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All eukaryotic cells including those of our own body contain complex transport systems based on

molecular motors which walk along cytoskeletal filaments. These motors are rather small and make

discrete mechanical steps with a step size of the order of 10 nm but are able to pull cargo particles over

much larger distances, from micrometers up to meters. In vivo, the intracellular cargos include large

membrane-bounded organelles, smaller vesicles, a subset of mRNAs, cytoskeletal filaments, and various

protein building blocks, which are transported between different cell compartments. This cargo

transport is usually performed by teams of motors. If all motors belong to the same molecular species,

the cooperative action of the motors leads to uni-directional transport with a strongly increased run

length and with a characteristic force dependence of the velocity distributions. If two antagonistic

teams of motors pull on the same cargo particle, they perform a stochastic tug-of-war, which is

characterized by a subtle force balance between the two motor teams and leads to several distinct

patterns of bi-directional transport. So far, all experimental observations on bi-directional transport are

consistent with such a tug-of-war. If many motors and/or cargo particles are transported along the

filaments, one encounters various traffic phenomena. Depending on their mutual interactions and the

compartment geometry, the motors form various spatio-temporal patterns such as traffic jams, and

undergo nonequilibrium phase transitions between different patterns of transport.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In all living cells including those of our body, we find many
different molecular motors and colloidal machines that perform
various tasks such as assembly and synthesis of macromolecules,
ion transport through membranes, cargo transport along fila-
ments, cell division, and cell locomotion. These motors and
machines act as little ‘demons’ or ‘nanorobots’ that keep the living
cell in a highly ordered state far from equilibrium. This self-
organization is based on the energy conversion of the motors,
which transform chemical energy, typically arising from ATP
hydrolysis, into mechanical work.

Prominent examples for such molecular motors are: (i) DNA
and RNA polymerases, which move along the strands of DNA in
order to replicate it and to transcribe it into RNA; (ii) ribosomes
that attach to mRNA and translate the nucleotide sequence into
proteins; (iii) membrane pumps, which transport ions and small
molecules across membranes. The resulting concentration gradi-
ents may be used in order to drive: (iv) rotary motors such as the
bacterial flagellar motor and the F1-ATPase, which are used for
ll rights reserved.
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cell locomotion and ATP synthesis, respectively; (v) myosins in
muscles, which work in ensembles and collectively displace actin
filaments; and (vi) stepping motors, which bind to the filaments
of the cytoskeleton and then walk along these filaments in a
directed fashion.

In this review, we will focus on this latter class of cytoskeletal
motors such as kinesins and dyneins, see Fig. 1(a), that walk
processively along cytoskeletal filaments in a directed manner and
are essential for intracellular transport, cell division, and cell
locomotion [1–3]. Three superfamilies of processive cytoskeletal
motors have been identified: kinesins, dyneins, and myosins [3,4].
Kinesins and dyneins bind to microtubules as shown in Fig. 1(a)
whereas myosins bind to actin filaments as shown in Fig. 1(b).

The movements of cytoskeletal motors cover many length and
timescales [5,6]. Already for a single motor, one can distinguish
three dynamical regimes: the single-step dynamics of the motor
protein which arises from the coupling of the molecular
conformation to ATP hydrolysis; the directed walks of the motor
along the filaments; and the composite walks of the motor as it
repeatedly unbinds from and rebinds to the filaments.

The single-step regime is governed by the chemomechanical
coupling between ATP hydrolysis and spatial displacements and
covers all molecular processes up to a single mechanical step of
the motor [7]. Kinesin, for example, walks in a ‘hand-over-hand’
fashion, i.e., by alternating steps, in which one head moves
0.1016/j.physe.2009.08.010
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Fig. 1. Stepping motors: (a) microtubule with one dynein (violet) and one kinesin

(blue) motor. The filament consists of tubulin dimers that provide a lattice of

binding sites with a lattice parameter of 8 nm. (b) Actin filament with one myosin

VI (violet) and one myosin V (blue) motor. Both filaments are polar and have two

different ends, a plus and a minus end. Each motor walks either towards the plus

or the minus end as indicated. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 2. Two-way traffic in an axon. The traffic is based on microtubules, which

provide the tracks, and different types of cytoskeletal motors, which move along

these filaments. Each motor species moves either towards the axon terminal (plus

direction) or towards the cell body (minus direction). Small teams of motors pull

vesicles and other types of cargo over macroscopic distances.
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forward by 16 nm while the other one remains bound to the
filament [8,9]. During each step, the center-of-mass of the motor
is displaced by 8 nm corresponding to the lattice constant of the
microtubule. These mechanical steps of kinesin are fast and
completed within 15ms [10].

Because of thermal noise, the motors can make only a certain
number of steps before they detach from the filaments. A single
kinesin motor, for example, unbinds from the filament after it has
made about a hundred steps, i.e., after a run length (or walking
distance) of about 1mm [11]. On length scales that are large
compared to its run length, a single motor undergoes composite
walks consisting of directed (or biased) motion along the
filaments interrupted by diffusive (or random) motion in the
surrounding solution [12–14].

The run length of single motors is rather small compared to the
long distances — centimeters or even meters — over which cargo
particles are transported in cells and axons, see Fig. 2. One rather
effective way to increase the run length is via cooperative
transport of cargo particles by several motor molecules [15]. The
corresponding run length distribution has been recently
measured for two different in vitro assays [16,17].

In vivo, stepping motors are responsible for the intracellular
transport of various types of cargo particles such as vesicles,
organelles, and filaments. In most cases, this cargo transport is
cooperative and performed by several motors as revealed by
electron microscopy [18,19] and single particle tracking [20–23].
In some cases, the transport is uni-directional as one would
expect if all motors that pull on the cargo belong to the same
motor species. In many cases, the cargo moves in a bi-directional
manner, which implies that it is pulled by two antagonistic motor
teams corresponding to two different motor species.

The experimental observations for bi-directional transport by
two motor species are quite complex [24,25]. The cargo may
exhibit rather different types of trajectories with and without
pauses between forward and backward motion. In addition,
changing the molecular structure of one motor species often
affects the movement in both directions. Therefore, it was
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
proposed that this behavior reflects the coordination by an
unknown protein complex attached to the cargo. However, we
have recently shown that all experimental observations can be
explained by a stochastic tug-of-war between the two motor
species [26,27]. This implies that the signalling pathways for the
regulation of intracellular transport may directly target the
different motor molecules rather than an additional coordination
complex [26,28].

The cartoon in Fig. 2 indicates that the traffic within an axon
can be rather dense and, thus, may lead to traffic jams as one
would expect theoretically [12,29–31]. There is indeed some
experimental evidence for jams of motor particles in axons
(W. Saxton, private communication). An extreme case has been
induced by mutations of the motor proteins which led to strong
swelling of axons [32,33]. Jams of kinesin-like motors have also
been found in fungal hyphae as one varied the motor concentra-
tion in vivo by changing the level of expression of the
corresponding gene [34,35]. Recently, motor traffic jams have
also been observed in several in vitro experiments [36–39]. Apart
from crowding and traffic jams, the mutual interaction between
motors and filaments leads to nonequilibrium phase transitions as
has been shown theoretically both for stepping motors on
immobilized filaments [29,40,30] and for gliding filaments on
immobilized motors [41,42].

This review is organized as follows. First, we briefly review the
properties of single motors in Section 2. We then discuss uni-
directional transport of a single cargo particle by one team of N

identical motors, see Section 3. Compared to the behavior of a
single motor, such a cargo particle exhibits a run length that
increases strongly with N and an apparent stall force that
increases sublinearly with N. In Section 4, bi-directional transport
of a single cargo particle is considered, in which this particle is
pulled by two teams of plus and minus motors. The two motor
teams perform a stochastic tug-of-war that is characterized by
strongly fluctuating forces acting on each motor arising from the
force balance between the two teams. As a result, one finds
several distinct motility regimes, which are determined by the
numbers Nþ and N� of plus and minus motors as well as by the
single motor parameters. All available experimental data on bi-
directional cargo transport can be understood in terms of such a
tug-of-war. Finally, the traffic of interacting motors and cargo
particles is briefly discussed in Section 5. Depending on their
interactions and the compartment geometry, the motors form
various spatio-temporal patterns such as traffic jams and undergo
nonequilibrium phase transitions between different patterns of
transport.
2. Properties of single motors

Since we are interested in the movements of molecular motors
on length scales that exceed the run length of a single motor, we
focus on those motor properties that are relevant on these scales.
We neglect the details of the protein structure and stepping cycle
[43–45] of the motor and describe their behavior in terms of the
following six parameters that govern their stepping, unbinding,
and rebinding.

First, the average velocity of the bound motor has the value vf

in the absence of load, vanishes at the stall force F ¼ Fs, and is
characterized by the velocity scale vb with vb5vf for F4Fs.
Second, the unbinding of the motor from the filament is governed
by the unbinding rate ooff which can be parametrized by the zero-
force unbinding rate koff and the detachment force Fd. Finally, the
binding or rebinding of the motor to the filament is described by
the motors’ binding rate oon, which increases with the local motor
0.1016/j.physe.2009.08.010
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concentration. These different parameters will now be explained
in more detail.

2.1. Average velocity of stepping motors

A single motor that is bound to a filament steps along this
filament with a certain average velocity v which depends, in
general, on the load force and on the nucleotide concentrations. As
one increases the load force F, the velocity decreases, vanishes at
the stall force F ¼ Fs, and becomes negative for superstall forces.
This relationship between velocity and force can be written in the
general form

v ¼VðFÞ with VðF ¼ FsÞ ¼ 0; ð2:1Þ

where VðFÞ is a monotonically decreasing function of F. A
convenient parametrization of the function V is provided by

VðFÞ ¼ vf ð1� F=FsÞ for 0rFrFs; ð2:2Þ

with the forward velocity vf ¼VðF ¼ 0Þ and [26]

VðFÞ ¼ vbð1� F=FsÞ for FsrF; ð2:3Þ

with the backward velocity scale vb5vf . Thus, the stall force Fs

may be regarded as the largest force that the motor can generate.
For conventional kinesin (or kinesin-1), the stall force Fs was

measured by several groups: Visscher et al. [46] found this force to
vary between 5.5 and 7 pN depending on the ATP concentration
whereas Nishiyama et al. [47] and Carter and Cross [10] found the
ATP-independent values 7.6 and 7 pN, respectively. The zero-force
velocity vf is of the order of 1mm=s [46,47,10], and the backward
velocity scale vb is about 6 nm/s [47,10].

2.2. Run length and unbinding rate

Because of thermal noise, a single motor must eventually
unbind from the filament. Thus, a single motor can be character-
ized by its average run or binding time /DtS and the
corresponding unbinding rate

ooff � 1=/DtS: ð2:4Þ

During its run time, the single motor steps along the filament and
covers the average run length

/DxS ¼ v/DtS: ð2:5Þ

In the absence of load, kinesin motors bound to microtubules
make about a 100 successive steps [11] which corresponds to an
average run length /DxSC1mm and an average run time
/DtSC1 s. In the absence and presence of dynactin, an accessory
protein, dynein motors make about 20 and 40 successive steps,
respectively [48]. Myosin V, which moves along actin filaments,
makes about 50 steps before it unbinds again corresponding to a
run length of about 1:5mm [49]. Myosin VI, on the other hand,
makes only about nine successive steps, i.e., its average run length
is about 280 nm [50].

The unbinding of a single motor is an activated process
governed by a corresponding energy barrier. In the presence of
an external force F that acts to detach the motor, this barrier is
reduced by F‘d where ‘d represents an appropriate molecular
length scale, which characterizes the elastic deformation of the
motor molecule required for its detachment. Therefore, the
unbinding rate ooff is expected to have the general form [15]

ooff ðFÞ ¼ koff expð‘dF=kBTÞ � koff expðF=FdÞ ð2:6Þ

as follows from Kramers theory [51] for activated processes with
the zero-force unbinding rate koff and the detachment force

Fd � kBT=‘d: ð2:7Þ
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
Such a force dependence of the unbinding rate has been obtained
from an exponential fit to the experimental data in Ref. [52] and
from a detailed network representation of the kinesin motor
[43,7].

2.3. Binding rate

An unbound motor that diffuses in the surrounding medium
and comes close to a filament can bind to this filament. This
rebinding was first described in terms of sticking (or binding)
probabilities for discrete-time motor walks [12,13]. The corre-
sponding binding rate oon, which is equal to the number of
motors that bind to a single filament site per unit time, depends
on the local concentration of the unbound motors. When the
motors can diffuse far away from the filaments within an
extended compartment, this concentration corresponds to the
molar concentration C. If the unbound motors are kept in the
vicinity of the filaments, e.g., by being attached to cargo particles
that move along the filaments, this concentration should be
regarded as an effective concentration Ceff , see Eq. (3.6) below.

In order to estimate the binding rate for filaments in contact
with a reservoir of freely diffusing motors, let us consider a system
with volume V that contains a certain number of filament binding
sites Nsi as well as a certain number of motors Nmo ¼ Nb þ Nub

where Nb and Nub represent the average number of bound and
unbound motors, respectively. We then obtain the molar con-
centration

C � Nub=NAvV ð2:8Þ

of the motors with Avogadro’s number NAvC6� 1023 (assuming
that the filament volume can be neglected) and the binding ratio

nb � Nb=Nsi: ð2:9Þ

The dissociation constant Cdis is then defined by the relation

nb � C=Cdis for small C: ð2:10Þ

For molar concentrations C\Cdis, the binding ratio nbt1 and the
binding sites of the filaments are more or less covered by motors.
For kinesin, e.g., the dissociation constant CdisC100 nM for typical
in vitro assays. This molar concentration corresponds to an
average motor–motor separation of about 255 nm within such
an assay. This implies that the filaments become already over-
crowded with kinesin motors for a rather dilute bulk concentra-
tion of the motors.

The dependence of the binding rate oon on the molar
concentration C is now described by

oon � konC for small C; ð2:11Þ

which defines the binding rate constant kon. In the steady state,
the binding flux oon must balance the unbinding flux ooff nb.
Using the asymptotic relations (2.11) and (2.10), this flux balance
equation becomes

oon � konC � ooff nb � ooff C=Cdis ð2:12Þ

for small C which implies that the binding rate constant kon

satisfies the relation

kon ¼
ooff

Cdis
¼

1

/DtSCdis
: ð2:13Þ
3. Uni-directional transport by one motor team

Now, consider a single cargo particle with N motors, which are
firmly attached to this particle, see Fig. 3. Each of these motors can
0.1016/j.physe.2009.08.010
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Fig. 3. Uni-directional transport of a cargo particle by N ¼ 4 identical motors. The

motors are firmly attached to the particle but unbind from and rebind to the

filament. Therefore, the actual number n of pulling motors varies with time

between n ¼ 0 and N.
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act as a crosslinker between the cargo and the filament and, thus,
actively pull on the cargo. However, because of the finite run
length and run time of the motors, the actual number n of pulling
motors is not constant but varies with time between zero and
N. Thus, if we include the unbound state with n ¼ 0, the cargo can
be in N þ 1 different states ðnÞ, which are distinguished by the
number n of active pulling motors.

If the cargo is in state ðnÞ, the binding of one motor to the
filament leads to state ðnþ 1Þ and the unbinding of one motor
from the filament to state ðn� 1Þ. The transition from state ðnÞ to
state ðn� 1Þ occurs with unbinding rate on;n�1, the transition from
ðnÞ to ðnþ 1Þ with binding rate on;nþ1. The probabilities Pn ¼ PnðtÞ

that the cargo particle is in state ðnÞ at time t then evolve
according to the master equation [15]

@

@t
Pn ¼ �DJn;nþ1 � DJn;n�1; ð3:1Þ

with

DJn;nþ1 � Pnon;nþ1 � Pnþ1onþ1;n ð3:2Þ

and

DJn;n�1 � Pnon;n�1 � Pn�1on�1;n: ð3:3Þ

In the steady state, the probability distribution Pn ¼ Pst
n

satisfies

Pst
nþ1onþ1;n ¼ Pst

n on;nþ1 ð3:4Þ

for 0rnrN � 1. This relation corresponds to detailed balance
between the states ðnþ 1Þ and ðnÞ and reflects the fact that all
movements of the bound cargo particle begin and end with n ¼ 0
and that every transition from ðnÞ to ðnþ 1Þ implies a backward
transition at some later time. It is also implicitly assumed here
that the binding and unbinding rates are independent of the
transition rates for stepping along the filament.

In vivo, the pulling motors are attached to their cargo via a long
and flexible stalk. In addition, electron micrographs indicate that
the spacing of the motors on the cargo is comparable to their
length. We now focus on such a ‘dilute’ regime, in which the
motors do not interfere with each other apart from the fact that
they are attached to the same cargo. In this case, the transition
rates on;n�1 and on;nþ1, have the simple form [15]

on;n�1 ¼ nooff and on;nþ1 ¼ ðN � nÞoon; ð3:5Þ

where the combinatorial factors n and N � n arise from the
different possibilities to unbind or bind a motor when the cargo
particle is in state ðnÞ. The unbinding rate ooff is taken to be equal
to the unbinding of a single motor as given by Eq. (2.4).1 The
binding rate oon, on the other hand, reflects the effective motor
concentration, Ceff , between the cargo particle and the filament.
Thus, the binding rate of a single motor attached to the cargo
should have the form
1 Strictly speaking, the unbinding motor heads always experience some

constraints arising from the attachment of the other end of the motor to the cargo

particle. These constraints are ignored here.

Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
oon ¼ konCeff : ð3:6Þ

As mentioned, kinesin is characterized by the unbinding rate
ooffC1=s and the binding rate constant konC10=ðmM sÞ. In
Ref. [15], we used the estimate oon ¼ 5=s for kinesin as suggested
by experiments in which the motors pull membrane tubes [37].
This value for the binding rate oon corresponds to an effective
molar concentration CeffC0:5mM or an average separation
between the motors of about 150 nm.

3.1. Regime of low load force

As emphasized before, the number of pulling motors changes
with time in a stochastic manner. It is then instructive to consider
the average number /nS of pulling motors where the average is
taken over all bound states of the motor. If the cargo particle does
not experience a load force or, more generally, if this load force is
sufficiently small, this average number can be calculated explicitly
for noninterfering motors. If the cargo particle is initially bound to
the filament by a single motor, i.e., nðt ¼ 0Þ ¼ 1, one obtains the
expression [15]

/nS ¼
1

1þ koff

ð1þ koff Þ
N

ð1þ koff Þ
N
� kN

off

NrN; ð3:7Þ

which depends on the maximal motor number N and on the
dimensionless desorption coefficient for zero force as given by

koff � ooff ðF ¼ 0Þ=oon ¼ ooff=konCeff ¼ Cdis=Ceff ; ð3:8Þ

with the motor’s dissociation constant Cdis as defined in Eq. (2.10).
Since the average in Eq. (3.7) is taken over the bound states of the
cargo particle, one has 1r/nSrN; the limiting values /nS ¼ 1
and /nS ¼ N are attained for large and small koff , respectively.
Furthermore, the relation (3.7) leads to /nS � N=ð1þ koff Þ for
large N.

When the noninterfering motors pull on the cargo in the
absence of load, they move with their single motor velocity v.
Thus, in this situation, the cargo particle also has velocity vca ¼ v

for all cargo states ðnÞ. The average run length /DxcaS of the cargo
particle is then given by [15]

/DxcaS � ðv=ooff NÞð1=koff Þ
N�1

ð3:9Þ

and the corresponding unbinding rate by

ooff ;ca ¼ v=/DxcaS � ooff NkN�1
off ð3:10Þ

for small zero-force desorption coefficient koff ¼ ooff=oon51, i.e.,
for strongly binding motors. Thus, in this case, the run length
increases exponentially and the unbinding rate decreases ex-
ponentially with increasing number of motors. It is interesting to
note that the two relations (3.9) and (3.10) are also valid for a
cargo particle with N ¼ 1 and then reduce to /DxcaS ¼ /DxS and
ooff ;ca ¼ ooff . If the cargo is pulled by up to N kinesin motors with
koffC0:2, the expression as given by Eq. (3.9) leads to the estimate
/DxcaSC5N�1=Nmm which implies that N ¼ 7 or 8 kinesin
molecules are sufficient to attain an average run length in the
centimeter range.

3.2. Run length distributions

In addition to the average value /DxcaS of the run length, the
model described in the previous subsection can also be used to
calculate the full run length distribution CðDxcaÞ [15], which
develops a ‘fat’ tail for N41 as shown in Fig. 4. In this figure, the
theoretical distributions are compared with experimental ones
that have been obtained in vitro by preparing carboxylated
polystyrene beads covered with kinesin [17]. In order to vary the
0.1016/j.physe.2009.08.010
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Fig. 4. Run length distributions CðDxcaÞ of cargo particles that have been incubated at different mass densities c of kinesin. In each panel, the columns represent the

experimental data, and the full lines the theoretical curves as obtained from Eq. (3.17). The seven curves for the mass densities 0:1mg=mlrcr2:5mg=ml have been obtained

using the density scale c0 ¼ 0:79mg=ml and the binding rate oon ¼ 5:1=s. This implies that the average number /nS of pulling motors increases from /nS ¼ 1:1 for

c ¼ 0:1mg=ml to /nS ¼ 3:2 for c ¼ 2:5mg=ml. For concentrations c that are comparable to or larger than 5mg=ml, the linear relation (3.12) between /NS and c is no longer

fulfilled [17].
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motor coverage of the beads, the mass density c of the kinesin
molecules in the incubation chamber is changed for fixed bead
concentration. The coverage increases linearly over a certain mass
density range until saturation is reached as deduced from
dynamic light scattering experiments. The maximal coverage is
estimated to be about 130 motors per bead.

When a bead prepared in this way is brought into contact with
immobilized microtubules, only a relatively small fraction of the
attached motors can pull simultaneously on the bead.
The maximal number of motors that can do so corresponds to
the number N as defined for a single cargo particle in the previous
subsection. Because of the used preparation method, this number
varies from bead to bead. Thus, if one observes a large number
Nbea of different beads, the behavior of this ensemble of cargo
particles involves the additional distribution PbeaðNÞ for the
number N. The simplest choice for PbeaðNÞ is a Poisson distribution

PPoðNÞ �
ðc=c0Þ

N e�c=c0

N!
; ð3:11Þ

which leads to the average number

/NS ¼ c=c0; ð3:12Þ

where the density scale c0 is used as a fit parameter and obtained
from the detailed comparison between theory and experiment,
see Fig. 4. Since the average number /NS turns out to be
relatively small, it is convenient to use the truncated Poisson
distribution as given by [17]

PbeaðNÞ ¼
1

Z
PPoðNÞ for 1rNrNmax; ð3:13Þ

with the normalization constant

Z �
XNmax

N¼1

PPoðNÞ: ð3:14Þ

The maximal number Nmax is chosen in such a way that all Nbea

beads, for which the run length is determined in the experiments,
are likely to have NrNmax motors attached to them. This
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
condition can be ensured by

Nbea
PPoðNmaxÞ

ð1�PPoð0ÞÞ
Z1 ð3:15Þ

and

Nbea
PPoðNmax þ 1Þ

ð1�PPoð0ÞÞ
o1: ð3:16Þ

The theoretical run length distributions CðDxcaÞ as shown in
Fig. 4 have been obtained by first calculating the run length
distributions CNðDxcaÞ for each NrNmax and then taking the
average over N which leads to

CðDxcaÞ ¼
XNmax

N¼1

PbeaðNÞCNðDxcaÞ: ð3:17Þ

These theoretical distributions were fitted to seven experimental
distributions using only two fit parameters, namely the density
scale c0 and the binding rate oon. The best fit was obtained for
c0 ¼ 0:79mg=ml and oon ¼ 5:1=s, see Fig. 4.

As a result, the maximal motor number Nmax is found to vary
between Nmax ¼ 2 and 7 for mass densities c between 0.1 and
2:5mg=ml corresponding to molar concentrations between 0.27
and 6.7 nM. In the same concentration range, the average number
/nS of pulling motors is found to lie between /nS ¼ 1:1 and 3.2
motors.

All distributions CðDxcaÞ in Fig. 4 decrease monotonically with
increasing run length Dxca. Such a monotonic decay is expected
since these run length distributions were obtained for beads that
bind after diffusing towards the filaments. Indeed, such a
deposition method implies that the beads are initially connected
to the filaments by a single motor molecule corresponding to the
initial condition Pnðt ¼ 0Þ ¼ dn;1 [15,17]. Recently, a somewhat
different run length distribution has been reported in Ref. [16].
This latter run length distribution was obtained by grouping all
runs that exceeded 8mm into a single bin. Furthermore, the
deposition of the kinesin-coated beads onto the microtubules was
0.1016/j.physe.2009.08.010
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performed by optical tweezers. In the concentration regime, in
which such a bead carries several motors, this deposition method
is likely to lead to an initial state of the bound bead, in which this
bead is connected to the microtubule by several motors. In such a
situation, the run length distribution can develop a maximum
which is expected to lie below 1mm.

A more direct comparison between theory and experiment
would be possible if one prepared cargo particles with a precise
number N41 of motors attached to each of them. One appealing
approach consists in crosslinker molecules, each of which binds
N41 motors. One could then study the attachment of these
crosslinkers in the dilute limit, in which the cargo particle carries
at most one crosslinker. So far, such a preparation method has not
been developed.
2 In general, the probability Pst
0 for the unbound state of the cargo is Pst

0 ¼ 1=O
with the normalization factor O as in (3.21). For F ¼ 0, one has

Pst
0 ¼ 1=ð1þoon=ooff Þ

N .
3 In general, the terms with noF=Fs give a small and negative contribution to

the sum in Eq. (3.27).
3.3. Force dependence of uni-directional transport

If the cargo particle does not experience a load force,
noninterfering motors unbind and rebind in a statistically
independent manner. In contrast, in the presence of such a force,
even noninterfering motors become coupled via the cargo. If the
cargo is subject to the force F, the n active motors share this force,
and each single motor feels the reduced force

F1 � F=n; ð3:18Þ

which now depends on n. Since n changes with time in a
stochastic manner, so does the force F1 acting on each motor. In
order to understand the consequence of this coupling between the
motors, one has to take the force dependence of the different
transition rates into account.

The unbinding rate ooff of a single motor increases exponen-
tially with the load force F, see Eq. (2.6). Thus, a single motor that
experiences the load force F1 ¼ F=n unbinds from the filament
with unbinding rate ooff ¼ koff expðF=nFdÞ where Fd denotes the
detachment force of a single motor as before. It then follows from
Eq. (3.5) that the transition rate from cargo state ðnÞ to state
ðn� 1Þ is given by

on;n�1 � ooff ðnÞ ¼ nkoff eF1=Fd ¼ nkoff eF=nFd : ð3:19Þ

Thus, all unbinding rates increase exponentially with increasing
load and the corresponding force scale nFd depends on the
number n of pulling motors.

As long as the cargo particle is bound to the filament, i.e., for
nZ1, the effective motor concentration Ceff between the cargo and
the filament, which enters the binding rate oon of a single motor
attached to the cargo, see Eq. (3.6), cannot be substantially
reduced by the load force F. The simplest assumption that is
consistent with this constraint is to consider the force-indepen-
dent binding rate

on;nþ1 � oonðnÞ ¼ ðN � nÞkonCeff ðF ¼ 0Þ ¼ ðN � nÞoon; ð3:20Þ

compare Eq. (3.6).
For noninterfering motors as considered here, the steady state

probabilities Pst
n to find the cargo particle in state ðnÞ are now

given by the explicit expression

Pst
n ¼ P

st

n =O with O �
XN

n¼0

P
st

n ð3:21Þ

and the unnormalized probabilities

P
st

n ¼ 1 for n ¼ 0

¼
N

n

� �
1

koff

� �n

e�HnF=Fd for nZ1; ð3:22Þ
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
which depend on the binomial coefficient ðNnÞ, the zero-force
desorption coefficient koff as in Eq. (3.8), and the harmonic
numbers

Hn �
Xn

m¼1

1

m
ð3:23Þ

as follows from Eq. (3.4).2

Since H1 ¼ 1 and Hnþ14Hn, the normalization factor O in Eq.
(3.21) has the asymptotic behavior

O � 1þ
N

koff
e�F=Fd for FbFd: ð3:24Þ

Furthermore, since the harmonic numbers Hn satisfy the inequal-
ities cEu þ lnðnÞoHnr1þ lnðnÞ with Euler’s constant cEuC0:577,
the exponential factors of the unnormalized probabilities P

st

n as
given by Eq. (3.22) satisfy the inequalities

e�cEuF=Fd

nF=Fd
re�HnF=Fdr

e�F=Fd

nF=Fd
: ð3:25Þ

Because the noninterfering motors interact only via their
common cargo, the steady state probabilities Pst depend only on
the detachment force Fd but not on the stall force Fs, which
characterizes the force–velocity relationship (2.1) of a single
motor. Since the force acting on the cargo particle is shared by the
n pulling motors, they all experience, on average, the same force
F1 ¼ F=n and, thus, have the same velocity equal to the
instantaneous cargo velocity

vca;nðFÞ ¼VðF=nÞ ¼VðF1Þ: ð3:26Þ

As a pulling motor unbinds from the filament, the force acting on
a single motor increases from F1 ¼ F=n to F=ðn� 1Þ and the
instantaneous cargo velocity decreases from VðF=nÞ to
VðF=ðn� 1ÞÞ. Likewise, as a detached motor rebinds to the
filament, the instantaneous velocity increases from VðF=nÞ to
VðF=ðnþ 1ÞÞ. In the steady state, the average cargo velocity vca is
then given by

vcaðFÞ ¼
XN

n¼1

Pst
n vca;nðFÞ ¼

XN

n¼1

N

n

� �
1

koff

� �n

CnðFÞ; ð3:27Þ

with the force-dependent factors

CnðFÞ �
1

O
exp½�HnF=Fd�VðF=nÞ: ð3:28Þ

With increasing load force F, the normalization factor O � 1 as in
Eq. (3.24), and the force dependence of CnðFÞ is governed (i) by
the exponential factor exp½�HnF=Fd� which decreases monotoni-
cally with increasing F as follows from Eq. (3.25) and (ii) by the
instantaneous velocity VðF=nÞ, which also decreases monotoni-
cally and vanishes for F ¼ nFs with the stall force Fs of a single
motor.

For nrF=Fs, the instantaneous velocity VðF=nÞ is governed by
backward steps and, thus, rather small.3 Thus, for F4mFs, only
cargo states ðnÞ with n4m contribute significantly to the sum in
Eq. (3.27), and their contribution is reduced by the factor
1=nF=Fdo1=mF=Fd . As a result, the cargo velocity seems to vanish
at an apparent stall force F̂ s;N , which is smaller than the true stall
Fs;N � NFs. For kinesin with koff ¼ 0:2 and Fs ¼ 6 pN, for example,
0.1016/j.physe.2009.08.010
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one finds F̂ s;5C20 pN and Fs;5 ¼ 30 pN as well as F̂ s;10C30 pN and
Fs;10 ¼ 60 pN [15]. Thus, the apparent stall force F̂ s;N , which may
be viewed as the force generated by the team of N motors,
increases with N but is substantially smaller than Fs;N ¼ NFs for
large N.

In Ref. [15], both the average cargo velocity vcaðFÞ and the
probability distribution for the instantaneous velocity of the cargo
have been calculated for kinesin with koffC0:2. With increasing
load, the latter distribution is shifted towards smaller velocity
values, becomes broader, and develops several peaks in agreement
with recent experimental observations on the in vivo transport of
vesicles and organelles [21,23]. Velocity distributions with multi-
ple peaks have also been measured in Ref. [22] but the latter
distributions presumably reflect a combination of motor trans-
port, microtubule bending, and the algorithm used for data
analysis.
4. Bi-directional transport by two motor teams

In biological cells, the motion of cargo particles along
microtubules is often observed to be bi-directional in the sense
that the particle frequently switches its direction of motion. Since
both kinesin and dynein motors are bound to these particles, it is
rather natural to assume that the bi-directional motion arises
from the competition between these two motor species. The
molecular mechanism underlying this competition has been
controversial for some time.

Two scenarios have been discussed [24,25]: (i) tug-of-war
between two motor teams: Each motor species tries to move the
cargo into its own direction, thereby performing a tug-of-war on
the cargo as illustrated in Fig. 5. (ii) Coordination by a putative
protein complex: Such a complex could prevent opposing motors
from being active at the same time, thereby excluding state (0) in
Fig. 5. The observed complexity of bidirectional transport has led
many authors to reject a tug-of-war scenario and to search for a
coordination complex. However, as recently shown in Ref. [26],
this conclusion was premature because the stochastic nature of a
realistic tug-of-war leads to rather complex transport behavior as
observed experimentally.

Thus, let us consider a team of plus and a team of minus
motors that pull in opposite directions; the direction of instanta-
neous motion is determined by the stronger team as in the two
states ðþÞ and ð�Þ of Fig. 5. However, since the number of motors
that actually pull varies with time in a stochastic manner for both
motor species, the weaker team may suddenly become the
stronger one which reverses the direction of motion. Indeed,
because of the stochastic unbinding and rebinding of the motors,
each individual motor experiences a strongly fluctuating load
force. The instantaneous value of this force depends both on the
number of motors that pull in the opposite direction and on the
number of motors that pull in the same direction since the latter
number determines how many motors share the force generated
by the opposing team.
(0) (+) (-)

+ + +-- -

Fig. 5. Cargo transport by 2 plus (blue) and 2 minus (yellow) motors: possible

configurations (0), ðþÞ, and ð�Þ of motors bound to the microtubule. For

configuration (0), the motors block each other so that the cargo does not move.

For configuration ðþÞ and ð�Þ, the cargo exhibits fast plus and minus motion,

respectively [26]. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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4.1. Single motor properties and sign conventions

In order to describe the movements of both motor species in a
consistent manner, we have to be careful about the signs of their
velocities and the signs of the forces experienced by them. We will
use the conventions (i) that the velocity of a plus motor is positive
in the absence of force, which implies that the zero-force velocity
of a minus motor is negative, and (ii) that a load force F is positive
if it acts against the forward direction of the plus motors which is
identical to the backward direction of the minus motors. Both
conventions have also been used in the previous sections for the
plus motor kinesin. In addition, we will also take the detachment
and stall forces of both motor species to be positive.

Each motor species is now characterized by (i) its force–
velocity relationship, which has the general form (2.1) and will be
parametrized as in Eqs. (2.2) and (2.3), (ii) its force-dependent
unbinding rate ooff , which defines the detachment force Fd as in
Eqs. (2.6) and (2.7), and (iii) its binding rate constant kon as in
Eqs. (2.11) and (3.6).

Plus motors. The force–velocity relationship of the plus motors
is now given by

vþ ¼VþðF1þÞ40 for F1þoFs;þ

¼VþðF1þÞo0 for F1þ4Fs;þ;

with their stall force Fs;þ defined by

VþðF1þ ¼ Fs;þÞ ¼ 0: ð4:1Þ

Furthermore, if a single plus motor feels the load force F ¼ F1þ40,
its unbinding rate is given by

ooff ;þ ¼ koff ;þeF1þ=Fd;þ ; ð4:2Þ

which depends on the detachment force Fd;þ of this motor. The
binding rate of each plus motor is taken to be

oon;þ ¼ kon;þCþ;eff ; ð4:3Þ

where Cþ;eff denotes the effective molar concentration of the plus
motors between the cargo particle and the filament, again
assumed to be independent of load force.

Minus motors. The minus motors are characterized by the
force–velocity relationship

v� ¼V�ðjF1�jÞo0 for jF1�joFs;�

¼V�ðjF1�jÞ40 for jF1�j4Fs;�

and the implicit equation

V�ðjF1�j ¼ Fs;�Þ ¼ 0 ð4:4Þ

for the stall force Fs;�.
If the minus motors feel a load force F ¼ F1�o0, they are

governed by the unbinding rate

ooff ;� ¼ koff ;�ejF1�j=Fd;� ; ð4:5Þ

which involves the corresponding detachment force Fd;�. The
binding rate of a single minus motor is also taken to be force-
independent and given by

oon;� ¼ kon;�C�;eff ; ð4:6Þ

with the effective concentration C�;eff of minus motors between
the cargo particle and the filament.

As emphasized in Section 2, almost all of these single motor
parameters can be determined from a systematic analysis of
experimental data. For the plus motor kinesin, for example, the
zero-force unbinding rate koff ;þC1=s, the detachment force
Fd;þC325 pN, the binding rate constant kon;þC10=ðmM sÞ, and
the stall force Fs;þC627 pN as mentioned before. The only
0.1016/j.physe.2009.08.010
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Fig. 6. State space of cargo with Nþ ¼ 2 plus and N� ¼ 2 minus motors. The

ðNþ þ 1ÞðN� þ 1Þ states are labeled by ðnþ;n�Þ corresponding to nþ plus (blue) and

n� minus (yellow) motors, that simultaneously pull on the cargo. These states form

a square lattice with 0rnþrNþ and 0rn�rN� . (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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quantities that are difficult to measure directly are the effective
molar concentrations Cþ;eff and C;�eff .
4 In the presence of an external load force Fex, the force balance becomes

Fnþ ¼ jFn�j þ Fex.
4.2. Stochastic tug-of-war

The stochastic tug-of-war between the plus and minus motors
can be described by an appropriate generalization of the model as
given by Eq. (3.1) to the case of two motor species. The cargo
particle now carries Nþ plus motors and N� minus motors, and the
cargo can attain ðNþ þ 1ÞðN� þ 1Þ states ðnþ;n�Þ which are
characterized by the actual numbers nþ and n� of plus and minus
motors that pull at the same time. These states form a square
lattice as shown in Fig. 6.

When the cargo particle dwells in state ðnþ;n�Þ, it can undergo
up to four different transitions. The unbinding of a plus motor
from this state is governed by the rate

oðnþ;n�jnþ � 1;n�Þ � ooff ;þðnþ;n�Þ ¼ nþkoff ;þeF1þ=Fd;þ ; ð4:7Þ

the unbinding of a minus motor by the rate

oðnþ;n�jnþ;n� � 1Þ � ooff ;�ðnþ;n�Þ ¼ n�koff ;�ejF1�j=Fd;� : ð4:8Þ

In addition, the binding rates of a plus and a minus motor are
equal to

oðnþ;n�jnþ þ 1;n�Þ � oon;þðnþ;n�Þ ¼ ðNþ � nþÞoon;þ ð4:9Þ

and

oðnþ;n�jnþ;n� þ 1Þ � oon;�ðnþ;n�Þ ¼ ðN� � n�Þoon;�: ð4:10Þ

So far, the two unbinding rates in Eqs. (4.7) and (4.8) have been
expressed in terms of the two forces F1þ and F1� experienced by a
single plus and minus motor. It is important to note, however, that
these two forces are not independent of each other, but are
strongly coupled during cargo transport as soon as both motor
species are active, i.e., as soon as both nþ40 and n�40. This can
be understood from the force balance explained in the next
subsection.
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
4.3. Force balance between two motor species

Thus, let us consider a cargo state ðnþ;n�Þ with nþ40 and
n�40. The forces experienced by a single plus and a single minus
motor are denoted by F1þ and F1� as before. The total force
experienced by the nþ plus motors is then equal to

Fnþ ¼ nþF1þ40: ð4:11Þ

Likewise, the total force experienced by the minus motors is

Fn� ¼ n�F1�o0: ð4:12Þ

In the absence of an external load force, Newton’s third law
implies that4

Fnþ ¼ jFn�j or n�F1þ ¼ nþjF1�j: ð4:13Þ

For a given state ðnþ;n�Þ, one can distinguish three cases
depending on the relative size of nþFs;þ and n�Fs;�. The first case
with nþFs;þ4n�Fs;� corresponds to plus motor dominance. Like-
wise, the second case with n�Fs;�4nþFs;þ describes minus motor
dominance. Both cases are smoothly connected by the special case
with n�Fs;� ¼ nþFs;þ.

For plus motor dominance with nþFs;þ4n�Fs;�, the plus motors
step forward if a single plus motor experiences the load force
F1þoFs;þ which implies that the nþ plus motors feel the load
Fnþ ¼ nþF1þonþFs;þ. In addition, the minus motors step backward
if a single minus motor experiences the load force jF1�j4Fs;� and
the n� minus motors feel the load jFn�j ¼ n�jF1�j4n�Fs;�. Because
of the relation Fnþ ¼ jFn�j as given by Eq. (4.13), these two
inequalities can be combined into

n�Fs;�oFnþ ¼ jFn�jonþFs;þ; ð4:14Þ

which is a necessary condition for forward steps of the plus
motors and backward steps of the minus motors. For minus motor

dominance with n�Fs;�4nþFs;þ, the same kind of reasoning leads
to the expression

nþFs;�oFnþ ¼ jFn�jon�Fs;�; ð4:15Þ

which is a necessary condition for forward steps by the minus
motors and backward steps of the plus motors. The two conditions
(4.14) and (4.15) can now be combined into the general condition

minðnþFs;þ;n�Fs;�ÞrFnþ ¼ jFn�jrmaxðnþFs;þ;n�Fs;�Þ; ð4:16Þ

where the equalities include the special case with nþFs;þ ¼ n�Fs;�.
The two inequalities in Eq. (4.16) imply that the force Fnþ

experienced by the nþ plus motors can be expressed as

Fnþ ¼ ð1� lÞn�Fs;� þ lnþFs;þ with 0olo1: ð4:17Þ

What remains to be done is to determine the parameter l. This
can be achieved by matching the instantaneous velocities of the
plus and minus motors.

4.4. Matching of instantaneous velocities

When the cargo particle is in state ðnþ;n�Þ, its instantaneous
velocity vcaðnþ;n�Þ must be equal to the instantaneous velocities
of both the plus motors and the minus motors, which implies

vcaðnþ;n�Þ ¼VþðF1þÞ ¼V�ðjF1�jÞ: ð4:18Þ

The second equality is equivalent to the implicit equation

VþðFnþ=nþÞ ¼V�ðFnþ=n�Þ ð4:19Þ

for the force Fnþ where the force balance equation jFn�j ¼
0.1016/j.physe.2009.08.010
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Fig. 7. Graphical solution of the matching condition (4.19) for the instantaneous

cargo velocity v ¼ vcaðnþ ;n�Þ and the total load force F ¼ Fnþ experienced by the

nþ plus motors in state ðnþ;n�Þ ¼ ð3;2Þ with Fnþ ¼ jFn�j. Both the force–velocity

relationship vþ ¼VþðF=nþÞ for the plus motors (blue lines) and the corresponding

relationship v� ¼V�ðF=n�Þ for the minus motors (red lines) have been taken to be

piece-wise linear. The intersection point of these two functions determines the

cargo velocity v ¼ vcaðnþ ;n�Þ and the total load force F ¼ Fnþ as indicated by the

broken lines. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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n�jF1�j ¼ Fnþ has been used again. If Fnþ is expressed in terms of
the parameter l as in Eq. (4.17), the matching condition (4.19)
becomes an implicit equation for this parameter.

The matching condition VþðFnþ=nþÞ ¼V�ðFnþ=n�Þ can be
solved graphically. In order to do so, one has to plot the two
rescaled force–velocity relationships VþðFnþ=nþÞ and V�ðFnþ=n�Þ

as a function of Fnþ. An example for such a graphical solution is
shown in Fig. 7 for the cargo state ðnþ;n�Þ ¼ ð3;2Þ and for piece-
wise linear force–velocity relationships. In the latter case, one
may also obtain an explicit relation for the parameter l, see
Ref. [26].

In this way, one can determine the total load force Fnþ ¼

Fnþðnþ;n�Þ experienced by the nþ plus motors for all cargo states
ðnþ;n�Þ. The force Fnþ can then be used to calculate the forces
F1þ ¼ Fnþ=nþ and jF1�j ¼ Fnþ=n� as experienced by a single plus
and minus motor, respectively. When these expressions are
inserted into the relations (4.7) and (4.8), one obtains the rate

ooff ;þðnþ;n�Þ ¼ nþkoff ;þeFnþðnþ ;n�Þ=nþFd;þ ð4:20Þ

for the unbinding of one plus motor from state ðnþ;n�Þ and the
corresponding rate

ooff ;�ðnþ;n�Þ ¼ n�koff ;�eFnþðnþ ;n�Þ=n�Fd;� ð4:21Þ

for the unbinding of one minus motor. These two expressions
show explicitly that these unbinding rates provide a direct
coupling between the motor numbers nþ and n�.
4.5. Different motility states of cargo particles

The stochastic tug-of-war model described in the previous
subsections leads to rather complex dynamic behavior related to
seven different motility states. These motility states can be
distinguished by the qualitative shape of the steady state
distributions Pstðnþ;n�Þ for the two motor numbers nþ and n�.
First, there are three different states for which the distribution
Pstðnþ;n�Þ has a single maximum. This single maximum may be
located at the boundaries of the ðnþ;n�Þ-plane with ðnþ;n�Þ ¼
ðn;0Þ or ðnþ;n�Þ ¼ ð0;nÞ, compare Fig. 6. These states represent fast
plus directed or minus directed motion. Alternatively, this
maximum may be located away from the boundaries of the
ðnþ;n�Þ-plane and then corresponds to a ‘no motion’ state in
which the two motor species block each other and the cargo
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
particle exhibits a strongly reduced cargo velocity as determined
by the velocity of the backward stepping motors.

Second, the cargo can attain three different motility states for
which the distribution Pstðnþ;n�Þ has two local maxima. Both of
these maxima may be located at the boundaries of the ðnþ;n�Þ-
plane and then lead to the switching between fast plus directed
and fast minus directed motion, i.e., to bi-directional transport
without pauses. In addition, the distribution Pstðnþ;n�Þ may have
one maximum away from the boundary of the cargo’s state space
and one maximum at this boundary. These latter distributions
represent uni-directional transport in the plus or minus direction
interrupted by prolonged pauses (or strongly reduced transport).
Finally, the distribution Pstðnþ;n�Þ may exhibit three local maxima

corresponding to bi-directional transport interrupted by pauses.
As one changes the single motor parameters and/or the motor

numbers Nþ and N�, the system may undergo a transition from
one motility state to another. The most important single motor
parameters that determine the cargo’s motility state are the two
desorption coefficients

koff ;þ �
koff ;þ

oon;þ
and koff ;� �

koff ;�

oon;�
ð4:22Þ

as well as the force ratios

fþ �
Fs;þ

Fd;þ
; f� �

Fs;�

Fd;�
and fs �

Fs;þ

Fs;�
: ð4:23Þ

4.6. Motility states for a symmetric tug-of-war

A particularly instructive case is provided by a ‘symmetric’ tug-
of-war that is defined by the following two simplifying features:
(i) equal numbers of plus and minus motors, i.e., Nþ ¼ N�and
(ii) identical single motor parameters for plus and minus motors
apart from their preferred directions. This latter feature implies
the equalities

koff ;þ ¼ koff ;� � koff ; fþ ¼ f� � f and fs ¼ 1 ð4:24Þ

for the desorption coefficients and force ratios and, thus, leads to a
useful reduction in the number of parameters.

As one varies the force ratio f and the desorption coefficient
koff , the cargo particle exhibits three different motility states as
shown in Fig. 8 for Nþ ¼ N� ¼ 4: (i) ‘No motion’ states for small
values of the force ratio f corresponding to weak motors. In these
states, the motor number distribution Pstðnþ;n�Þ has a single
maximum along the diagonal of the ðnþ;n�Þ-plane with nþ ¼ n�
or nþ ¼ n�71; (ii) bi-directional transport states without pauses
for large values of f and desorption coefficients koff that exceed a
certain threshold value. The corresponding motor number
distribution has two maxima of equal height at ðnþ;n�Þ ¼ ðn;0Þ
and ðnþ;n�Þ ¼ ð0;nÞ. (iii) Bi-directional transport states with

pauses for relatively large values of f and small values of koff . In
this latter case, the distribution Pstðnþ;n�Þ has three local maxima
at ðnþ;n�Þ ¼ ðn;0Þ, ðnþ;n�Þ ¼ ðn0;n0Þ, and ðnþ;n�Þ ¼ ð0;nÞ.

The different behavior of the three distinct motility regimes is
illustrated in Fig. 9 for the three parameter values ðf ; koff Þ

corresponding to the crosses A, B, and C in Fig. 8. State A with
ðf ; koff Þ ¼ ð2=3;1=5Þ belongs to the ‘no motion’ regime, state B with
ðf ; koff Þ ¼ ð6=3;1=5Þ to the regime of bi-directional transport
without pauses, and state C with ðf ; koff Þ ¼ ð4:75=3;0:4=5Þ to the
regime of bi-directional transport with pauses, see the three
columns in Fig. 9. Each column contains the motor number
distribution Pstðnþ;n�Þ, a typical trajectory of the cargo particle,
and the distribution of instantaneous cargo velocities.

As shown in the left column of Fig. 9, the distribution
Pstðnþ;n�Þ for motility state A has a single maximum located at
0.1016/j.physe.2009.08.010
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ðnþ;n�Þ ¼ ð3;3Þ. This state exhibits no motion of the cargo apart
from small fluctuations in both directions, and an instantaneous
velocity distribution with a single peak at zero cargo velocity. In
contrast, state B has a motor number distribution with two
maxima at ðnþ;n�Þ ¼ ð4;0Þ and ðnþ;n�Þ ¼ ð0;4Þ. In this state, the
cargo performs fast directed motion both in the plus and in the
minus direction but this motion does not exhibit any pauses.
The latter property also follows from the velocity distribution,
which is bimodal with two peaks of equal height at
vca ¼71mm=s. Finally, state C is characterized by a motor
number distribution with three maxima at ðnþ;n�Þ ¼ ð4;0Þ,
ðnþ;n�Þ ¼ ð3;3Þ, and ðnþ;n�Þ ¼ ð0;4Þ. The cargo trajectories now
exhibit fast motion in both directions as well as prolonged pauses
leading to a velocity distribution with three peaks.

As one varies the motor numbers Nþ and N� with
Nþ ¼ N� � N1, the qualitative features of the motility diagram
and of the corresponding motility states of the cargo as illustrated
in Figs. 8 and 9 for N1 ¼ 4 remain unchanged as has been
shown by explicit simulations for 2rN1r10 [27].5 As the motor
number N1 is increased, the distributions Pstðnþ;n�Þ exhibit
sharper and sharper maxima, and the switching times between
these maxima increase exponentially with N1 [53] as has been
numerically studied up to N1 ¼ 80. This implies that the tug-of-
war system leads to nonequilibrium phase transitions in the limit
of large N1.
5 The case N1 ¼ 1 is special since it does not exhibit any states corresponding

to the regime of bi-directional transport with pauses.

Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
5. Traffic of motors and cargo particles

In this final section, we briefly review traffic phenomena that
arise when many motors and/or cargo particles are bound to the
filaments and the bound motors and particles start to bump into
each other. Depending on their interactions and on the compart-
ment geometry, the motors can then form various spatio-temporal
patterns such as traffic jams and undergo nonequilibrium phase
transitions between different transport patterns.

5.1. Dilute transport regime

First, it is useful to give a precise definition of the dilute
transport regime, in which the bound motors and cargos can be
treated as noninteracting particles. This definition will involve
several molecular length scales including the lattice constant ‘ of
the filament. For microtubules, this lattice constant is equal to the
step size of the kinesin and dynein motors. In general, a single
motor without a cargo particle covers or occupies ‘mo=‘ binding
sites of the filament. The ratio ‘mo=‘ should typically assume a
value between ‘mo=‘ ¼ 1 for single-site occupancy and ‘mo=‘ ¼ 2
for two-site occupancy [6]. In all cases, the ratio ‘mo=‘ should be of
order one.

If many motors are bound to the filaments and the system is
characterized by binding ratio nb, see Eq. (2.9), the probability rb

that a single binding site is occupied by a motor is given by

rb ¼ ð‘mo=‘Þnb � ‘moC=‘Cdis; ð5:1Þ

with the dissociation constant Cdis as defined by Eq. (2.10).
The probability that the motor can reach the next binding site in
the forward direction is then ð1� rbÞ which is also equal to the
probability that the motor can make a forward step without
bumping into another bound motor. Therefore, the probability
that the motor can make /DxS=‘ successive steps without
interactions with other bound motors is given by
ð1� rbÞ

/DxS=‘
� exp½�/DxSrb=‘�. The dilute transport regime is

defined by the criterion that this latter probability is close to one
which implies the inequality

rb5‘=/DxS ð5:2Þ

for the single-site occupation probability rb. It then follows from
Eq. (5.1) that the molar concentration C of the motors should
belong to the concentration regime defined by

C5C� �
‘

‘mo

‘

/DxS
Cdis: ð5:3Þ

For kinesin motors on microtubules with lattice constant (and
step size) ‘ ¼ 8 nm, average run length /DxS ¼ 1mm, and
dissociation constant Cdis ¼ 100 nM, the crossover concentration
C�C1 nM which represents a rather small concentration.

Alternatively, we may consider the average separation
/Lb;bS ¼ ‘=nb of the bound motors. The inequality (5.2) then
implies that the dilute transport regime corresponds to

/Lb;bSbð‘mo=‘Þ/DxS: ð5:4Þ

Since the ratio ‘mo=‘\1, the dilute transport regime for a single
motor without cargo is also defined by the criterion that the
average separation /Lb;bS of the bound motors is large compared
to their run length /DxS.

This line of arguments can be easily generalized to the
situation of cargo particles pulled by single motors. In this case,
the relation (2.10) still applies provided C, Cdis, and nb now denote
the molar concentration, dissociation constant, and binding ratio
of the cargo particles. If these cargo particles cover ‘ca=‘ binding
sites of the filament with ‘ca=‘4‘mo=‘, the single site occupation
probability rb is now given by rb ¼ ð‘ca=‘Þnb. It then follows from
0.1016/j.physe.2009.08.010
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the inequality (5.2) for rb that the dilute transport regime of cargo
particles pulled by a single motor corresponds to the regime

C5C�� �
‘

‘ca

‘

/DxS
Cdis ð5:5Þ

for the molar concentration of these cargo particles. The cargo size
‘ca can be much larger than the lattice constant (or step size) ‘
which implies that the crossover concentration C��, which defined
the dilute transport regime, can be strongly reduced by the factor
‘=‘ca. The expression (5.5) for C�, which involves the lateral size ‘ca

of the cargo particles, will also approximately apply to the more
general case of cargo particles pulled by N motors as long as the
average step size of these cargo particles is of the order of ‘.
5.2. Overcrowding of filaments and traffic jams

For motor concentrations C that exceed the crossover concen-
tration C��, the bound motors start to interact with each other, and
these interactions become particularly strong when the filaments
become overcrowded for concentrations C\Cdis as follows from
the definition (2.10) of the dissociation constant.

From the theoretical point of view, the overcrowding of
filaments by motors should lead to traffic jams. These jams are
particularly pronounced in tube-like compartments that represent
primitive models of axons [12,29–31]. Because of such traffic
jams, the current or flux of the bound motors exhibits a maximum
as one increases the total number of motors in the system. For a
long tube-like compartment, e.g., the maximum is reached for half
Please cite this article as: R. Lipowsky, et al., Physica E (2009), doi:1
filling of the filament sites corresponding to binding ratio nb ¼

1=2 [29]. The half filling condition applies to simple motor walks,
for which one ignores the details of the chemomechanical motor
cycles, provided the motors occupy a single filament site and
z � ‘mo=‘ ¼ 1. If the motors occupy z41 binding sites, the
maximum current is already reached for binding ratios
nb ¼ 1=ðzþ

ffiffiffi
z
p
Þo1=2. On the other hand, if the motors occupy a

single site but can dwell in two internal states, the maximum
current is reached for binding ratios nb41=2 as shown in Ref. [54].

It is remarkable that the largest binding ratio reached by the
kinesins as studied experimentally in Ref. [39], is about nb ¼ 1=2.
This seems to imply that these kinesin motors are able to avoid
traffic jams in some way. As previously discussed in Ref. [6],
several possible mechanisms for such a behavior can be
envisaged: (i) the lateral size of stepping kinesins is increased
compared to static kinesins; (ii) stepping kinesins could increase
their unbinding rate by bumping into each other; (iii) stepping
kinesins could reduce the binding rate for kinesin from the bulk
solution, e.g., because of hydrodynamic interactions. Such a
mechanism would imply that the effective binding rate decreases
with increasing motor velocity; and (iv) the motors experience
mutual interactions that lead to a certain preferred separation of
the stepping kinesins. Further experiments seem to be necessary
in order to clarify this issue. Jams of molecular motors have
also been observed for other in vitro systems as described in
Refs. [36–38].

Traffic jams are also expected to occur for the traffic of cargo
particles. If the cargo particles are pulled by a single motor
species, the cargo traffic is expected to be rather similar to the
0.1016/j.physe.2009.08.010
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traffic of single motor molecules. For cargo particles pulled by two
antagonistic motor teams, on the other hand, one would
intuitively expect that jams can be reduced by bi-directional
transport. Indeed, if a jam builds up in one direction, e.g., because
of an obstacle, the cargo particles at the very end of the jam may
then start to move in the opposite direction and, in this way, to
dissolve the jam. This effect can be studied in more detail if one
maps the bi-directional motion of many cargo particles onto
lattice walks with both forward and backward steps.
5.3. Nonequilibrium phase transitions in motor traffic

In our previous studies of motor traffic, we encountered
several examples of nonequilibrium phase transitions [29,40,30].
Such transitions are interesting because a small change in a
parameter leads to a huge response of the motor system and its
transport properties.

The first examples for phase transitions in motor traffic were
theoretically found for tube-like compartments with open orifices
[29]. These transitions occur as one changes the boundary
densities at these two orifices and are intimately related to the
phase transitions found for asymmetric simple exclusion pro-
cesses (ASEPs) in one dimension. The latter processes have been
studied for a variety of systems, see, e.g., Refs. [55–61]; an
extensive review of ASEPs is contained in Ref. [62]. In the last
couple of years, several groups have also studied one-dimensional
ASEPs in contact with particle reservoirs [63–65], which are
closely related to the tube-like systems introduced in Refs. [12,29].

A special kind of phase transition occurs in a half-open tube as
shown in Fig. 10(a) [30]. The left orifice is open, the right orifice is
closed, a geometry that resembles the geometry of an axon. The
closed orifice corresponds to the synaptic terminal whereas the
motor reservoir at the open orifice corresponds to the cell body,
where the motors are synthesized. Let us focus on the situation in
which the tube contains only minus motors that would
correspond to dynein motors in axons. The minus motors enter
the tube by diffusing through the left orifice. Once they are bound
to the filament, they walk back towards this orifice. As a result of
this competition, the minus motors penetrate only up to a finite
distance from the left orifice. As one decreases the velocity, e.g., by
decreasing the ATP concentration and, thus, the chemical energy
input Dm, this penetration increases and the minus motors form a
traffic jam along the filament in front of the left orifice. This jam
length diverges as 1=v for small v [30]. In these two examples of
traffic phase transitions, the only interaction between the motors
is provided by their mutual exclusion.

Another type of transition, that can be explored by varying the
motor concentrations, occurs in systems with two species of
motors that walk in opposite directions [40]. The simplest
geometry is again provided by a tube-like compartment with
+
-
(2)

(1)

Fig. 10. Tube-like compartments that lead to nonequilibrium phase transitions in

motor traffic: (a) half-open tube with one motor species. When bound to the

filament, the motors move towards the open orifice on the left. For small motor

velocity, a jam builds up in front of this orifice. The jam length diverges in the limit

of vanishing velocity or vanishing ATP concentration [30] and (b) tube with two

motor species that walk into opposite directions and compete for the same binding

sites on the filaments. This system undergoes a symmetry breaking phase

transition, at which each filament becomes covered by either plus or minus

motors [40].
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periodic boundary conditions as shown in Fig. 10(b). Alternatively,
one may consider systems with a constant density of unbound
motors. As long as the motor–motor interactions are purely
repulsive, the flux of bound motors is determined by the majority
species, and the system evolves smoothly as one varies the motor
concentrations. The situation becomes more interesting if one
includes another, effectively attractive interaction between the
bound motors as suggested by decoration experiments [66–69] in
which filaments are decorated by motors and bare filament
segments are observed to coexist with highly decorated segments.
If the strength of this interaction is described by the parameter q,
the system undergoes a traffic phase transition at a critical value
q ¼ qc [40]. This phase transition occurs between two states with
a spontaneously broken symmetry, for which one motor species is
essentially excluded from the filaments. As one varies the bulk
composition of the motors, the total motor flux develops a
hysteresis loop across the phase boundary. In addition, if the
system contains groups of isopolar filaments, the broken sym-
metry is directly visible via the coexistence of traffic lanes with
opposite directionality as indicated in Fig. 10(b).
6. Summary and outlook

In this article, we have reviewed recent studies on the
cooperative behavior of molecular motors related to cargo
transport and traffic phenomena. The theoretical description of
this behavior is based on the properties of single motor molecules
as briefly reviewed in Section 2. Cooperative transport by teams of
molecular motors can lead to fast uni-directional or bi-directional
motion as described in Sections 3 and 4, respectively. In addition,
pattern formation processes and phase transitions in motor traffic
have been briefly discussed in Section 5.

A single team of identical motors leads to uni-directional cargo
transport as described in Section 3. This cooperative transport
mode has several advantages. First, the run length of the cargo
particle is strongly increased with increasing motor number, see
the explicit expression (3.9) and the comparison between theory
and experiment in Fig. 4 [15,17]. Second, compared to a single
motor, a team of N motors can generate larger forces. This follows
from the explicit expression (3.27) for the average cargo velocity
in the presence of a load force. If a single motor has stall force Fs,
the team of N identical motors has an apparent stall force that is of
the order of NFs for relatively small N but substantially smaller
than NFs for large N [15]. Third, cooperative transport by N motors
offers additional possibilities for regulation. One example is
provided by binding defects of the filaments such as tau proteins
that reduce the rebinding rate of the detached motors [15,70].

In eukaryotic cells, vesicles and other cargo particles often
carry both kinesins and dyneins, which leads to bi-directional
transport along microtubules. The observed transport behavior
can be understood in terms of a stochastic tug-of-war between
the two motor teams as explained in Section 4 [26,27]. In order to
define such a tug-of-war in a consistent manner, one has to take
the instantaneous force balance between the two motor teams
into account, see Section 4.3, which enters the transition rates
between the different cargo states, see Section 4.4. The stochastic
tug-of-war leads to rather complex transport behavior as observed
experimentally. In general, one finds seven distinct motility
regimes, which can be distinguished by the qualitative features
of the motor number distribution Pstðnþ;n�Þ as explained in
Section 4.5. A particularly simple case is provided by a symmetric
tug-of-war, see Section 4.6, because the symmetry reduces the
number of possible motility states from seven to three. The
corresponding motility diagram is shown in Fig. 8 and the motility
0.1016/j.physe.2009.08.010
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behavior for the different regimes is illustrated in Fig. 9. The
general, asymmetric case is considered in Refs. [26,27].

The molecular motors considered here are found in all
eukaryotic cells and provide the main machinery for force
production and cargo transport in biological systems [71]. On
the one hand, we would like to obtain a systematic understanding
of these biological processes. On the other hand, such an
understanding is also necessary in order to construct useful
biomimetic systems that are based on molecular motors. One
example is provided by biomimetic transport systems that are
inspired by the transport in axons since such systems represent
promising alternatives to microfluidic devices, in which transport
is coupled to flow induced by external pressure. Compared to
pressure-induced flow, the transport by motors has several
advantages such as: (i) cargo transport is hardly affected by the
viscosity of the aqueous solution and, thus, remains efficient even
in a dense solution of macromolecules; (ii) using two different
motor species, different types of cargo can be simultaneously
transported in both directions; and (iii) this transport system does
not require rigid compartment walls but works in soft and flexible
compartments as well. Another application of motors is their
active diffusion, by which one can increase the diffusion constant
of micrometer-sized cargo particles by several orders of magni-
tude [14]. When integrated into existing biochips for DNA and
RNA hybridization, these transport systems would act to increase
the hybridization rates.

In general, active biomimetic systems based on molecular
motors and filaments should have many applications in bioengi-
neering, pharmacology and medicine. Such applications include
sorting devices for biomolecules, motile drug delivery systems,
molecular shuttles in ‘labs-on-a-chip’, and switchable scaffolds for
tissue engineering. Thus, molecular motors and filaments are
likely to become key components in the emerging soft nanotech-
nology.
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