2N initial patterns, even
for moderate N . In our simulations, we therefore restrict
ourselves to strongly disordered initial configurations, for
which i) 〈σ(t= 0)〉= 0 and ii) a randomly chosen neigh-
bor of any vertex in the network is in the spin-up or
-down state with equal probability. For each network with
a given set of parameters (N, γ, k0), we simulate nini =
2000 initial states and average the resulting number of
different attractors over an ensemble of 100 networks with
identical parameters. Figure 3 illustrates the attractors
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Fig. 4: (a) Number of attractors NA as a function of network
sizeN . (b) Probability Ps that neighboring layers of k and k+1
vertices are in the same state as a function N . (c) Probability
Pf that any k-layer with k0 � k� kce belongs to a bilayer fixed
point as a function of N . All data were obtained from 2000
simulated random initial configurations and are averaged over
100 networks with the same values for N , γ and k0 = 6. Error
bars correspond to the standard deviation.

obtained for nini = 1000 random initial configurations on
two networks that differ only in their size. Each bilayer can
attain a bilayer fixed point or a bilayer blinker, but differ-
ent bilayers can act independently from each other. The
kce-vertices of the central cluster always attain the same,
fixed spin value. Although the absolute network sizes in
fig. 3(a) and (b) differ by a factor of 64, the number of
bilayers is the same for both network sizes, and we there-
fore observe very similar overall attractor states.
If we again ignored the exterior connections between the

bilayers, each possible attractor would consist of a central
cluster, for which all spins point either up or down, and
Nbi bilayer fixed points or bilayer blinkers. The maximal
number of such attractors is given by

max(NA) = 4Nbi +2Nbi � 4ζk0 +2ζk0 (8)

with ζ ≡ (2 1

γ−2 − 1) as follows from (6). We would there-
fore expect that the number NA of attractors first grows
with network size N and then saturates for sufficiently
large N .
Surprisingly, the N -dependence of NA is more compli-

cated: As shown in fig. 4(a), the attractor number NA is
a nonmonotonic function of N with a maximum at inter-
mediate N -values. For (N, γ, k0)-values for which NA is
comparatively large, its precise value cannot be deter-
mined via numerical simulations, since an increase in
the number of initial configurations will also increase
the number of observed attractors. To ensure that the
observed maximum is not an artifact arising from compu-
tational limitations, we carefully examined the scaling
of NA as a function of the number of initial configura-
tions nini. Figure 5(a) shows the number of attractors
as a function of nini for three particular networks with
γ = 2.9, k0 = 6 and different sizes N = 2

7, N = 210 and
N = 216. In total, 215 initial configurations were simu-
lated for each network and for nini = 2

1, 22, 23, . . . , 215 the
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Fig. 5: (a) Number of attractorsNA as a function of the number
nini of simulated initial configurations for three particular
networks with γ=2.9, k0=6 and different network sizes N=2

7,
N = 210 and N = 216. (b) NA as a function of N for nini = 2

11

and nini = 2
14. All networks have γ = 2.9 and k0 = 6. One data

point was obtained by averaging over 50 different networks with
the same values for N , γ and k0, error bars show the standard
deviation around the mean.

respective number of different attractors was counted. We
see that for nini � 2

14, the number of attractors saturates:
As nini is increased by a factor 2, only a few additional
attractors are found. Figure 5(b) displays the dependence
of the number of attractors on the network size for two
different values of nini. The magenta curve has the same
parameters, γ = 2.9, k0 = 6 and nini = 2

11, as the corre-
sponding magenta curve in fig. 4(a). The yellow curve
shows the results for nini = 2

14, so eight times as many
initial configurations were simulated compared to the
magenta curve. We see that the maximum at intermediate
network sizes becomes even more pronounced, while the
qualitative behavior of NA(N) remains unchanged.
Evolution of attractor ensembles. – A closer

inspection of the panels iii) in fig. 3(a) and (b) reveals
two main differences in the ensemble of attractors for the
two network sizes. First, the inner bilayers close to the
central cluster tend to be more synchronized for the larger
network. Second, we note an increasing amount of bright
areas, indicating more bilayer fixed points for larger N . In
order to elucidate these two tendencies, we measured the
probability Ps ≡ 〈P ({Σ}k+1 = {Σ}k)〉 that neighboring
layers of k and k+1 vertices are in the same state as
well as the probability Pf ≡ 〈P ({Σ∗}k = {Σ}k)〉 that any
k-layer belongs to a bilayer fixed point. Both probabilities
were computed and averaged over all k-values with
k0 � k� kce.
As shown in fig. 4(b), small networks are characterized

by a large value of the probability Ps, which is understand-
able since the kmax-vertex is very dominant for small N
and interconnects several low degree layers, see (2). With
increasing N , the number of these layers becomes smaller
and the probability Ps decreases, see fig. 4(b). However,
after a minimum at intermediate network sizes, Ps starts to
increase again. The same behavior is found for the prob-
ability Pf in fig. 4(c). Once the number Nbi of bilayers
has reached its maximal number, bilayer blinkers become

less likely with increasing N . For each value of γ, the
two N -values, at which the probabilies Ps and Pf reach
their minima in fig. 4(b) and (c), agree quite well with the
N -value for the maximum in fig. 4(a).

Summary and outlook. – In summary, we showed
that dissortative scale-free networks as frequently found
in nature are characterized by a nested bilayer structure.
This structure strongly affects dynamical processes on
these networks as shown explicitly for majority rule
dynamics. The number of attractors reaches a maximum
at intermediate, “optimal” network sizes.
To test the robustness of our results, we examined

several variations on the structural details of the system.
By explicit simulations, we verified that the nonmonotonic
behavior in the number of attractors is also found for
majority dynamics on directed networks, for which the in-
and out-degree, kin and kout, are identical at each vertex.
Since many properties of scale-free networks depend sensi-
tively on the scaling behaviour of the upper cut-off kmax
(see, e.g., [24–26]), we also considered networks with the
so-called structural cut-off kmax = k0

√
N , as introduced

in [24]. Again, we find a nested bilayer structure and a
maximum in the number of attractors.
Thus, our study reveals a class of dynamical processes

for which the most complex behavior is found for
intermediate rather than for large network sizes. There-
fore, it should be rather interesting to elucidate the
N -dependence of previously studied properties of dissor-
tative networks, such as synchronization times [27] or
response behavior [28,29].
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