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Abstract Recent theoretical work on the energy conversion by molecular motors coupled
to nucleotide hydrolysis is reviewed. The most abundant nucleotide is provided by adeno-
sine triphosphate (ATP) which is cleaved into adenosine diphosphate (ADP) and inorganic
phosphate. The motors have several catalytic domains (or active sites), each of which can
be empty or occupied by ATP or ADP. The chemical composition of all catalytic domains
defines distinct nucleotide states of the motor which form a discrete state space. Each of
these motor states is connected to several other states via chemical transitions. For stepping
motors such as kinesin, which walk along cytoskeletal filaments, some motor states are also
connected by mechanical transitions, during which the motor is displaced along the filament
and able to perform mechanical work. The different motor states together with the possible
chemical and mechanical transitions provide a network representation for the chemome-
chanical coupling of the motor molecule. The stochastic motor dynamics on these networks
exhibits several distinct motor cycles, which represent the dominant pathways for different
regimes of nucleotide concentrations and load force. For the kinesin motor, the competition
of two such cycles determines the stall force, at which the motor velocity vanishes and the
motor reverses its direction of motion. In general, kinesin is found to be governed by the
competition of three distinct chemomechanical cycles. The corresponding network repre-
sentation provides a unified description for all motor properties that have been determined
by single molecule experiments.

Keywords Chemomechanical coupling · Molecular motor cycles · Energy balance
relations · Entropy production · Stochastic motor dynamics
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1 Introduction

Each cell of our body contains many different types of molecular motors and machines
which fulfill different functions [1, 2]. Most of these motors are powered by the hydrolysis
of nucleotides such as adenosine triphosphate (ATP) or guanosine triphosphate (GTP). ATP
is the most abundant of these molecules: the human body hydrolyzes and resynthesizes
about 60 kg of ATP per day (or per marathon run). Thus, most motors represent ATPases,
i.e., catalysts or enzymes for the hydrolysis of ATP. This hydrolysis process consists of
several substeps: first, ATP is cleaved into ADP/P, i.e., bound adenosine diphosphate (ADP)
and inorganic phosphate (P), then the P is released from the motor, and finally the ADP is
typically released as well.

For the concentrations which prevail in living cells, the ATP hydrolysis is strongly exer-
gonic or ‘downhill’ but it is also quite slow in the absence of any enzymatic activity. The
motors act as enzymes for this chemical reaction which leads to much faster hydrolysis rates.
In addition, these motors are also able to transform the free energy released from the ATP
hydrolysis into useful work. In fact, this free energy transduction occurs even at the level of
single hydrolysis events. In this way, they consume quantized amounts of fuel.

Even though some of these motors have now been studied for more than a decade, both
experimentally and theoretically, our understanding of their behavior is still rather limited.
In particular, it has only recently been realized that these motors are governed by several
motor cycles as explicitly shown for kinesin [3, 4]. The corresponding network models have
revealed general balance conditions for the energy conversion by molecular motors that arise
from thermodynamic constraints on the motor dynamics [5, 6].

Kinesin walks in a ‘hand-over-hand’ fashion, i.e., by alternating steps, in which one head
moves forward while the other one remains bound to the filament [7, 8]. Each step corre-
sponds to a motor displacement of 8 nm corresponding to the lattice constant of the mi-
crotubule. These mechanical steps of kinesin are fast and completed within 15 µs [9]. The
kinesin motor exhibits tight coupling, i.e., it hydrolyzes one ATP molecule per mechanical
step [10]. After ATP has been hydrolyzed by one of the catalytic motor domains (or active
sites), the inorganic phosphate is released rather fast, and both transitions together take of
the order of 10 ms to be completed [11]. ADP is subsequently released from the catalytic
domain, and this release process is also completed during about 10 ms [12]. Thus, these
chemical transitions take much longer than the mechanical steps. When the catalytic domain
of one motor head is occupied by ADP, this head is only loosely bound to the microtubule
[13–15] and most likely to unbind from it.

As shown in our recent theoretical studies, the kinesin motor is governed by three dif-
ferent cycles that dominate stepping dynamics depending on the ATP, ADP, and P concen-
trations as well as on the load force [3, 4]. The corresponding network of motor cycles
provides a unified description for all motor properties that have been determined by single
molecule experiments. For kinesin, the experimentally observed properties include motor
velocity [9, 16, 17], bound state diffusion coefficient (or randomness parameter) [16], ratio
of forward to backward steps [9], dwell time distributions [9], and run length [18] as func-
tions of ATP concentration and load force as well as motor velocity as a function of P and
ADP concentration [19].

The directed stepping regime corresponds to the directed walks of the motor along the
filament. Because of thermal noise, the motor makes, on average, a certain number of steps
before it detaches from the filament. A single kinesin motor, for example, which moves
under low load in the presence of plenty of ATP, unbinds from the filament after the motor
has made about a hundred steps, i.e., after a run length (or walking distance) of about 1 µm
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[20]. In general, the run length depends both on the nucleotide concentrations and on the
load force, and our theory also provides a quantitative description for this dependence [3].

This short review is organized as follows. First, we address the chemomechanical cou-
pling between ATP hydrolysis and mechanical steps and describe a systematic theoretical
framework for this coupling. This framework incorporates the catalytic ATPase activity of
the motor domains as well as basic thermodynamic constraints. When applied to kinesin,
it leads to a unified description of all single molecule data that have been obtained for this
motor. In addition, this framework also reveals that kinesin and other cytoskeletal motors
are governed by several competing motor cycles.

2 Enzymatic Activity of Motor Molecules

For a given position at the filament, the molecular motor can attain many molecular con-
formations, which differ in the chemical composition of their catalytic domains and in ther-
mally excited vibrational modes. Since we want to describe the hydrolysis of single ATP
molecules, we will use a discrete state space and focus on the different chemical composi-
tions of the catalytic domains. From a mathematical point of view, the chemical composition
of the catalytic domains provides an equivalence relation that divides the molecular config-
urations of the motor into mutually distinct sets or equivalence classes.

We start with a single catalytic domain as shown in Fig. 1(a) and (b). Such a catalytic
domain can be occupied by a single ATP molecule, by the combination ADP/P, by a single
ADP molecule, or can be empty. In this way, each catalytic domain can attain 4 different
nucleotide states, as shown in Fig. 1(a) where these states are represented as vertices in a
network graph. Such a representation was previously used by T.L. Hill for a generic ATPase
[21]. The edges between the different chemical states in Fig. 1(a) represent forward and
backward transitions. The edge between state i and state j will be denoted by 〈ij〉. It consists
of two directed edges or di-edges, |ij 〉 and |ji〉, corresponding to the forward transition
from i to j and to the backward transition from j to i, respectively. Thus, the di-edge or
transition |ET〉 corresponds to ATP binding to the catalytic domain whereas the transition
|TE〉 represents ATP release from this domain. Likewise, the transitions |�D〉, |D�〉, |DE〉,
and |ED〉 describe P release, P binding, ADP release, and ADP binding, respectively. Finally,
the transition |T�〉, corresponds to ATP cleavage and the transition |�T〉 to ATP synthesis
from the ADP/P state.

Fig. 1 Chemical networks of nucleotide states (a, b) for a single catalytic motor domain acting as an ATPase,
and (c) for a motor with two catalytic motor domains. In (a), the catalytic motor domain can be empty (E),
occupied by ATP (T), by ADP/P (�), or by ADP (D). In (b), the cleavage transition |T�〉 and the P release
transition |�D〉 have been combined into the single transition |TD〉 leading to a reduced network with the
three states E, T, and D. In (c), the same three nucleotide states are accessible to each motor domain which
implies a chemical network with 32 = 9 states. Each solid line between two vertices i and j corresponds to
both the forward chemical transition |ij〉 and the backward chemical transition |ji〉. Thus, the 9-state network
in (c) contains 18 forward and 18 backward transitions
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The three edges 〈ET〉, 〈�D〉, and 〈DE〉 involve the binding and release of a certain mole-
cular species from the aqueous solution. In contrast, the edge 〈T�〉 in the 4-state network
does not involve such an interaction of the catalytic domain with the particle reservoir, see
Fig. 1(a). Therefore, one may combine the two edges 〈T�〉 and 〈�D〉 of the 4-state network
into the edge 〈TD〉 as shown in Fig. 1(b). The latter representation involves only 3 nucleotide
states: the motor head is occupied by ADP in state D, empty in state E, and occupied by ATP
in state T. This reduced representation can be defined in such a way that 3-state and 4-state
network describe the same energy transduction process as shown in [6].

Next, we consider a two-headed motor such as kinesin or myosin V with two identical
catalytic motor domains. If each motor domain can attain three different chemical states as
in Fig. 1(b), the two-headed motor can attain 32 = 9 different states as in Fig. 1(c) [3].

It is straightforward to generalize these considerations to a molecular motor with more
than two catalytic domains. In general, one has to distinguish between the number Mbs

of ATP binding sites and the number Mcd of catalytic domains for ATP hydrolysis with
Mcd ≤ Mbs. Dynein, for example, has two heads, each of which has four ATP binding sites,
i.e., Mbs = 8, but only one or two of these four sites are believed to be catalytically active,
i.e, Mcd = 2 or 4. Likewise, the rotary motor F1 ATPase has Mbs = 6 and Mcd = 3 whereas
the chaperone GroEL has Mbs = 14 and Mcd = 7.

For a motor with Mcd different catalytic domains, the different chemical compositions
of the motor domains define 3Mcd nucleotide states of the motor, which are represented
by 3Mcd vertices. Each of these vertices is connected to 2Mcd other vertices via chemical
transitions, i.e., each vertex has ‘chemical degree’ 2Mcd. As a result, one obtains a network
with Mcd3Mcd chemical edges, each of which represents both a forward and a backward
chemical transition. This network represents an Mcd-dimensional hypercube with periodic
boundary conditions.

3 Chemomechanical Coupling

For cytoskeletal motors with two catalytic domains, we must complement the chemical net-
work of nucleotide states as shown in Fig. 1(c) by mechanical transitions that represent the
spatial displacements of the motors along the filaments. We will now use the convention
that, for each state in Fig. 1(c), the right head is the leading head whereas the left head is the
trailing head with respect to the prefered direction of the motor movement.

3.1 Network Representations

Both the kinesin motor [7, 8] and the myosin V motor [22] walk in a hand-over-hand fash-
ion, i.e., by alternating steps, in which one head moves forward while the other one remains
bound to the filament. In addition, recent experiments [9] provide strong evidence for the
kinesin motor that the time scales for the mechanical and chemical transitions are well sep-
arated: the mechanical transitions are completed within a few microseconds whereas the
chemical transitions take many milliseconds. If we incorporate these two properties into the
network representation, we obtain nine possible mechanical transitions as shown in Fig. 2.
For myosin V, the motor undergoes two [23] or three [24] mechanical substeps which implies
that some of the chemical states are located at intermediate positions between the binding
sites of the filament.

In principle, one may now construct a variety of chemomechanical networks by including
different subsets of the possible mechanical transitions shown in Fig. 2(a)–(c). In general,
this would lead to many possible pathways, a viewpoint that has been previously emphasized
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Fig. 2 (Color online) Possible mechanical transitions or steps between the chemical motor states at different
binding sites of the filament. In principle, one has nine such transitions starting from the nine chemical motor
states. For the sake of clarity, these nine possibilities have been divided up into three subgroups in subfigures
(a), (b), and (c). The thick double-lines at the bottom of each subfigure represent the filament, the three bullets
on these lines three filament binding sites. The motor can attain nine chemical states at each binding site. The
solid and broken lines of the networks correspond to chemical and mechanical transitions, respectively. The
arrows (red) indicate the forward direction of the mechanical transitions. The chemical networks have been
drawn as square lattices with periodic boundary conditions; the stubs correspond to additional chemical
transitions that connect the boundary states of these square lattices

for somewhat different network representations that did not include the chemical species
ADP and P [25, 26]. In practise, the chemomechanical networks obtained from Fig. 2(a)–(c)
can be simplified substantially as has been explicitly shown for kinesin [3].

For kinesin, the T and the E state of each motor head are strongly bound whereas the D
state is only weakly bound to the filament [13–15]. In order to make a forward mechanical
step, the trailing head must detach from the filament whereas the leading head must be firmly
attached to it. It is then implausible that the motor starts its mechanical step from any state
in which the trailing head is strongly bound and/or the leading head is weakly bound to the
filament. This implies that the motor is unlikely to undergo this transition from the (ED),
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Fig. 3 Mechanical forward transition from state (DT) to state (TD) that should dominate for kinesin

Fig. 4 Chemomechanical networks for the processive motion of kinesin with chemical (solid lines) and me-
chanical (broken lines) transitions: (a) Compact representation of the periodic network in Fig. 3; (b) Reduced
7-state network without the most strongly bound motor states (TT) and (EE); and (c) Reduced 6-state net-
work without the most weakly bound motor state (DD). The white double arrows indicate the direction of
ATP hydrolysis, the black arrows the direction of mechanical forward steps. The symbol UB in (b) represents
the unbound state of the motor which can be reached from the (DD) state as will be discussed in Sect. 9
below [3]

(TD) or (DD) states as well as from the (ET), (TE), (EE), or (TT) states. One is then left
with only two possible mechanical transitions in the forward direction, from state (DE) to
state (ED) and from state (DT) to state (TD).

If the motor underwent its mechanical transition starting from the (DE) state, this me-
chanical transition would compete with the transition from (DE) to (DT). Since the transition
rate for the latter transition increases with the ATP concentration, the frequency for the (DE)
to (DT) transition would increase and the frequency for the (DE) to (ED) transition would
decrease with increasing ATP concentration. Therefore, if the motor underwent its mechan-
ical transition from (DE) to (ED), its velocity would decrease for high ATP concentration.
Since such a decrease of motor velocity with ATP concentration is not observed experi-
mentally, the mechanical forward transition of kinesin should correspond to the transition
from the (DT) to the (TD) state.1 Thus, kinesin should be governed by the chemomechanical
network in Fig. 3 as proposed in [3].

A more compact and equivalent representation for the kinesin network in Fig. 3 is shown
in Fig. 4(a). Indeed, to each trajectory in the periodic network of Fig. 3, there is a cor-

1In principle, the motor could also alternate between several mechanical transitions such as the (DT) to (TD)
transition and the (DE) to (ED) transition as shown in Fig. 2(a) and (b).
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responding trajectory in the compact network of Fig. 4(a) and vice versa. In addition, the
spatial displacement along the filament can be recovered from the trajectories in the compact
network of Fig. 4(a) by simply counting the number of forward and backward mechanical
transitions from (DT) to (TD) and from (TD) to (DT), respectively.

The chemomechanical network as shown in Fig. 4(a) contains 36 chemical forward and
backward transitions in addition to the forward and backward mechanical transitions. On
the one hand, it is not possible at present to uniquely determine all of these rates from the
available experimental data. On the other hand, it turns out that all of these data can be
quantitatively described by the reduced 7-state network in Fig. 4(b) in which the two states
(TT) and (EE) have been omitted. Indeed, one would expect that the motor avoids visiting
these two states during its processive motion. As mentioned before, both the T and the E
state of each motor head are strongly bound to the microtubule which implies that the (TT)
and (EE) state are bound even more strongly to it. Thus, the motor would have to overcome
relatively large energy barriers if it visited the (TT) or (EE) states during its processive
motion. An even simpler description is obtained if one ignores the (DD) state as well which
leads to the 6-state network in Fig. 4(c). The latter network is sufficient to describe all single
motor data currently available apart from the strong reduction of the motor velocity with
increasing ADP concentration [3].

3.2 Cycles and Dicycles

The previous subsections provided some examples for the description of molecular motors
in terms of a discrete state space. These states are represented as the vertices of a network
graph, G, and are labeled by i = 1,2, . . . , |G|. Two neighboring states i and j are connected
by an edge 〈ij 〉 which represents the two directed edges or transitions |ij〉 and |ji〉. In-
spection of Fig. 4(a)–(c) shows that these edges form cycles. These cycles are particularly
important in the present context since they are intimately related to fluxes and nonequilib-
rium steady states [21].

In order to be precise, we will distinguish (undirected) cycles from directed cycles or
dicycles. The smallest dicycle consists of three states and three di-edges. An (undirected)
cycle Cν is given by a closed sequence of neighboring vertices together with connecting
edges, in which each vertex and each edge occurs only once. Each cycle Cν leads to two
dicycles Cd

ν with d = ±.
The network description of a single motor head, see Fig. 1 (a, b), involves only a single

cycle. Analogous unicycle models have also been frequently used for two-headed motors.
Inspection of Fig. 4 shows, however, that these two-headed motors will, in general, exhibit
several motor cycles. The 9-state network in Fig. 4(a) involves a rather large number of
cycles (more than 200). In contrast, the 6-state network in Fig. 4(c) contains only three
cycles: the forward cycle F = 〈25612〉, the backward cycle B = 〈52345〉, and the dissipative
slip cycle D = 〈1234561〉.

4 Thermodynamics of Single Motors

The chemomechanical pathways described in the previous section must satisfy some con-
straints arising from thermodynamics. Before we discuss these constraints in the next sec-
tion, we will first describe an appropriate statistical ensemble for a single motor.

In order to do so, let us consider a single motor molecule bound to a filament that is
embedded in a large amount of water at constant temperature T . During ATP hydrolysis,



958 R. Lipowsky et al.

Fig. 5 Thermodynamic view of a molecular motor that is coupled to several reservoirs: a heat reservoir at
temperature T ; particle exchange reservoirs for ATP, ADP, and P with chemical potentials μ(ATP), μ(ADP),
and μ(P); and a work reservoir governed by load force F . The motor is always taken to be in thermal
equilibrium at temperature T but can be in chemical equilibrium or nonequilibrium depending on the size of
the three chemical potentials. Mechanical equilibrium corresponds to F = 0 [6]

the motor binds ATP from the aqueous solution and releases ADP and P to it. In addition,
the motor may experience a load force F arising, e.g., from an optical trap. From the ther-
modynamic point of view, such a motor can be treated as a small system that is coupled to
several reservoirs: (i) A heat reservoir at temperature T ; (ii) A work reservoir characterized
by the load force F ; and (iii) Particle reservoirs for the chemical species X = ATP, ADP,
and inorganic phosphate P. These different types of reservoirs are displayed in Fig. 5.

The motor is taken to be in thermal equilibrium with its environment, i.e., the motor is
characterized by the same temperature T as the surrounding solution. The heat exchanged
between the motor and the reservoir will be denoted by Q. We use the sign convention that
the exchanged heat Q is positive if it increases the internal energy of the reservoir. Thus,
Q > 0 corresponds to heat release from the motor to the reservoir.

We also use the conventions that the mechanical work Wme is positive if the motor per-
forms work on the work reservoir and that the exchanged chemical energy (or chemical
work) Ech is positive if the motor gains chemical energy from the particle exchange reser-
voirs. Using these sign conventions, the change �U of the motor’s internal energy is written
in the general form [5, 6]

�U = Ech − Wme − Q (1)

which represents the first law of thermodynamics. For chemical reaction networks without
a work reservoir as recently considered in Refs. [27, 28], this relation reduces to �U =
Ech − Q.

Interaction of the molecular motor with the work reservoir is governed by the load
force F . This force acts parallel to the filament and is taken to have a constant value in-
dependent of the spatial position of the motor. We use the sign convention that F is positive
if it acts against the prefered movement of the motor. If the motor moves by the distance �

in its prefered direction along the filament, it performs the mechanical work

Wme = �F > 0 for F > 0. (2)

Mechanical equilibrium between motor and work reservoir corresponds to F = 0.
In general, the external force as applied in single molecule experiments is a 3-dimensional

vector with one component parallel to the filament defining the load force and additional
components acting perpendicular to this filament. Since the motor does not perform me-
chanical work against the perpendicular force components, the latter components do not
represent thermodynamic control parameters, even though they can affect the motor dynam-
ics [6].
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The exchanged chemical energy Ech that contributes to the internal energy change (1)
of the motor arises from adsorption and desorption processes between the motor and the
surrounding aqueous solution. In the thermodynamic description used here, these processes
are described by exchange equilibria between the motor and the reservoirs for the chemical
species X = ATP, ADP, and P, see Fig. 5. It is important to note that we consider three sep-
arate reservoirs that are not in chemical equilibrium with each other. Chemical equilibrium
between the three particle exchange reservoirs would arise from ATP hydrolysis and syn-
thesis in the absence of the motor molecule. The latter processes are, however, very slow,
because they have to overcome a large energy barrier, and, thus, can be ignored on the rele-
vant time scales.

The exchange equilibria between the motor and the reservoirs for the chemical species
X = ATP, ADP, and P are governed by the corresponding chemical potentials, μ(X). The
activity of X will be denoted by [X] and is equal to the molar concentration in the limit of
dilute solutions. In the following, we will use the term ‘concentration’ to be a synonym for
‘activity’. For each activity [X], we choose the activity scale [X]∗ in such a way that the
chemical potential μ(X) has the simple form

μ(X) = kBT ln([X]/[X]∗) (3)

with the Boltzmann constant kB .2

When the motor hydrolyzes a single ATP molecule, it binds one such molecule from the
ATP reservoir and releases one inorganic phosphate P and one ADP molecule into the ADP
and P reservoirs, compare Fig. 5. The corresponding chemical energy Ech for one hydrolysis
process is then given by

Ech = μ(ATP) − μ(P) − μ(ADP) ≡ �μ (4)

which also represents the chemical energy input from the aqueous solution to the motor
molecule. Inserting the expression (3) for the three chemical potentials into (4), we obtain

�μ = kBT ln

( [ATP]
[ADP] [P]K

eq

)
with Keq ≡ [ADP]∗ [P]∗

[ATP]∗ (5)

which defines the equilibrium (dissociation) constant Keq. Chemical equilibrium between
ATP hydrolysis and ATP synthesis corresponds to �μ = 0 which implies

Keq = [ADP] [P]
[ATP]

∣∣∣∣
eq

. (6)

For dilute solutions, the activities of the three chemical species are equal to their mo-
lar concentrations and can be directly measured, at least in principle (after the system has
relaxed into chemical equilibrium). For ATP hydrolysis, the precise value of the equi-
librium constant Keq depends on the ionic conditions but a typical value is given by
Keq = 4.9 × 1011 µM [19, 29]. Thus, in thermal equilibrium at temperature T , a single

2In general, the activity [X] is defined in such a way that the chemical potential μX for the chemical species
X has the simple form μX ≡ μo

X
+ kBT ln([X]/[X]o) where the superscript o refers to some standard or

reference activity [X]o . This relation can be rewritten in the form [X]oe
−μo

X
/kBT = [X]e−μX/kBT which

holds for any reference state. Therefore, the right hand side of this equation can be used to define the activity
scale [X]∗ ≡ [X]e−μX/kBT which has a unique value independent of the reference activity [X]o .
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molecular motor is governed by four thermodynamic control parameters, namely the three
activities or concentrations [X] with X = ATP, ADP, and P as well as the load force F or,
equivalently, the three chemical potentials μ(X) and F .

Since the chemical energy input �μ as given by (5) depends on all three concentrations
[ATP], [ADP], and [P], the limit, in which one of these concentrations becomes small, is
not defined unless one specifies the two remaining concentrations as well. If one considers
the limit of small [ATP] for fixed [ADP] and [P], for example, the chemical energy input
�μ goes to minus infinity. Likewise, if one considers the limit of small [ADP] and/or small
[P] for fixed [ATP], the energy input �μ goes to plus infinity. Furthermore, if all three
concentrations become small with [ATP] ≈ [ADP][P]/K with a certain, fixed activity or
concentration K , �μ attains the limiting value �μ = ln(Keq/K). Thus, even if all three
concentrations vanish simultaneously, the limiting value of �μ depends on how they vanish.

In the absence of ATP, ADP, and P, the motor does not obtain any chemical energy and,
thus, cannot perform any mechanical work. Thus, one would like to view this situation as a
limiting case of chemical equilibrium with �μ = 0. The latter value is obtained if all three
concentrations vanish simultaneously with the constraint that [ATP] ≈ [ADP][P]/Keq.

5 Energy Balance Conditions

We now return to the network representation of the molecular motor as shown for kinesin
in Fig. 4. As explained in the Appendix, each state of the motor represents an ensemble
of substates that all have the same chemical composition and the same position along the
filament but represent different molecular conformations [6]. These substates are taken to
be equilibrated at temperature T , the usual assumption in classical transition-rate theory
and Kramers theory for chemical kinetics, see references in [6]. As briefly reviewed in the
Appendix, each nucleotide state i can then be characterized by its internal energy Ui . During
the transition |ij〉 from state i to state j , the motor gains the chemical energy Ech,ij , performs
the work Wme,ij , and releases the heat Qij into the heat reservoir. Therefore, the change in
the internal energy during the transition |ij 〉 is given by [5, 6]

Uj − Ui = Ech,ij − Wme,ij − Qij . (7)

This relation is obtained when the first law of thermodynamics as described by (1) is applied
to transitions between the two discrete states i and j .

Starting from the local energy balance relations (7), we can derive nonlocal balance re-
lations that are associated with the dicycles Cd

ν of the network, see Sect. 3.2, and do not
depend on the state variables Ui . Indeed, when we sum the relation (7) over all transitions
|ij 〉 of a given dicycle Cd

ν , the internal energies Ui cancel out and we obtain

∑
|ij 〉

ν,d

(Uj − Ui) = 0 = Ech(Cd
ν ) − Wme(Cd

ν ) − Q(Cd
ν ) (8)

with the exchanged chemical energy

Ech(Cd
ν ) ≡

∑
|ij 〉

ν,d

Ech,ij , (9)

the average mechanical work

Wme(Cd
ν ) ≡

∑
|ij 〉

ν,d

Wme,ij , (10)
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and the average heat

Q(Cd
ν ) ≡

∑
|ij 〉

ν,d

Qij , (11)

where all of these quantities now refer to one completion of the dicycle Cd
ν .

In general, the three terms (9)–(11) may have either sign or may vanish in special cases.
By definition, the chemical energy Ech(Cd

ν ) > 0 if the motor gains chemical energy during
the dicycle Cd

ν , the mechanical work Wme(Cd
ν ) > 0 if the motor performs work on the work

reservoir, and the exchanged heat Q(Cd
ν ) > 0 if the motor releases heat into the heat reser-

voir. Furthermore, all of these terms change sign if one reverses the direction d of the dicy-
cle, i.e., Ech(C−d

ν ) = −Ech(Cd
ν ), Wme(C−d

ν ) = −Wme(Cd
ν ), and Q(C−d

ν ) = −Q(Cd
ν ). A special

case is provided by a single catalytic motor domain as depicted in Fig. 1(a) and (b), which is
characterized by a single cycle, say C1. For such a single domain that does not perform me-
chanical work, one has Wme(Cd

1 ) = 0, and the chemical energy input Ech(C+
1 ) is completely

dissipated into heat [6].
In order to obtain a quantitative model for the motor dynamics, one has to specify the

transition rates ωij for transitions |ij 〉 between the motor states i and j . As shown in [5, 6],
the released heat Q(Cd

ν ) is related to the transition rates ωij by

Q(Cd
ν ) ≡ kBT Q̄(Cd

ν ) = kBT ln

(
�ω(Cd

ν )

�ω(C−d
ν )

)
(12)

with the transition rate products

�ω(Cd
ν ) ≡

∏
|ij 〉

ν,d

ωij , (13)

where the product includes all directed edges or transitions of the dicycle Cd
ν . The dicycle

relation (12) was originally derived from the decomposition of the entropy production rate
into dicycle contributions [5] but may also be derived from the entropy kBT ln(ωij /ωji)

produced during a single transition [30], see the Appendix. The relation (12) can be rewritten
in a form that is reminiscent of the various fluctuation theorems for entropy fluctuations
[31–34] as explained in [6].

The relation (12) was first derived in [5, 6] for Markov processes which are characterized
by an exponential distribution for the dwell times τi of the motor states i. It turns out that the
same relation is also valid for continuous-time random walks in which the motor is governed,
at each state i, by transition probabilities πij with

∑
j πij = 1 and a nonexponential distrib-

ution ψi(τi) provided this distribution has a finite first moment, 〈τi〉 = ∫ ∞
0 dτi ψi(τi) τi < ∞

for all motor states i. The transition rates ωij in (13) are then replaced by the effective
transition rates ω̂ij ≡ πij /〈τi〉.

A combination of the relations (8) and (12) then leads to the dicycle balance conditions
[5, 6]

kBT ln

(
�ω(Cd

ν )

�ω(C−d
ν )

)
= Ech(Cd

ν ) − Wme(Cd
ν ) (14)

for the transition rates ωij . Indeed, the chemical energy Ech(Cd
ν ) can be expressed in terms of

the chemical energy difference �μ obtained from the hydrolysis of a single ATP molecule
as given by (4), and the mechanical work Wme(Cd

ν ) depends on the load force F and on the
step size �, compare (2). Therefore, the balance conditions (14) represent thermodynamic
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constraints on the kinetics. Note that the balance conditions for C+
ν and C−

ν differ only by
an overall sign and are, thus, linearly dependent. In fact, the number of linearly independent
balance conditions is equal to the number of fundamental cycles of the network.

6 Motor Dynamics for Processive Stepping

For the 6-state network of kinesin as displayed in Fig. 4(c), one has three cycles and two
fundamental ones; for the 7-state network in Fig. 4(b) without the two dotted edges, one
has six cycles and three fundamental ones. When these networks are supplemented by the
associated balance conditions, one obtains a rather good description for all properties of the
kinesin motor as experimentally observed in single motor experiments [3]. In these experi-
ments, the average motor velocity v has been measured as a function of the ATP, ADP, and
P concentrations as well as of the load force F . The latter dependence is shown in Fig. 6(a)
where the experimental data of Carter and Cross [9] are compared with the result of the
network calculations as obtained in [3]. Inspection of Fig. 6(a) shows very good agreement
between theory and experiment. The same agreement is found for the ratio q of forward to
backward steps as a function of load force F as shown in Fig. 6(b). The network calculations
also provide very good descriptions for the experimental data in Refs. [16–19].

Another important consequence of the balance conditions (14) is that they determine the
general form of the dicycle excess fluxes in the steady state. The latter fluxes are defined via
[5, 6]

�J st(Cd
ν ) ≡ J st(Cd

ν ) − J st(C−d
ν ), (15)

i.e., by the difference of the steady state dicycle fluxes J st(Cd
ν ) with d = ±. The dicycle

fluxes have the general properties

J st(Cd
ν ) > 0 and J st(Cd

ν ) ∝ �ω(Cd
ν ) (16)

with a proportionality factor that depends only on the cycle Cν but not on its direction d = ±
as can be explicitly shown using the graph-theoretic or diagrammatic solution for the steady
state probabilities (often referred to as the Kirchhoff method). Using the relation between
the transition rate products �ω and the released heat Q(Cd

ν ) as given by (12), one concludes

Fig. 6 (a) Average motor velocity v and (b) forward to backward step ratio q for the kinesin motor as a
function of load force F for two different values of the ATP concentration. The experimental data are from
[9]. The solid lines are calculated using the chemomechanical networks in Figs. 4(b) and 4(c) [3]. At the stall
force F = Fs 
 7 pN indicated by the vertical dotted line, the velocity v vanishes and the step ratio q = 1
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that the dicycle excess fluxes have the generic form

�J st(Cd
ν ) = [1 − e−Q̄(Cd

ν )]J st(Cd
ν ). (17)

Since the flux J st(Cd
ν ) is always positive, the expression (17) for the dicycle excess flux

implies that

sign of �J st(Cd
ν ) = sign of Q̄(Cd

ν ) (18)

and that

�J st(Cd
ν ) = 0 if and only if Q̄(Cd

ν ) = 0, (19)

i.e., the dicycle excess flux �J st(Cd
ν ) vanishes for those values of the thermodynamic control

parameters for which the released heat Q̄(Cd
ν ) vanishes.

Since the released heat Q̄ is a thermodynamic quantity, thermodynamics alone deter-
mines the sign and the zeros of all dicycle excess fluxes �J st(Cd

ν ) in the steady state. Many
experimentally accessible quantities such as the motor velocity and the ATP hydrolysis rate
correspond to linear combinations of the dicycle excess fluxes. In fact, using the above
mentioned properties of the dicycle excess fluxes both for the motor velocity and the ATP
hydrolysis rate, one can identify four different operation modes for kinesin [35].

7 Motor Velocity and Stall Force

The force-velocity relationship as shown in Fig. 6(a) for kinesin represents an important
property of all stepping motors. Inspection of Fig. 6(a) shows that the motor velocity de-
creases with increasing load force F and vanishes at a characteristic force scale, the stall
force F = Fs. Intuitively, one may view this stall force as the maximal force that can be
generated by the motor.

For the kinesin networks in Figs. 4(b) and 4(c), the parameter dependence of this stall
force can be determined explicitly. In these networks, the motor velocity is proportional
to the excess flux �J st

25 = P st
2 ω25 − P st

5 ω52 from state 2 to state 5 with the steady state
probabilities P st

2 and P st
5 to find the motor in state 2 and 5, respectively. For the 6-state

network in Fig. 4(c), one then has [3]

v = ��J st
25 = �

[
�J st(F +) − �J st(B+)

]
(20)

with the step size � and the two dicycles F + = |25612〉 and B+ = |23452〉. For the transition
rates as chosen in [3], the motor velocity then vanishes at the rescaled stall force

F̄s ≡ �Fs

kBT
= ln

(
eF̄∞ + e−�μ̄

1 + eF̄∞−�μ̄

)
(21)

with �μ̄ ≡ �μ/kBT and F̄∞ ≡ ln[ω25(F = 0)/ω52(F = 0)]. The relation (21) leads to the
asymptotic behavior

F̄s ≈ F̄∞ for large �μ̄ (22)

and

F̄s ≈ eF̄∞ − 1

eF̄∞ + 1
�μ̄ for small �μ̄. (23)
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Fig. 7 (a) Probability distribution ρff for the dwell time tff of mechanical forward-after-forward steps, i.e.,
the dwell time between two successive forward steps; and (b) Probability distribution ρbf for the dwell time
tbf of mechanical forward-after-backward steps. In both cases, one curve corresponds to vanishing load force
F = 0 (as indicated), the other to F = Fs, i.e., the load force being equal to the stall force. In addition,
the motor dynamics leads to the probability densities ρfb and ρbb for backward-after-forward steps and
backward-after-backward steps, respectively [4]

Since kBT /� = 0.5 pN at room temperature, the value F∞ 
 7 pN as determined experimen-
tally [9, 16] implies F̄∞ 
 14. An explicit expression for the stall force can also be obtained
for the 7-state network in Fig. 4(b). In fact, analyzing both the motor velocity and the ATP
hydrolysis rate, one can identify four different operation modes for kinesin [35].

8 Dwell Time Distributions for Mechanical Steps

In single motor experiments using optical traps, one can observe the spatial position of the
motor as a function of time. For low ATP concentrations, the motor dwells in a certain
position along the filament and, then, makes a fast mechanical transition to a new spatial
position. If one measures many dwell times between successive mechanical transitions, one
obtains the dwell time distributions of the motor.

As pointed out in [4], there are, in fact, four different dwell time distributions corre-
sponding to the four possible pairs of subsequent forward and backward steps, namely
forward-after-forward steps, forward-after-backward steps, backward-after-forward steps,
and backward-after-backward steps. For kinesin, these dwell time distributions have been
calculated starting from the 6-state network in Fig. 4(c) [4]. Two of these four distributions
are displayed in Fig. 7. Inspection of this figure shows that these distributions have a strongly
non-exponential character reflecting the underlying network dynamics involving chemical
transitions between the different motor states.

The dwell time distributions for kinesin can be calculated from the extended network
in Fig. 8 which is obtained from the 6-state network in Fig. 4(c) by the addition of the
two absorbing states j = 2′ and j = 5′. On this extended network, the motor starts in the
initial state i = 5 after a forward step or in the initial state i = 2 after a backward step. One
then considers the probability Pij (t) that the motor is ‘absorbed’ after time t in state j = 5′
corresponding to a final forward step or in state j = 2′ corresponding to a final backward
step.

The corresponding absorption times tab
i|j are governed by the probabilities [4]

Pr
{
tab
i|j ≤ t

} =
∫ t

0
duρab

i|j (u) (24)
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Fig. 8 Extended (6+2)-state network for kinesin as obtained from the 6-state network in Fig. 4(c) by adding
the two adsorbing states j = 2′ and j = 5′ . The motor undergoes a forward-after-forward step if it starts
initially in state i = 5 and is subsequently ‘absorbed’ in state j = 5′ . Likewise, the motor undergoes a for-
ward-after-backward step if it starts initially in state i = 2 and is subsequently ‘absorbed’ in state j = 5′

with the probability distribution3

ρab
i|j (t) = ∂

∂t
Pij (t)/P

st
ij . (25)

where P st
ij is the steady state solution for the probability Pij (t). Thus, the two probability

distributions ρff and ρbf as displayed in Fig. 7 are obtained from the relations

ρff(t) = ∂

∂t
P55′(t)/P st

55′ and ρbf(t) = ∂

∂t
P25′(t)/P st

25′ ; (26)

the two remaining dwell time distributions ρfb and ρbb for backward-after-forward steps and
backward-after-backward steps can be calculated in an analogous fashion [4].

Linear combinations of the four dwell time distributions ρff, ρbf, ρfb, and ρbb determine
the probability distributions for forward and backward steps [4]. For kinesin, the latter dis-
tributions have been determined experimentally [9]. More precisely, these distributions have
been measured for dwell times that exceed a certain small time cutoff that varies between
0.01 and 0.1 s depending on ATP concentration and load force. As shown in [4], these ex-
perimental data are very well described by the theoretical distributions as calculated for
the 6-state network of kinesin. This agreement is quite remarkable since all transition rates
used in this calculation have been obtained in [3] without any reference to the dwell time
distributions. Thus, the agreement between theory and experiment is obtained without any
additional fitting parameter.

9 Unbinding Rate and Run Length

The processive motors considered here can make many successive steps corresponding to
many successive motor cycles. However, even if the motor’s binding energy is large com-
pared to the thermal energy kBT , thermal fluctuations will eventually lead to an unbinding
of the motor from the filament. Thus, a single motor can be characterized by its average run
time 〈�t〉 and the corresponding unbinding rate

ωoff ≡ 1/〈�t〉. (27)

3In mathematics, the quantity ρab
i|j (t) is called a probability density function.
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During its run time, the single motor steps along the filament and covers the average run
length

〈�x〉 = v 〈�t〉. (28)

In the absence of load, kinesin motors bound to microtubules make about 100 successive
steps [20] which corresponds to an average run length 〈�x〉 
 1 µm and an average run
time 〈�t〉 
 1 s. In the absence and presence of dynactin, an accessory protein, dynein
motors make about 20 and 40 successive steps, respectively [36]. Myosin V, which moves
along actin filaments, makes about 50 steps before it unbinds again corresponding to a run
length of about 1.5 µm [37]. Myosin VI, on the other hand, makes only about 9 successive
steps, i.e., its average run length is about 280 nm [38].

For a single motor stepping along a uniform filament as considered here, the motor’s run
time is equal to the motor’s binding time, i.e., the time during which the motor is bound to
the filament. In general, these two time scales can be different. Two examples are provided
by a single motor that encounters obstacles on the filament [39] or by a cargo particle that is
pulled by two antagonistic motor teams [40]. In these latter cases, the run times are shorter
than the binding times.

The unbinding of a single motor is an activated process governed by a corresponding
energy barrier. In the presence of an external force F that acts to detach the motor, this
barrier is reduced by F�d where �d represents an appropriate molecular length scale, which
characterizes the elastic deformation of the motor molecule required for its detachment.
Therefore, the unbinding rate ωoff is expected to have the general form

ωoff(F ) = κoff exp(�dF/kBT ) ≡ κoff exp(F/Fd) (29)

as follows from Kramers theory for activated processes with the zero-force unbinding rate
κoff and the detachment force

Fd ≡ kBT /�d. (30)

Now, let us again focus on the network representations for kinesin as displayed in Fig. 4.
In order to describe the unbinding of the motor from the filament, we must extend these
networks by unbound motor states as indicated by ‘UB’ in Fig. 4(b). It is convenient to label
these unbound states by i = 0. Thus, if the motor dwells in a state i > 0, its unbinding rate
ωi0 should have the load dependent form

ωi0 = κi0 exp(�d,iF/kBT ) ≡ κi0 exp(F/Fd,i ) ≡ κi0 exp(χi0F̄ ) (31)

which defines the zero-force unbinding rates κi0, the detachment forces Fd,i ≡ kBT /�d,i , the
dimensionless parameters χi0 ≡ �d,i/�, and the dimensionless force F̄ ≡ �F/kBT , compare
(21). Intuitively, one may view the detachment force Fd,i as the maximal force that the motor
can sustain in motor state i.

The most weakly bound state of kinesin is provided by the (DD)-state. Thus, in order to
reduce the number of parameters, one may assume that the motor unbinds primarily from
the (DD) state with i = 7 as shown in Fig. 4(b). Furthermore, for small values of F , the
unbinding rate ωoff of kinesin is of the order of 1/s whereas the zero-force transition rates
between the different bound states i = 1,2, . . . ,7 are of the order of or larger than 1/(10 ms).
This separation of time scales implies that the kinesin motor has essentially attained the
steady state of the 7-state network before it starts to undergo transitions from the bound
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Fig. 9 Average run length (or walking distance) 〈�x〉 of kinesin as a function (a) of load force F and (b) of
ATP concentration. With increasing F , the run length first decays by an exponential factor that is governed
by the detachment force Fd and then vanishes at the stall force F = Fs, compare Fig. 6. The experimental
data are from [18], the broken lines represent the behavior as calculated for the network in Fig. 4(b) with
[ADP] = [P] = 0.5 µM [3]. These latter calculations lead to the detachment force Fd,7 
 5 pN [3] while a
simple exponential fit to the data implies Fd 
 3 pN as explained in the text

state i = 7 to the unbound state i = 0 provided the load force F is sufficiently small. The
unbinding rate of the motor can then be estimated by [3]

ωoff 
 P st
7 ω70 = P st

7 κ70 exp(F/Fd,7) = P st
7 κ70 exp(χ70F̄ ). (32)

This unbinding rate depends on the load force F both via the explicit exponential factor and
via the occupation probability P st

7 = P st
7 (F ). Comparison with relation (29) then leads to

the zero-force unbinding rate

κoff 
 P st
7 (0) κ70. (33)

Likewise, the overall detachment force Fd in (29) will, in general, differ from Fd,7 because
of the force dependence of P st

7 .
The average run time 〈�t〉 should decrease monotonically with increasing F and van-

ishes in the limit of large F . In contrast, the average run length 〈�x〉 = v 〈�t〉 vanishes
already at the stall force F = Fs, at which the motor velocity v changes sign, compare
Fig. 6.

For kinesin, the F -dependence of the run length is displayed in Fig. 9(a) where the ex-
perimental data of Ref. [18] are compared with calculations based on the chemomechan-
ical network in Fig. 4(b) as described in Ref. [3]. The latter calculations lead to the rate
constant κ70 
 3/s and to the parameter χ70 = 0.1, which implies the detachment force
Fd,7 = kBT /�χ70 
 5 pN at room temperature. On the other hand, if the data in Fig. 9(a) are
directly fitted as 〈�x〉 ∼ exp(−F/Fd), one obtains the overall detachment force Fd 
 3 pN
as deduced in Ref. [18]. Another set of data that is well described by the 7-state network
model is the dependence of the run length on the ATP concentration, see Fig. 9(b).

For the 7-state network in Fig. 4(b), the zero-force unbinding rate κoff as given by (33)
is proportional to the steady state probability P st

7 that the motor occupies the (DD) state.
Inspection of Fig. 4(b) shows that this occupation probability decreases as one increases the
ATP concentration since one then decreases the flux from state (DE) with i = 1 to state (DD)
with i = 7 relative to the flux from state (DE) to state (DT) with i = 2. For the same reason,
the probability P st

7 also decreases if one decreases the ADP concentration. Thus, the 7-state
model in Fig. 4(b) predicts that the zero-force unbinding rate κoff depends on the nucleotide
concentrations.
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In order to check the assumed separation of time scales, one may consider the unbinding
process as another ‘absorption’ process with only one absorbing state given by i = 0. If the
motor starts in the initial state i = a, the probability distribution for the process to exhibit
the run time s ≡ �t is given by

ρab
a|0(s) = ∂

∂s
Pa0(s) = Pa7(s)ω70, (34)

compare relation (25). Now, let P in
a be the probability that the motor is initially in state

i = a. The probability distribution for the run time s is then given by

ρab
0 (s) =

∑
a 
=0

P in
a Pa7(s)ω70, (35)

and the average run time 〈�t〉 is equal to the first moment of this distribution.

10 Summary and Outlook

In this article, we have reviewed recent work on the chemomechanical coupling of molecular
motors, which determines the stochastic energy conversion by these motors. This coupling
is described by chemomechanical networks as shown in Figs. 2 and 4 [5, 6]. The network
models for kinesin in Fig. 4 are able to describe all experimental data as obtained from single
motor measurements [3]. In particular, they lead to a quantitative description of the motor
velocity and run length as functions of load force, see Fig. 6 and Fig. 9, which determine the
motor’s stall and detachment force, respectively.

For the 6-state model in Fig. 4(c), the stall force can be calculated explicitly as a func-
tion of chemical energy input and, thus, of ATP concentration, see relation (21). Another
interesting set of quantities that has been calculated for this 6-state model is provided by the
dwell time distributions for the mechanical steps as discussed in Sect. 8. These dwell times
are difficult to measure with a high temporal resolution but all available data are again well
described by this model without introducing any additional fit parameters [4].

Because of thermal noise, molecular motors unbind from the filaments after a finite run
length. The average run length of a single motor depends on the load force F and the nu-
cleotide concentrations, as shown for kinesin in Fig. 9. For small F and large ATP concen-
tration, the average run length of this motor is about 800 nm corresponding to about 100
forward steps. When a single kinesin pulls a cargo particle or bead, its velocity and run
length is hardly affected even if the particle has a size of many micrometers because the
hydrodynamic friction produces only a relatively small force on the motor.

The run length of a single motor is, however, quite small compared to the long
distances—centimeters or even meters—over which vesicles, filaments, and organelles are
transported by these motors in cells and axons. One rather effective way to increase the
run length is via cooperative transport by small teams of motors [41–43]. In addition, cargo
particles often exhibit complex transport patterns of bi-directional transport which can be ex-
plained in terms of a stochastic tug-of-war between two antagonistic motor teams attached
to the same cargo [40, 44, 45]. Finally, the simultaneous transport of many cargo particles
leads to heavy traffic within eukaryotic cells. This traffic can be modelled using extensions
of asymmetric simple exclusion processes and leads to a variety of cooperative phenomena:
build-up of traffic jams, active pattern formation with spatially nonuniform density and flux
patterns, and traffic phase transitions. These latter phenomena are reviewed in [39, 46, 47].
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Appendix: Local and Nonlocal Balance Relations

In this appendix, we briefly review the local and nonlocal balance relations obtained in Refs.
[5, 6]. In addition, we generalize the local relations as derived in [6] by removing an implicit
and unnecessary assumption.

As emphasized in Ref. [6], each motor state i represents an ensemble of substates (i, ki)

that is thermally equilibrated at temperature T . If the energy of substate (i, ki) is denoted
by E(i, ki), the conditional probability P (ki |i) to find the motor molecule in substate (i, ki),
when we know that it is in state i, has the form

P (ki |i) = 1

Zi

e−E(i,ki )/kBT with Zi ≡
∑
ki

e−E(i,ki )/kBT . (36)

When the motor is in state i, it has the internal energy

Ui ≡ 〈E(i, ki)〉 =
∑
ki

P (ki |i)E(i, ki), (37)

the Helmholtz free energy

Hi = −kBT ln(Zi), (38)

and the entropy

Si = (Ui − Hi)/T . (39)

When the motor undergoes a transition |ij〉 from substate (i, ki) to substate (j, kj ), the
corresponding energy change E(j, kj ) − E(i, ki) will, in general, fluctuate. The average
value of this quantity determines the internal energy change

Uj − Ui = 〈E(j, kj ) − E(i, ki)〉 =
∑
kj

P (kj |j)E(j, kj ) −
∑
ki

P (ki |i)E(i, ki). (40)

As discussed in Sect. 5, conservation of energy implies (7) as given by

Uj − Ui = Ech,ij − Wme,ij − Qij .

Thus, the three quantities on the right hand side of this equation should also be regarded as
average quantities, which are obtained by averaging over many transitions |ij〉.

The local balance relations are obtained by expressing the released heat Qij in terms of
the transition rates ωij and ωji for the transitions |ij 〉 and |ji〉. In order to do this, one can
consider a continuous-time Markov process on the network of motor states. The probabilities
Pi to find the motor in state i are then governed by the master equation

d

dt
Pi = −

∑
j

(
Pi ωij − Pj ωji

) ≡ −
∑

j

�Jij , (41)

where the last equality defines the local excess fluxes �Jij .



970 R. Lipowsky et al.

In the steady state with Pi = P st
i , these local excess fluxes satisfy the flux balance rela-

tions ∑
j

�J st
ij =

∑
j

(
P st

i ωij − P st
j ωji

) = 0, (42)

and the entropy production rate has the general form [33, 48–50]

σ st
pr = 1

2

∑
i

∑
j

′
�J st

ij kB ln(ωij /ωji), (43)

where the two summation indices i and j run over all motor states of the network and the
prime indicates that there are no terms with j = i.

As explained in [6], the expression (43) for the entropy production rate σ st
pr can be rewrit-

ten in two ways. First, one may replace the double summation over i and j by a summation
over all di-edges |ij〉. Second, one may also derive a decomposition of the entropy produc-
tion rate in terms of dicycle fluxes [5]. The first decomposition in terms of di-edges leads
to

σ st
pr =

∑
|ij 〉

P st
i ωij kB ln(ωij /ωji) ≡

∑
|ij 〉

P st
i ωij �Sij . (44)

Since P st
i ωij is the frequency with which the motor undergoes the transition |ij〉, the quantity

�Sij = kB ln(ωij /ωji) represents the average entropy produced during the transition |ij〉
[30]. In Ref. [6], we then identified T �Sij with the heat Qij released by the motor into the
heat reservoir. The latter identification is, however, restricted to motor states i and j with
Si = Sj as explained in the following.

In general, the two states i and j will differ in their entropies Si and Sj as defined in (39).
The average entropy �Sij produced during the transition |ij〉 is then postulated to satisfy
the more general relation

�Sij = kB ln(ωij /ωji) = Sj − Si + Qij/T (45)

where Sj − Si and Qij/T represent the entropy change of the motor molecule and of the
heat bath, respectively. An analogous decomposition of the entropy change is always valid
for isothermal processes of macroscopic systems, see, e.g., [51].

If we substitute the expression (45) into the entropy production rate σ st
pr as given by (43),

we obtain

σ st
pr = 1

2

∑
i

∑
j

′
�J st

ij Qij /T , (46)

since the terms proportional to Sj − Si cancel out from this expression. In fact, one has

1

2

∑
i

∑
j

′
�J st

ij (Aj − Ai) = 0 (47)

for any state variable Ai as follows from the flux balance relations (42) together with �Jji =
−�Jij . Thus, the form (43) of the entropy production rate σ st

pr is consistent with any relation
of the form �Sij = kB ln(ωij /ωji) = Aj − Ai + Qij/T but does not allow us to actually
determine the state variable Ai .

In order to show that the state variable Ai is indeed equal to the entropy Si of the motor
state i as postulated in (45), we now consider the constrained equilibrium of a subsystem
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consisting of only two states a and b in thermal equilibrium with a heat reservoir as in [6],
and first assume that this two-state system is not coupled to any other reservoir. Energy
conservation during a transition |ab〉 from state a to state b is now described by

Ub − Ua = −Qab (48)

which represents a special case of local energy conservation as described by (7). If the
substates of the two states a and b are denoted by (a, ka) and (b, kb) and have energies
E(a, ka) and E(b, kb), the canonical partition functions of these two subensembles are given
by

Za =
∑
ka

e−E(a,ka)/kBT = e−(Ua−T Sa)/kBT (49)

and

Za =
∑
kb

e−E(b,kb)/kBT = e−(Ub−T Sb)/kBT . (50)

Furthermore, the probabilities Pa and Pb to find the two-state system in the states a and b

can be expressed as

Pa = Za

Za + Zb

and Pb = Zb

Za + Zb

. (51)

If these relations are combined with the detailed balance condition Pa ωab = Pb ωba , one
obtains

kB ln(ωab/ωba) = Sb − Sa − (Ub − Ua)/T = Sb − Sa + Qab/T , (52)

where the last equality follows from (48). Therefore, the postulated relation (45) is indeed
valid for a two-state system coupled to a heat reservoir. It is not difficult to repeat this
calculation for a two-state system in constrained equilibrium coupled both to a heat reservoir
and to additional reservoirs such as a particle exchange reservoir and/or a work reservoir. In
all cases, one recovers the relation (45).

If the decomposition (45) of the produced entropy is combined with the relation (7) for
local energy conservation, one arrives at the local balance relation

Hj − Hi = Uj − Ui − T (Sj − Si) = Ech,ij − Wme,ij − kBT ln(ωij /ωji), (53)

for the free energies Hi which generalizes relation (6.15) in Ref. [6] to the case Si 
= Sj .
In fact, all relations in Ref. [6] that follow after equation (6.15) of this article and involve
the internal energies Ui can now be generalized to the case Sj 
= Si by simply replacing the
internal energies Ui by the free energies Hi .

If one considers the sum
∑

|ij 〉(Hj − Hi) over all transitions |ij〉 of a certain dicyle Cd
ν ,

all free energy differences Hj − Hi cancel out, and the local relation (53) then leads to the
nonlocal balance relation

Q(Cd
ν ) = kBT ln

⎛
⎝∏

|ij 〉

ν,d

ωij /
∏
|j i〉

ν,−d

ωji

⎞
⎠ = Ech(Cd

ν ) − Wme(Cd
ν ) (54)

for the average heat released during the completion of dicycle Cd
ν . This relation is identical

with equation (14) in Sect. 5 and was previously derived in [5, 6]. In fact, apart from equation
(7) for the internal energy differences Uj − Ui , all relations in Sects. 5–7 are expressed in
terms of dicycle quantities and, thus, do not depend on the state variables Ui , Hi , or Si .
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Glossary of Abbreviations and Symbols

ADP adenosin diphosphate.
[ADP] molar concentration of ADP.
ADP/P product of ATP cleavage, abbreviated as �.
ATP adenosin triphosphate.
[ATP] molar concentration of ATP.
B backward cycle of single motor.
Cν cycle of network graph labeled by index ν.
Cd

ν directed cycle or dicycle of network graph with direction d.
d direction of dicycle with d = ±.
D dissipative slip cycle of single motor.
�Jij local excess flux of transition |ij 〉 with �Jij = Jij − Jji .
�J(Cd

ν ) dicycle excess flux as in (15).
�J st(Cd

ν ) dicycle excess flux in steady state.
�μ chemical energy input from a single ATP hydrolysis as in (4).
�μ̄ reduced chemical energy input with �μ̄ = �μ/kBT .
�t run time of motor at filament.
〈�t〉 average run time of motor.
�x run length (or walking distance) of motor along filament.
〈�x〉 average run length of motor.
Ech chemical energy input to the motor as in (1) and (4).
Ech,ij chemical energy input to the motor during transition |ij〉.
Ech(Cd

ν ) chemical energy input to the motor during dicycle Cd
ν .

F load force acting on the motor; F > 0 for resisting load.
Fd detachment force of single motor.
Fd,i detachment force for single motor in state i.
Fs stall force of single motor.
F forward cycle of single motor.
Hi Helmholtz free energy of motor state i as defined in (38).
i, j discrete states of a single motor bound to a filament.
|ij 〉 transition or directed edge (di-edge) from state i to state j .
〈ij 〉 edge between states i and j .
Jij probability flux from motor state i to state j with Jij = Piωij .
J (Cd

ν ) dicycle flux as in (16).
J st(Cd

ν ) dicycle flux in steady state.
κi0 zero-force unbinding rate from motor state i.
κoff zero-force unbinding rate of motor as in (29).
kB Boltzmann constant.
Keq equilibrium constant for ATP hydrolysis as in (5) and (6).
� step size of motor.
Mbs number of the motor’s nucleotide binding sites with Mbs ≥ Mcd.
Mcd number of the motor’s catalytic domains for nucleotide hydrolysis.
μ chemical potential.
μ(X) chemical potential for chemical species X as in (3).
ν label for all cycles in the network.
ωij transition rate for transition from motor state i to state j .
P inorganic phosphate.
Pi probability that motor is in internal state i.
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P st
i probability Pi in steady state.

Pij (t) probability for the motor to go from i to j during time t .
P st

ij probability for the motor to go from i to j for large t .
�ω(Cd

ν ) transition rate product along dicycle Cd
ν as in (13).

Q heat released by the motor.
q ratio of forward to backward steps.
Q̄ reduced heat released by the motor with Q̄ = Q/kBT .
Qij average heat released by the motor during transition |ij〉.
Q(Cd

ν ) average heat released by the motor during dicycle Cd
ν .

ρbf probability distribution for forward-after-backward steps as in (26).
ρff probability distribution for forward-after-forward steps as in (26).
Si entropy of motor state i as defined in (39).
t time.
T temperature.
� short-hand notation for ADP/P state of motor domain.
Ui internal energy of motor state i as defined in (37).
v average velocity of single motor in its bound state.
Wme mechanical work performed by the motor.
Wme,ij average mechanical work performed by the motor during transition |ij〉.
Wme(Cd

ν ) average mechanical work performed by the motor during dicycle Cd
ν .

X chemical species ATP, ADP or P.
[X] activity or molar concentration of chemical species X.
[X]∗ activity scale for chemical species X as given by (3).

Note Added in Proof The compact network in Fig. 4(a) corresponds to the local “view” of the motor and
treats chemical and mechanical transitions on the same footing. The chemomechanical cycles contained in
this compact network are also present in the network in Fig. 3 provided this latter network is supplemented
by periodic boundary conditions. Note that cycles in a discrete state space play an analogous role to holes in
a continuous, multiply-connected space.
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