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Bidirectional Transport by Molecular Motors:
Enhanced Processivity and Response to External Forces
Melanie J. I. Müller,* Stefan Klumpp, and Reinhard Lipowsky
Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
ABSTRACT Intracellular transport along cytoskeletal filaments is often mediated by two teams of molecular motors that pull on
the same cargo and move in opposite directions along the filaments. We have recently shown theoretically that this bidirectional
transport can be understood as a stochastic tug-of-war between the two motor teams. Here, we further develop our theory to
investigate the experimentally accessible dynamic behavior of cargos transported by strong motors such as kinesin-1 or cyto-
plasmic dynein. By studying the run and binding times of such a cargo, we show that the properties of biological motors, such
as the large ratio of stall/detachment force and the small ratio of superstall backward/forward velocity, are favorable for bidirec-
tional cargo transport, leading to fast motion and enhanced diffusion. In addition, cargo processivity is shown to be strongly
enhanced by transport via several molecular motors even if these motors are engaged in a tug-of-war. Finally, we study the
motility of a bidirectional cargo under force. Frictional forces arising, e.g., from the viscous cytoplasm, lead to peaks in the velocity
distribution, while external forces as exerted, e.g., by an optical trap, lead to hysteresis effects. Our results, in particular our
explicit expressions for the cargo binding time and the distance of the peaks in the velocity relation under friction, are directly
accessible to in vitro as well as in vivo experiments.
INTRODUCTION
The complex internal structure of biological cells depends,

to a large extent, on active transport by molecular motors

moving along microtubules and actin filaments (1). Large-

scale transport in cells is typically achieved by the coopera-

tion of several motors, as recently shown both from the

experimental (2–6) and the theoretical points of view (7–10).

Moreover, transport in cells is often bidirectional, with car-

gos alternating between movements toward the microtubule

plus end, driven, e.g., by kinesin-1 motors, and movements

toward the microtubule minus end, driven by dynein motors.

A central challenge is to understand how these opposing

motors are coordinated (11–13). We have recently shown

that the observed patterns of bidirectional movement can

be explained by a stochastic tug-of-war, in which antago-

nistic motors exert pulling forces on each other (14–16).

Indeed, two recent experimental studies provide direct evi-

dence for this mode of motor interaction (17,18). The basic

mechanism underlying fast bidirectional transport in a

tug-of-war is provided by an instability arising from the

force-dependent unbinding of the motors from the filament

(14,15,19). Similar instabilities were also proposed to play

a role in oscillations of muscle fibers (20,21), of the mitotic

spindle (22), and of chromosomes in mitosis (23). In this

article, we extend the analysis of our tug-of-war model to

address cargo processivity, as well as the motion of the cargo

in the presence of external forces as caused by cytoplasmic

friction or by the action of an optical trap.
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The processivity of a bidirectionally moving cargo is

related to the time during which the cargo stays bound to

the filament and the times during which it moves into

each direction. Because these timescales determine the spa-

tio-temporal distribution of cargos in the cell, they are

crucial for the biological function of bidirectional transport,

and are a prominent target of cellular regulation (11,12,24–

28) as well as the focus of experimental studies of bidirec-

tional transport (11,12,24–28). Our new results for these

important quantities show that the motor parameters are

optimized for bidirectional cargo transport, leading to fast

bidirectional motion and enhanced diffusion. Furthermore,

we present an explicit expression for the binding time

of a cargo transported by two teams of motors, which

shows that the binding time increases roughly exponentially

with the motor numbers, similar to a cargo transported by

only one team (2–4,8). This result is not obvious, as the

motors are engaged in a tug-of-war and thus tend to pull

each other off the filament, thereby reducing the cargo’s

binding time.

We then extend our theory to include external forces.

We find that frictional forces, as imposed by the crowded

and viscous cytoplasm (29), lead to peaks in the velocity

distribution. External forces exerted by an optical trap can

lead to hysteresis. Both predictions are accessible to experi-

ments.
THEORY FOR STOCHASTIC TUG-OF-WAR

In this section, we briefly review the main features of the

stochastic tug-of-war between molecular motors as intro-

duced in our previous work (14,15). A more detailed account

can be found in Section S1 in the Supporting Material.
doi: 10.1016/j.bpj.2010.02.037
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Description of single motor behavior

A single motor binds to the filament, walks along it, and

unbinds from it stochastically with force-dependent rates

derived from single molecule experiments. A motor that is

bound to the filament unbinds from it with the unbinding

rate (8,14)

eðFÞ ¼ e0 exp ½F=Fd�; (1)

which increases exponentially with the load force F, the

force-scale being the detachment force Fd. The velocity of

a single filament-bound motor decreases with the load force.

The precise shape of the force-velocity-curve depends on

the experimental conditions, such as the ATP concentration

or the geometry of the linkage of the motors to the cargo

(30,31), as discussed in Section S1 in the Supporting

Material. For simplicity, the force-velocity curve is taken

to decrease linearly from the forward velocity nF at zero

load force to zero velocity at the stall force Fs.

For superstall load forces, the motor moves backward very

slowly (30), as characterized by the small backward velocity

nB � nF. Finally, an unbound motor binds to the filament

with the load-independent rate p0. The parameter values

used for the plus-motor kinesin-1 and the minus-motor cyto-

plasmic dynein are summarized in Table S1. Both motors

species can be characterized by three dimensionless parame-

ters, with very similar values for both motor species:

Desorption constant Khe0=p0x0:2;
Stall=detachment force ratio f hFs=Fdx2; and

Backward=forward velocity ratio nhnB=nFx0:01:
(2)

Tug-of-war model

We now consider a cargo transported by one team of Nþ plus

and another team of N� minus motors, as described by the

single motor parameters in Eq. 2. Typically, the numbers

Nþ and N� lie in the range of 1–10 motors (11). While being

firmly attached to the cargo, the motors bind to and unbind

from the filament in a stochastic fashion. Therefore, the

number of motors that are bound to the filament fluctuates

(see Fig. 1 a). As only the bound motors can exert force

on the cargo, the cargo motion is determined by the numbers

nþ and n� of bound plus and minus motors, with 0 % nþ%
Nþ and 0 % n� % N�. These numbers (nþ, n�) change

when a single motor binds or unbinds. The rates for these
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binding and unbinding events and the motion of the

cargo are obtained using the following two simplifying

assumptions:

Assumption 1

When bound to the filament, the motors interact because 1),

opposing motors generate load forces; and 2), same-direc-

tional motors share this load.

Assumption 2

When bound to the filament, all motors move with the same

velocity, which is equal to the cargo velocity.

These assumptions neglect a possible unequal distribution

of the load force as well as interference between same-direc-

tional motors, as reported recently (6). Inclusion of such

effects in our tug-of-war model is possible, and leads only

to quantitative rather than qualitative changes of our results

(see Section S4 in the Supporting Material).
Cargo motility

The above model exhibits complex cargo motility patterns

((14,15), and see this article’s Section S1 and Movie S1 in

the Supporting Material). Here we focus on the case of cargo

transport by strong motors with high stall/detachment force

ratios f ¼ Fs/Fd > 1, such as for kinesin-1 and dynein (see

Eq. 2). In this case, the cargo exhibits stochastic switch-

ing between fast plus and fast minus motion, as shown in

Fig. 1 b. Most of the time only motors of one type are bound

to the filament, because cargo states in which both motor

types are bound are destabilized by an unbinding cascade.

Indeed, when both types of motors are bound, the motors

exert high forces onto each other. Because the unbinding

rates, as determined by Eq. 1, increase exponentially with

the load force, the motors pull each other off the filament.

When one team becomes predominant, an unbinding cascade

quickly leads to the complete unbinding of the weaker

team (as illustrated in Fig. 1 a) for a minus motor unbinding

cascade. The remaining team can now pull the cargo without

any opposition, so that the cargo undergoes fast motion. The

direction of motion persists until stochastic motor unbinding

and binding events swap the predominance of the motor

teams. In total, the cargo exhibits stochastic switching

between fast plus and fast minus motion, as shown in

Fig. 1 b.
time [s]
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FIGURE 1 Example for tug-of-war. (a) A cargo

with a total number of Nþ ¼ 4 (solid) plus

and N� ¼ 3 (open) minus motors is pulled by a

fluctuating number of motors. Only three of the

(Nþ þ1)(N� þ1) ¼ 20 possible configurations of

(nþ, n�) are shown. (b) The trajectory of a cargo

transported by four kinesin and three dynein

motors with parameters as in Table S1 exhibits

stochastic switching between fast plus and fast

minus motion.
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BIDIRECTIONAL DYNAMICS: RUN, SWITCH,
AND BINDING TIMES

An important property of a single molecular motor is its

processivity, which is related to the binding time, i.e., to

the time a motor stays bound to the filament. Because a motor

such as kinesin-1 walks at a rather constant speed into one

direction, its binding time equals the time the motor moves

into this direction. For a bidirectionally moving cargo, one

has to distinguish several quantities related to processivity.

First, we define the binding time as the time period between

cargo binding to and cargo unbinding from the filament, i.e.,

the time period during which the cargo remains continuously

bound to the filament. This binding time has also been called

dwell time, walking time, or unbinding time. Note that the

motor movement during the binding time can include several

cargo runs into both plus and minus directions.

Then, we define the plus run time as the time interval from

the beginning to the end of a single plus run, i.e., until minus

motion or a pause begins. Note that this is different from the

plus switch time, the time from the beginning of plus motion

until the beginning of minus motion, which can be longer

because of possible intermediate pauses.

We denote the average binding time, plus run time, and

switch time by Dtb, tR,þ and tS,þ, respectively; and the

distances covered during the plus run or switch time are

the plus run or switch length, respectively.

The average plus-run velocity nR,þ and switch velocity

nS,þ are defined as quotients of the corresponding length-

and timescales.

Analogous quantities are defined for minus-directed

motion. Note that the precise values of these quantities are

very sensitive to the experimental resolution (see Section

S3 in the Supporting Material), which one has to bear in

mind when comparing theory and experiment as well as

different experiments.

The run, switch, and binding times play important roles in

intracellular transport, as they determine the spatio-temporal

distribution of bidirectional cargos in the cell. The bind-

ing time corresponds to the time during which the cargo is

actively moved by molecular motors, while an unbound

cargo diffuses passively in the cytoplasm. The run and
m
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(c) The average run time tR (blue triangles), switch time tS (red squares), and

number N ¼ Nþ ¼ N�. The analytical expression (Eq. 3, solid lines in a and c

in Table S1 were used, except for variation of the stall force Fs in panel a and o
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switch times as well as the corresponding length scales deter-

mine the cargo’s directionality, because a bidirectional cargo

can achieve net transport if its runs in one direction are, on

average, longer than the runs in the other direction. The

run times and lengths are therefore the target of cellular regu-

lation, as has been observed for the directional regulation of

mitochondria in axons (24), of melanosomes during disper-

sion and aggregation (26), of lipid-droplets during embryo

development (25), and of virus targeting during entry and

egress (27).

Parameter dependence of different timescales

In this section, we investigate the dependence of the cargo

dynamics on the single motor parameters. We focus on the

run, switch, and binding times for the symmetric tug-of-

war between equal numbers N¼ Nþ ¼ N� of plus and minus

motors with identical parameters. In this case, the indices þ
(plus) and � (minus) can be omitted for the motor parame-

ters as well as for the run and switch times.

Motor forces

As shown in Fig. 2 a, the binding times decrease with the

motor force ratio f ¼ Fs/Fd, while the run and switch times

increase with this ratio. For strong motors with a force ratio

f larger than a crossover value f* x 4, all times become inde-

pendent of f. Because active bidirectional transport requires

both long binding times and long run times, there is a tradeoff

between having strong motors with long run and switch

times and having weak motors with long binding times.

The force ratio f x 2 of biological motors (see Eq. 2) indi-

cates that long run and switch times seem to be more impor-

tant to biological function than long binding times. One

reason to ensure long run and switch times could be that

binding times might be increased anyway by molecular

crowding in the cytoplasm, as discussed in Cargo Binding

Times below. The biological force ratio of f x 2 also lies

somewhat below the crossover value f* x 4: the motor

forces are just large enough to produce sufficiently long

run and switch times, but small enough to remain sensitive

to a change in motor parameters. Such a force ratio will be

useful for cellular regulation.
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FIGURE 2 (Color) Symmetric tug-

of-war of N plus and N minus motors.

(a) Dependence of the average run

time tR (blue triangles), switch time tS
(red squares), and binding time Dtb
(green diamonds) on the stall to detach-

ment force ratio f ¼ Fs/Fd for N ¼ 4. (b)

The average run time tR (blue squares)

and velocity nR (red diamonds) strongly

decreases at a backward/forward veloc-

ity ratio n ¼ nB/nF x 0.1 for N ¼ 4.

binding time Dtb (green diamonds) increase exponentially with the motor

) reproduces the binding times for large f. Motor parameters for kinesin as

f the slope nB/Fs of the superstall force-velocity-relation in panel b.
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The binding times decrease with increasing f, because

larger motor forces increase the motor unbinding rates (1)

and therefore the probability to reach the unbound state

with no motors bound. The run and switch times, on the

other hand, increase with the force ratio f, as motors of the

losing team can hardly gain a foothold against a strong

winning team: They rip off quickly under the high generated

forces. Fluctuations which lead to a switch of the winning

team are therefore unlikely, leading to longer run and switch

times. For very large force ratios f > f* x 4, unbinding

happens rather fast so that the run and switch times become

independent of the precise value of f.
For very low force ratios f, the cargo exhibits the no-

motion motility state (0) in which it pauses most of the

time (see Section S1 in the Supporting Material for details).

When the force ratio f is increased, the cargo passes the

(�0þ) motility state of fast bidirectional motion with pauses

for f x1, which shows up as a shallow minimum in the run

and switch times, to reach the (�þ) motility state of fast

bidirectional motion for large f (see Fig. 2 a). The run and

switch times are therefore experimentally accessible finger-

prints of the cargo motility state.

Backward motion

Most biological motors walk backward only reluctantly, i.e.,

they move backward only slowly and only under high load

forces, as expressed in the small backward/forward velocity

ratio n¼ nB/nF¼ 0.01 (see Eq. 2). When two motor teams are

engaged in a tug-of-war, the motors of the losing team have

to walk backward and, because they do this only reluctantly

even under high load forces, block the motion of the forward

moving winning motors very strongly. On the other hand,

if n is large, the losing motors walk backward easily,

complying with the winning motors. At first sight, it seems

that high values of n would enhance cargo motion, and that

the small velocity ratio nx0:01 is unfavorable. However,

as shown in Fig. 2 b, the run times and velocities are larger

for biological velocity ratios n < 0.1 than for large n > 0.1.

The reason for this counterintuitive behavior is that motors

with a high tendency to block motion, i.e., with small

velocity ratio n, cause a large cargo force when they actively
m
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decrease as a function of gs with a sharp reduction for gs x 10 pNs/mm. For la
pull on a cargo that moves into the opposite direction.

Because the motor unbinding rate (1) increases exponentially

with the force, this high force triggers an unbinding cascade

of the losing motors until only the winning motor type is

bound, as described in Theory for Stochastic Tug-of-War.

This leads to the large run velocities nR in Fig. 2 b, which

are almost equal to the velocity nF ¼ 1 mm/s of the motors

without opposing forces. Furthermore, because of the high

load forces, losing motors literally have difficulties to gain

a foothold: they get ripped off rather fast. Therefore, once

a motor species has won the tug-of-war, it determines the

cargo direction for a long time, leading to the large run times

in Fig. 2 b. In the opposite case of compliant motors with

high velocity ratio n, the effect of the unbinding cascade is

weaker, leading to a high probability of states with both

motor types bound, low velocities, and fast directional

switching.

In summary, in contrast to naive expectations, a small

superstall backward velocity is favorable for fast bidirec-

tional cargo transport, in agreement with the small backward/

forward velocity ratios well below 0.1, as observed for bio-

logical motors.

Processivity enhancement by motor teams

We now investigate the dependence of the run, switch, and

binding times on the number of motors on the cargo.

Cargo binding times

In vivo, cargos typically stay on track for several minutes—

much longer than the average binding time of a single motor,

which is ~1 s. In Klumpp and Lipowsky (8), it has been

shown theoretically that the binding time of a cargo trans-

ported by several motors of one species increases exponen-

tially with the motor number, and that can therefore reach

several seconds or minutes for transport by 2–5 motors.

This result is reproduced in Fig. 3 a (line with N� ¼ 0),

and is consistent with in vitro experiments on cargo transport

by several motors of one type (2–4). The reason for the

increase of the binding times is that the cargo, when attached

to the filament by more than one motor, stays close to the

filament even when one motor unbinds, and this motor
gs
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FIGURE 3 (Color) (a) The cargo

binding time Dtb (symbols) increases

with the numbers Nþ of kinesins and

N� of dyneins, and is well approximated

by Eq. 3 (lines). Motor parameters are as

in Table S1. (b and c) Symmetric tug-of-

war of four plus and four minus motors

with kinesin parameters as in Table S1.

(b) The mean-square displacement

MSD (points) increases with time t as

(nSt)2 (blue dotted line) for small t and

as 2DSt (red dashed line) for large t.

c) The average run time tR (blue squares) and run velocity nR (red diamonds)

rge gs, the run velocity decreases ~1/gs as given by Eq. 5.
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then has the chance to rebind to the filament. This kind of

processivity enhancement has also been observed if the

cargo is tethered to the filament by a passive, i.e., nondirec-

tional, motor (32–34). When plus and minus motors pull on

the cargo, the effect on the binding time is not obvious. There

are several motors connecting the cargo to the filament,

which should increase the binding time, but the motors

perform a tug-of-war and therefore tend to pull each other

off the filament, which should decrease the binding time.

In our model, a cargo can unbind from the filament when it

reaches the state (nþ, n�) ¼ (0, 0) with neither plus or minus

motors bound to the filament. For the case of strong motors

with large stall/detachment force ratio f ¼ Fs/Fs, such as

kinesin and dynein, the binding time can be estimated as

DtbðNþ ;N�Þx

�
1 þ p0þ

e0þ

�Nþ
þ
�

1 þ p0�
e0�

�N�
�2

Nþp0þ þ N�p0�
; (3)

(see Section S2 in the Supporting Material). This expression

turns out to be a very good approximation for cargos trans-

ported by motors with high force ratios f ¼ Fs/Fd (see

Fig. 2, a and c, as well as Fig. 3 a). As predicted by Eq. 3,

the binding times increase exponentially with the numbers

Nþ of plus and N� of minus motors on the cargo (see

Fig. 2 c and Fig. 3 a). The tug-of-war leads to a reduction

of the binding time of a cargo transported by Nþ plus and

N� minus motors compared to a cargo pulled by Nþ þ N�
motors of one type, but the binding time of a cargo with

Nþ plus and N� minus motors is larger than that of a cargo

with only Nþ plus or only N� minus motors (see Fig. 3 a).

In total, the transport by two teams of opposing motors can

lead to large binding times in the minute range already for

small motor teams: The binding times for the transport by

N ¼ Nþ ¼ N� ¼ 1, 2, 3, 4, and 5 kinesins and dyneins are

2.1 s, 8.3 s, 36 s, 3.0 min, and 15 min, respectively. These

times are much larger than the binding time of ~1 s of a single

motor, and are sufficient to cover distances of tens of

micrometers before unbinding, as required for cellular trans-

port. The binding times are also much larger than the times

between directional changes, which are of the order of sec-

onds. Therefore, on these timescales characteristic of bidirec-

tional motion, cargo unbinding can often be neglected.

Until now, we have assumed that a cargo unbinds imme-

diately upon reaching the state (0, 0) with no motors bound.

Just after the last motor has unbound, the cargo is still as

close to the filament as if tethered by motors, so that its

rebinding rate is described by Nþp0þ þ N�p0� (see Eq. S7),

involving the same single motor binding rates p0þ and p0�
as in the case of a bound cargo. This means that the average

time for rebinding is 1/(Nþp0þ þ N�p0�), which for a cargo

with four kinesins and four dyneins equals 0.04 s. This is to

be compared to the time the cargo needs to diffuse away

from the filament a distance x ¼ 0.1 mm of the order of the

motor size. For a cargo of diameter R ¼ 0.5 mm with diffu-

sion constant
Biophysical Journal 98(11) 2610–2618
D ¼ kBT=ð6phRÞ (4)
at room temperature with kBT¼ 4 pN$nm, the diffusion time

is only 1̌̌/2 x2/D x 0.01 s in water with viscosity h¼ 1 mPa$s.

Thus, a cargo reaching the state (0, 0) is very likely to diffuse

away from the filament. However, in the crowded and

viscous cytoplasm, diffusion of a cellular cargo may be

slowed down considerably, leading to an effective viscosity

which is 100–1000 times that of water, depending on the

cargo size (see, e.g., (29)). Therefore motors attached to an

in vivo cargo have ~1–10 s to rebind to the filament before

the cargo has diffused away, so that in vivo cargos rarely

unbind from the track on typical experimental timescales.

Run and switch times

Fig. 2 c shows that the average run and switch times in the

symmetric tug-of-war grow exponentially with the number

N ¼ Nþ ¼ N� of plus and minus motors on the cargo for

large N. The scale of this exponential increase is the same

as for the exponential increase of the binding time as given

by Eq. 3 (see Fig. 2 c). The switch times increase from

several seconds for <5þ5 motors to minutes for 10þ10

motors, and reach enormous times already for ~20þ20

motors. Stochastic switching between plus and minus motors

is therefore an effect of small motor numbers (see also (7)).

The switch times describe the times for the transition

between the plus and minus motion maxima of the proba-

bility p(nþ, n�) to have nþ bound plus and n� bound minus

motors (see Section S1 in the Supporting Material). The

exponential increase of these transition times is reminiscent

of spontaneous symmetry-breaking in equilibrium statistical

physics. It therefore strongly indicates that the transition

between the two fast-motion maxima represents a nonequilib-

rium phase transition in the limit of large motor numbers.
Enhanced diffusion

On short timescales, the bidirectional motion is directed

ballistic motion either into the plus or into the minus direc-

tion. Thus, for short times, the mean-square displacement

grows quadratically with time according to (nSt)2 (see

Fig. 3 b). The switch velocity nS ¼ xS/tS ¼ 0.9 mm/s is

very close to the single motor velocity nF ¼ 1 mm/s, which

means that motion in one direction is rather fast even if

pauses are included.

On large length- and timescales, the bidirectional motion

resembles diffusion in one dimension: the cargo travels

back and forth stochastically (see Fig. 1 b). For a symmetric

tug-of-war between an equal number of plus and minus

motors with identical parameters, there is no net motion

even on large length- and timescales. In the latter case, cargo

motion can be viewed as a two-state random walk, where one

state describes plus and the other minus motion. For large

times, the mean-square displacement grows linearly with

time according to 2DSt, where the effective diffusion
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coefficient DS can be calculated from the average tS and vari-

ance sS
2 of the switch time distribution as DS ¼ sS

2nS
2/(2tS)

(35). This random walk approximation provides a good

description for the mean-square displacement of bidirec-

tional cargo motion for large times, as illustrated in Fig. 3 b
for a cargo pulled by four plus and four minus motors with

kinesin parameters. In this case, the diffusion coefficient is

DS ¼ 1 mm2/s, which is of the same order of magnitude as

for a cargo of radius R ¼ 0.5 mm in water, but 100–1000

times larger than the diffusion coefficient 10�2–10�3 mm2/s

for a cargo in the crowded and viscous cytoplasm (compare

this to the discussion below Eq. 4). For large motor numbers

N ¼ Nþ ¼ N�, the diffusion coefficient grows exponentially

with N (not shown). Bidirectional transport by two motor

teams therefore leads to enhanced diffusion, which could

be important for cargos in search of their destination, or

for cargos which must be distributed over the whole cell

such as mitochondria or pigment granules (11,17,26).

Enhanced diffusion can also be observed in vitro with a

single species of motors but randomized filament direc-

tion (36).

The crossover time between the ballistic and the diffusive

regime can be estimated as 2DS/nS
2, and equals 2.4 s for the

parameters of Fig. 3 b. The diffusion enhancement thus

becomes important already on timescales of a few seconds,

which is a reasonable timescale for cellular transport. Such

a transition from superdiffusive motion at short timescales

to diffusive motion at large timescales has been observed

for intracellular bidirectional transport (37,38).
RESPONSE TO EXTERNAL FORCES

In our tug-of-war model, the opposing motors exert forces on

each other. These forces are responsible for a dynamic insta-

bility that leads to a large probability of having only one

motor type bound at a given time. In such a state, the motors

do not feel any force, because no opposing motors are bound.

In this section, we investigate the effect of external forces,

i.e., nonmotor forces, exerted by the cargo’s hydrodynamic

friction or by an optical trap. These forces act on the motors

even in the absence of bound opposing motors, and therefore

affect the cargo motility during fast plus and minus motion.

This leads to interesting effects such as peaks in the velocity
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FIGURE 4 Distributions of the cargo velocity nc (solid bars) for the tug-of-war

Stokes friction coefficients gs: (a) Without friction, the cargo either moves with t

each of the two peaks at 51 mm/s is divided up into four peaks, which become eq
distribution, and hysteresis. The detailed calculations that

incorporate frictional and external forces in our tug-of-war

model are described in Section S5 in the Supporting

Material.
Viscous environments

In this section, we discuss the effect of the hydrodynamic

friction force of the cargo-motor complex. For the length-

and timescales of bidirectional cargo transport, the friction

force FSt of a cargo moving at velocity nc can be described

by Stokes’ law, FSt ¼ gs vc ¼ 6phR vc. Here, the friction

coefficient gs characterizes the strength of the frictional

force, and is proportional to the viscosity h of the sur-

rounding solution and to the cargo size R.

Fig. 3 c shows the effect of friction on the run times and

run velocities. Small friction gs < 1 pNs/mm has negligible

effects. For larger friction, cargo motion is slowed down as

expected. Furthermore, the additional frictional force on

the motors increases the motor unbinding rate (see Eq. 1).

Therefore, winning motors drop off more easily, and oppos-

ing motors can take over more quickly, which leads to a

decrease in the run times.

As discussed in Theory for Stochastic Tug-of-War, a cargo

transported by strong motors such as kinesin or dynein

is pulled by only one type of motors most of the time. If

only plus motors are actively pulling, the cargo velocity is

given by

ncðnþ ; 0Þ ¼ nFþ =½1 þ gsnFþ =ðnþFsþ Þ�znþFsþ =gs

(5)

for 0 % nþ % Nþ (see Section S5.1 in the Supporting

Material). The approximation in Eq. 5 holds for large friction

gs. When no friction is present, the cargo moves with the

single plus motor velocity, nc(nþ, 0) ¼ nFþ, independent of

the number nþ of active plus motors. Likewise, for a friction-

less cargo which is pulled by minus motors only, the cargo

velocity is nc(0, n�) ¼ nF�, independent of the value of

n�. This leads to the velocity distribution of Fig. 4 a with

only three peaks at nc ¼ nFþ, nF�, and ncx0, the latter cor-

responding to all states with both nþ > 0 and n� > 0.

When friction is present, it acts as a load force on the

motors even in states where only one motor type is bound.
d
gs gs=10 =50
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Because same-directional motors share the load force, a cargo

with a larger number of active plus motors moves faster, and

the cargo velocity depends on nþ even for states in which no

minus motor is bound (see Eq. 5). Therefore, the split up into

Nþ and N� peaks, respectively, which correspond to the

states (nþ, 0) with 1 % nþ % Nþ, and (0, n�) with 1 %
n� % N�, respectively (see Fig. 4, b–d). For very large fric-

tion gs T 50 pNs/mm, these peaks become integer multiples

of Fsþ/gs (see Eq. 5). For lower friction values, the separa-

tion of the maxima of the velocities is smaller than Fsþ/gs

and decreases with nþ (see Eq. 5). Large friction also leads

to an increase of the peak at zero velocity: i.e., increased

pausing of the cargo (see Fig. 4).

Now let us consider typical experimental values for

the Stokes friction coefficient gs. In most in vitro experi-

ments, the cargo moves in aqueous solution with viscosity

h ¼ 1 mPa$s. For a typical cargo size R x 1 mm, the friction

coefficient is gs x 10�2 pNs/mm, leading to a frictional force

FSt x 10�2 pN for a velocity nc ~1 mm/s. This is negligible

compared to typical motor forces of several pN, and should

therefore have no significant effect on cargo motion. This is

indeed the case (see Fig. 3 c and Fig. 4). Therefore, cargo

friction can be neglected in in vitro experiments.

However, as discussed after Eq. 4, the cytoplasm may

have an apparent viscosity which is 100–1000 times larger

than the viscosity of water (29,39). This leads to friction

coefficients gs x 1–10 pNs/mm and forces FSt x 1–10 pN

of the order of motor forces. This is sufficient to reduce cargo

velocity and run length (see Fig. 3 c) and to obtain peaks in

the velocity distribution (see Fig. 4). For sufficiently large

friction, these peaks can be used to determine the numbers

Nþ of plus and N� of minus motors on the cargo, and also

to estimate the stall forces of the motors or the friction coef-

ficient of the cargo. This has indeed been done for various

bidirectionally moving cellular cargos (28,39–41). Note,

however, that peaks in the velocity distribution are only

expected if the cytoplasmic friction, which depends both

on the cargo size and the cell type, is large enough. In addi-

tion, low experimental resolution and large noise levels may

smear out the individual peaks, leading to broad peaks.

Indeed, some cellular cargos display broad peaks rather

than several peaks for each direction of motion (27,42).
Tug-of-war in an optical trap

The motion of motor-driven cargos under external forces can

be studied by using an optical trap. In the constant-force

feedback mode, the trap exerts a fixed force Fext on the

moving cargo (43). Our sign convention is that positive force

opposes plus motion, while negative force opposes minus

motion.

Fig. 5 shows the force-velocity-relation of a cargo trans-

ported by four plus and four minus motors with kinesin

parameters, i.e., the average cargo velocity as function of

a constant external force Fext. If Fext ¼ 0, the tug-of-war is
Biophysical Journal 98(11) 2610–2618
symmetric, so that the average cargo velocity hnci equals

zero. However, a nonzero external force changes the balance

of plus and minus motors: A positive force does not only

slow down plus-motion, but also makes plus runs shorter

and less probable because of faster plus-motor unbinding.

Therefore, the velocity changes abruptly to fast minus veloc-

ities already for small forces Fext T 1 pN. For large positive

forces (compared to the motor forces), the external force

dominates and makes the minus motors win the tug-of-war,

so that the cargo moves almost exclusively into the minus

direction with high velocity. If the force is negative, the

plus motors win, and the cargo moves quickly into the

plus direction.

If the external force Fext is varied in time, the reaction of

the cargo depends on how fast this variation occurs: If the

force is varied too quickly, the motors do not have enough

time to adjust to the new force balance. To investigate this,

we varied the force Fext by an amount of þ1 pN from

�8 pN to þ8 pN, and by �1 pN from þ8 pN to �8 pN,

every 0.5 s (rate 2 pN/s) or every 1 s (rate 1 pN/s). This force

variation leads to a hysteresis of the average cargo velocity

(see Fig. 5). For large negative forces, the external force

dominates the motor forces, and the cargo moves into the

plus direction with high velocity. If the force is now

increased from this negative value to zero and then to posi-

tive values, it finally assists the minus motors strongly so

that they will take over and make the cargo move into the

minus direction. If the external force is varied sufficiently

fast, the cargo will not switch direction when the external

force changes sign, but slightly later, because the takeover

from plus to minus motors takes some time. In the same

way, when reducing the external force from large positive

to large negative values, the directional switch from net-

minus to net-plus motion does not occur for zero external

force but for negative force. This leads to a hysteresis loop

in the cargo velocity (see Fig. 5). This loop becomes smaller
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when the force change rate is reduced, because then the num-

bers of active motors have more time to adjust to the external

force. The loop vanishes for infinitely slow force change, i.e.,

for constant external force at each force value.

Our prediction of a hysteresis loop of the cargo velocity

could be easily checked in optical trapping experiments.

The external force could be varied by increasing the power

of the optical trap stepwise. Depending on the time delay

between the increment steps, the average cargo velocity

should exhibit a hysteresis loop of varying size. Alterna-

tively, one could study the influence of an optical trap with

fixed position on the cargo’s back-and-forth movements,

which can be viewed as spontaneous oscillations. Increasing

the trap stiffness would then lead to a modification of these

oscillations and to a reduction of the average switch time,

i.e., the oscillation period. A similar coupling to elastic ele-

ments, provided by cytoskeletal filaments, has been used to

explain mitotic spindle oscillations (22). The interplay of

motors and filaments can also lead to oscillatory behavior

if the motors bend the filaments (K. Baczynski, M. J. I.

Müller, R. Lipowsky, and J. Kierfeld, unpublished).
SUMMARY AND DISCUSSION

We have theoretically shown how bidirectional cargo trans-

port arises from a stochastic tug-of-war between two oppos-

ing teams of molecular motors. In our theory, the motors

are coupled via the mechanical interaction with their com-

mon cargo. We have focused on the biologically relevant

cargo transport by strong motors with large stall/detachment

force ratio, such as kinesin-1 or cytoplasmic dynein. Cargos

transported by two opposing teams of such strong motors

exhibit stochastic switching between fast plus and fast

minus motion, as observed experimentally. The fast bidirec-

tional motion reflects a dynamic instability arising from the

nonlinear force-dependence of the single-motor unbinding

rate. This instability leads to unbinding cascades of one

type of motor, so that there is a high probability of having

only the opposing motor type active at a given time. Switch-

ing occurs when the stochastic motor unbinding and rebind-

ing leads to an exchange of the winning and losing motor

teams.

In experiments, bidirectional transport is typically charac-

terized by run times, run lengths, and run velocities for each

direction (11,12,24–28). We have therefore described our

predictions for these quantities. For biologically relevant

parameter ranges, the run times and run lengths are of the

order of seconds and micrometers, as observed experimen-

tally (11,12,24–28). Our theory implies that the unintuitively

small superstall backward velocity and the large stall/detach-

ment force ratio f are, in fact, favorable for cellular transport,

as they lead to fast bidirectional motion and to high sensi-

tivity even to small changes in the motor parameters. The

latter property is useful for cellular regulation, which might

directly change the motor properties via signaling cascades.
Indeed, cellular regulation often leads to changes in the run

length (24–27).

Some cargos, such as mitochondria or pigment granules,

do not require net transport but need to be distributed over

the whole cell. For these cargos, active bidirectional motion

can serve as a mechanism for enhanced diffusion. Indeed,

the effective active diffusion constant of a bidirectional cargo

is ~1 mm2/s, which is of the same order of magnitude as

the passive diffusion constant of a mm-sized cargo in

aqueous solution, but much larger than that in the cytoplasm

(29,39). Therefore, active bidirectional motion provides a

mechanism to overcome slow cytoplasmic diffusion.

In vivo, cargos are often observed to stay on track for

several minutes, in contrast to the average binding time of

a single motor of ~1 s. It has been shown that the binding

time of cargos transported by several motors of one type

increases exponentially with the motor number (2–4,8).

Here we have shown that this is also true if the cargo is trans-

ported by two teams of motors that are engaged in a tug-of-

war (see Eq. 3, an equation that can be tested by in vitro

experiments). For example, a cargo carried by four kinesins

and four dyneins stays bound to the track for >2 min, which

allows them to cover distances of >100 mm without unbind-

ing. In vivo, these times and distances may be even larger

because the cargo may rebind before diffusing away in the

crowded cytoplasm.

In this crowded environment of the cell, frictional forces

may be quite large. In the stochastic tug-of-war described

here, frictional forces lead to smaller velocities, and to

peaks in the velocity distribution (see Fig. 4), as have been

observed experimentally (28,39–41). The number and loca-

tion of these peaks can be used to estimate the number of

motors on the cargo and their stall forces via Eq. 5. We

have also investigated the effect of a time-dependent external

force, which leads to hysteresis as illustrated in Fig. 5. This

effect is accessible to optical trapping experiments.
SUPPORTING MATERIAL

Thirty-eight equations, three figures, one table, and one movie are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(10)00315-2.
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7. Badoual, M., F. Jülicher, and J. Prost. 2002. Bidirectional cooperative
motion of molecular motors. Proc. Natl. Acad. Sci. USA. 99:
6696–6701.

8. Klumpp, S., and R. Lipowsky. 2005. Cooperative cargo transport
by several molecular motors. Proc. Natl. Acad. Sci. USA. 102:
17284–17289.
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