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We theoretically study the behavior of a liquid bridge formed between a pair of rigid and parallel plates. The plates are
smooth, they may either be homogeneous or decorated by circular patches of more hydrophilic domains, and they are
generally not identical. We calculate the mechanical equilibrium distance of the liquid bridge as a function of liquid volume,
contact angle, and radius of the chemical domain.We show that a liquid bridge canbe an equilibrium configuration as long as
the sum of the contact angles at the two walls is larger than 180�. When comparisons are possible, our results agree well with
recent analytical and molecular dynamics simulation results. We also derive the effective spring constant of the liquid bridge
as it is perturbed from its equilibriumdistance. The spring constant diverges when the sum of the contact angles is 180� and is
finite otherwise. The value of the spring constant decreases with increasing contact angle and volume, and the rate at which it
decreases depends strongly on the properties of the two plates.

I. Introduction

Recently there has been a resurgence of interest in capillary
phenomena. One area that has come to the fore because of ad-
vances in patterning techniques is the behavior of liquids in contact
with structured surfaces. These wetting systems are extremely in-
teresting because (i) they often show rich static anddynamical behav-
iors, such as nonspherical drop shapes,1 morphological wetting
transitions,2,3 and hysteretic phenomena,4,5 and (ii) further under-
standing in these phenomena leads to smart designs of technolog-
ical applications. The latter is particularly relevant given the current
rapid developments of microfluidic devices.6

Here we consider the behavior of a liquid bridge formed
between a pair of solid bodies. Investigations into such a liquid-
bridge geometry has a long history. Early studies of this problem
have been performed, for instance, by Poisson,7 andGoldschmidt
and Delauney8 in the 19th century, who considered surfaces of
revolutionwith constantmean curvature.More recent research in
the field is motivated by its occurrence inmany different contexts.
Examples include but are not limited to capillary condensation
and evaporation,9,10wet adhesion,11wet granularmatter,12 atom-
ic force microscopy,13,14 and low gravity15,16 experiments. The
existence of these liquid bridges often change the systems’ physical
properties because these bridges exert forces onto the surfaces, to
which they are attached.

Owing to its broad relevance and implications, a number of
aspects of the liquid-bridge geometry have been addressed. The
shape and force displacement relation of the liquid bridge have
been analyzed for both flat17 and curved solid bodies.18,19 The
stability of the liquid bridge shapes15,20,21 and the influence of
gravity15,16,19 have also been investigated. These studies were
primarily concerned with chemically homogeneous surfaces.

Recently, new patterning techniques have been developed that
allow the construction of chemical surface domains on micrometer
or evennanometer length scales.The corresponding liquid structures
are small compared to the capillary length, and gravity effects can be
safely ignored. From the theoretical point of view, bridges between
striped surface domains have been considered using both the theory
of capillary surfaces as well as lattice gas models.22,23 In addition,
polymeric nanobridges between two circular surface domains have
also been studied by Molecular Dynamics simulations.24

In this paper, we will extend these theoretical studies and
consider liquid bridges in four different types of slab geometries
or slit-pores: (i) First, we will briefly discuss the case of two
identical and chemically homogeneous surfaces, which are char-
acterized by the same contact angle; (ii) second, we will consider
two chemically homogeneous surfaces, which differ, however, in
their contact angles, a geometry that has been previously studied
in ref 25; (iii) next, one of the two surfaces is taken to contain a
circular surfacedomain, the contact angleofwhich is smaller than the
contact angle of the surrounding substrate surface; and (iv) finally,
both surfaces are decorated by circular surface domains.

In the first two cases, the two contact lines of the liquid bridge
canmove freely along the surfaces. In cases iii and iv, on the other
hand, the contact lines may be pinned by the boundaries of the
chemical surface domains. The pinning “strength” depends on
the wettability contrast between the chemical domains and the
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substrate surfaces. We will focus on a large wettability contrast,
for which the contact lines are essentially pinned to the domain
boundaries. In the latter limit, case iv of the slab geometry or slit-
pore as considered here leads to liquid bridges that are rather similar
to those formed between two circular plates as studied, for example,
in ref 21,where the contact lines are pinned at the edges of the plates.

In all four cases,wedetermine the behavior of the liquidbridges
close to their mechanical equilibrium states. We define mechan-
ical equilibrium by those liquid bridge configurations that exert
no force on the solid plates. We will analytically calculate the
equilibrium distance of the plates and then, as they are slightly
perturbed from equilibrium, we shall derive the effective spring
constant of the liquid bridges. This is the first time, to the best of
our knowledge, that the effective spring constant has been
computed. To verify our analytical results, they will be compared
with numerical calculations using the Surface Evolver package.26

We note that the bridge morphologies provide, in general,
complicated computational problems since they depend on the
details of the surface inhomogeneities which, on real surfaces, will
be random in position and spans across multiple length scales.
Thus, we shall limit ourselves to a subset of these possible
scenarios. We focus on situations where the liquid bridge solu-
tions still possess an axial symmetry. We shall assume that the
solids are flat, smooth, and parallel to each other, but the solid
plates can be either chemically homogeneous or decorated by
circular patches of more hydrophilic domains, compared to the
remaining susbtrate surface.

This paper is organized as follows. In the next section, we will
introduce our theoretical description aswell as our computational
methods. Then we present our main results: the equilibrium
distance and the spring constant of the liquid bridge as a function
of the volume, contact angle, and radius of the chemical domain.
A conclusion summarizes our results and compares them to
relevant studies in the literature.

II. Theoretical Description

Consider the geometry shown in Figure 1. A liquid β is formed
between two parallel plates σ located at x=-l1 and x= l2 and is
surrounded by a gas phase R. Throughout this paper, we shall
reserve the subscript 1 and 2 for the left and rightwalls, respectively,
as shown in Figure 1. The plates are smooth, but they can either be
chemically homogeneous or patterned with circular domains of
radius R. In the latter case, let us denote the circular domain as

γ and the surrounding domain as δ. We shall further assume that
the contact angle of the circular domain θγ is smaller than the
contact angle of the surroundingsθδ. The contact angle is defined as
the angle that the tangent of the liquid gas interface forms with the
solid surface. For the geometry shown inFigure 1, the contact angles
θ1 and θ2 are related to the shape of the liquid gas interface y(x) via

cos θ1 ¼ -
y0ð- l1Þ

ð1þy0ð- l1Þ2Þ1=2
and cos θ2 ¼ y0ðl2Þ

ð1þy0ðl2Þ2Þ1=2
ð1Þ

where the prime indicates a derivative with respect to x.
For a chemically homogeneous plate, the contact angle has a

unique value given by the well-known Young’s equation

cos θ ¼ ΣσR -Σσβ

ΣRβ
ð2Þ

where the Σ symbols correspond to the interfacial tensions
between the two phases denoted on the subscripts. The situation
is more complex when the plate is chemically patterned. In this
case, the value of the contact angle can vary between θγ and θδ
when the contact line is pinned at the domain boundary.2 Inside
and outside the circular domain, the contact angles are θγ and θδ,
respectively.

Ifwe restrict ourselves to axisymmetric solutions, the volumeof
the bridge is given by

V ¼ π

Z l2

- l1

y2ðxÞ dx ð3Þ

The free energy E of the bridge can be divided into two parts, a
bulk term that accounts for the liquid-gas interfacial energy and
two boundary terms which account for the walls. This decom-
position has the form

E ¼ 2πΣRβ

Z l2

- l1

dx yð1þy02Þ1=2 þ ΔP

2ΣRβ
y2

" #

þ
X

l¼ - l1, l2
2π

Z yðlÞ

0

y dyðΣσβðyÞ-ΣσRðyÞÞ ð4Þ

As before, theΣ symbols denote the interfacial tensions, and since
we consider axisymmetric solutions the variations of the inter-
facial tensions Σσβ(y) and ΣσR(y) must be axisymmetric too. As
shown in ref 2, the contact angle eq 2 is valid for position-
dependent interfacial tensions as well.

The pressure differenceΔP=PR-Pβ is a Lagrangemultiplier
that we need because the volume of the liquid bridge is kept
constant. As has been shown in the literature (e.g., in ref 1), the
first variation of the free energy functional leads to two equations,
an equation for the Laplace pressure

-ΔP=ΣRβ ¼ 2M ¼ 1

yð1þy02Þ1=2
-

y00

ð1þy02Þ3=2
ð5Þ

and the contact angle equation as given in eq 2. In eq 5, M is
defined as the mean curvature of the liquid bridge. It is useful to
note that for the parametrizations used here, the variations of y(x)
are automatically tangential to the walls. For general geometries,
one has to be careful about the variations of the interface shape
and of the contact line position.

Figure 1. (a) A schematic diagram of the liquid-bridge geometry.
The coordinate along the symmetry axis is denoted by x, the
distance from this axis by y, and the local tilt angle by φ. The liquid
bridge contacts two parallel plates at x = -l1 and x = l2 with
contact radii y(-l1) and y(l2), and contact angles θ1 and θ2,
respectively. Note that in general 0 e θ1, θ2 e π, and the contour
y(x) does not need to have an extremum. (b) Enlarged view close to
the contact line as the right plate is displaced from x= l2 (dashed
line) to l2þ δl2 (full line). The interface shape changes from y(x) to
yh(x) = y(x)þ h(x) and the contact line shifts by δy. Note that the
displacement h(l) displayed in (b) is negative.

(26) Brakke, K. Exp. Math. 1992, 1, 141.
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Furthermore, using Noether’s theorem, we find that the quantity

f � y

ð1þy02Þ1=2
-My2 ð6Þ

is a constant. In fact, as we shall see below, the constant f is propor-
tional to the force exerted by the liquid bridge onto the walls.

To derive the force, suppose that we have a profile y(x) that satis-
fies theEuler-Lagrange equation (eq5) for a givendropvolumeand
separation between the plates. If we now displace the plates from
[-l1, l2] to [-l1 - δl1, l2 þ δl2], the profile of the bridge changes
slightly to yh(x)=y(x)þ h(x) and the energy of the system changes by

ΔE ¼ 2πΣRβ

Z l2

- l1

dx
1þ y02 - yy00

ð1þy02Þ3=2
- 2My

" #
hðxÞ

þ 2πyðl2Þ ΣRβy0

ð1þy02Þ1=2
þðΣσβ -ΣσRÞ

" #
x¼ l2

δyðl2Þ

þ 2πyð- l1Þ -
ΣRβy0

ð1þy02Þ1=2
þðΣσβ -ΣσRÞ

" #
x¼ - l1

δyð- l1Þ

þ 2πΣRβ
y

ð1þy02Þ1=2
-My2

" #
x¼ l2

δl2

þ 2πΣRβ
y

ð1þy02Þ1=2
-My2

" #
x¼ - l1

δl1

ð7Þ
The first term is always zero because y(x) is an extremal solution.
The second and third terms can be zero in two cases, when the
terms in the bracket go to zero or when δy=0. The former is
satisfied for a smooth homogeneous surface since they correspond
to eq 1, while the latter is true when the contact line is pinned at the
boundary betweenγ andδ. In otherwords, for all the caseswe shall
consider here, only the fourth and fifth terms are important. With
this in mind, the force can be written as

F ¼ -
δE

δðl1 þ l2Þ ¼ - 2πΣRβf

¼ - 2πΣRβðyðl2Þ sin θ2 -My2ðl2ÞÞ
¼ - 2πΣRβðyð- l1Þ sin θ1 -My2ð- l1ÞÞ ð8Þ

The forceFas givenbyeq8 canbeunderstood intuitively as the force
acting on one wall and is equal to the superposition of the normal
force component arising from the liquid-gas interface (first term)
and the Laplace pressure of the liquid pushing on the wall (second
term).When the force is positive (negative), the liquid bridge acts to
increase (decrease) the separation between the two plates.

Let us now sketch how, in general, we can construct the shape
of the liquid gas interface. We shall formulate the method in a
similar way toCarter.17 Since themean curvatureM and the force
parameter f are constants, we can parametrize the surface using
the tilt angle φ = φ(x) as defined in Figure 1, which is directly
related to the shape contour y = y(x) via

tan φ ¼ y0 and cos φ ¼ ð1þy02Þ- 1=2 ð9Þ
Using the latter identity in eq 6, we obtain a quadratic equation
for y which has the two solutions

y( ¼ 1

2M
ðcos φ( ðcos2 φ- 4Mf Þ1=2Þ ð10Þ

For small f, these two solutions approach the limiting values yþ≈
cos φ/M and y- ≈ 0, respectively. Since a bridge should be

characterized by y > 0 for all x, we discard the solution y- and
thus obtain the relation

y ¼ yþ ¼ 1

2M
ðcos φþðcos2 φ- 4Mf Þ1=2Þ ð11Þ

between the shape contour y and the tilt angle φ.

The x-coordinate can be obtained by using the fact that

y0ðxÞ ¼ dy

dφ

dφ

dx
¼ tan φ

Solving for dx/dφ and integrating dx/dφ with respect to φ once,
we obtain

x ¼ -
sin φ

2M
-

1

2M

Z φ

0

dR
cos2 R

ðcos2 R- 4Mf Þ1=2 ð12Þ

Thus far, we have written our solutions in terms of two param-
eters, f andM. The appropriate values for f andM come fromour
boundary conditions. At the walls, the two tilt angles are

φðl2Þ ¼ π

2
-θ2 and φð- l1Þ ¼ θ1 -

π

2
ð13Þ

which further imply

cos θ2 ¼ sin φ2 and cos θ1 ¼ - sin φ1 ð14Þ
These relations are direct consequences of the geometry inFigure 1.
Substituting these relations to eq 12, we find the distance between
the two walls:

L ¼ l1 þ l2

l1 ¼ -
cos θ1
2M

-
1

2M

Z π=2-θ1

0

dR
cos2 R

ðcos2 R- 4Mf Þ1=2

l2 ¼ -
cos θ2
2M

-
1

2M

Z π=2-θ2

0

dR
cos2 R

ðcos2 R- 4Mf Þ1=2

ð15Þ

The second boundary condition comes from the conservation of
volume:

V ¼ P
θ¼ θ1,θ2

-
π

8M3
4 cos θ-

4

3
cos3 θ- 4Mf cos θ

� �

þ P
θ¼ θ1,θ2

-
π

8M3
4

Z π=2-θ

0

dR
cos4 R

ðcos2 R- 4Mf Þ1=2
" #

þ P
θ¼ θ1,θ2

-
π

8M3
- 12Mf

Z π=2-θ

0

dR
cos2 R

ðcos2 R- 4Mf Þ1=2
" #

ð16Þ

III. Bridge Morphologies for Vanishing External
Forces

The liquid-bridge geometry encountered in many physical
systems as well as its model experimental setups can be categori-
cally divided into two arrangements. In the first category, the solid
bodies are fixed and the liquid bridge arranges itself to minimize
its interfacial energy. In the second category, at least one of the
solid bodies is able tomove and adjust its position. The theoretical
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formulation presented in the previous section is applicable for
both categories, but from here onward, we will focus on the
latter.

In this section,we shall calculate the equilibriumdistance of the
solid surfaces when there is a liquid bridge connecting the two
plates.We define the equilibriumdistance as the distance atwhich
the force exerted by the liquid bridge is zero.

When F = f = 0, the solution for the liquid gas interface
simplifies considerably. In this case, eq 11 reads y = (1/M) cosφ
which implies

Myðl2Þ ¼ sinðθ2Þ and Myð- l1Þ ¼ sinðθ1Þ ð17Þ

at the walls. Since a liquid bridge is characterized by y(l2)> 0 and
y(-l1) > 0, such a bridge must have positive mean curvatureM>
0 for contact angles 0 < θ1 < π and 0 < θ2 < π. Furthermore,
from eq 15, we obtain the relation

cos θ1 þ cos θ2 ¼ -ML < 0 ð18Þ
which is equivalent to

2 cos
θ1 þθ2

2

� �
cos

θ1 - θ2
2

� �
¼ -ML < 0 ð19Þ

Since |θ1- θ2|<π and cos((θ1- θ2)/2)>0 for all possible values
of the two contact angles, it follows from eq 19 that

θ1 þθ2 > π ð20Þ
Thus, a liquid bridge can only be in mechanical equilibrium for
F=0 if the sum of the two contact angles exceeds 180�. For F=0,
the volume of the liquid bridge also has a relatively simple form:

V ¼ πl1
3ðsec2 θ1 - 1=3Þþπl2

3ðsec2 θ2 - 1=3Þ ð21Þ

Let us now consider the solutions for some special cases. We can
categorize them into symmetric (for identical walls) and asym-
metric cases (for nonidentical walls). There are two possible
scenarios for the former and three for the latter.
A. Symmetric Cases. When the two walls are identical,

yð- l1Þ ¼ yðl2Þ ¼ sin θ=M ð22Þ

l1 ¼ l2 ¼ L=2 ¼ - cos θ=M ð23Þ

V ¼ π

4
L3ðsec2 θ- 1=3Þ ð24Þ

The contact angle is well-defined for homogeneous plates and it is
appropriate to characterize the equilibrium plate distance as a
function of the liquid volume V and the contact angle θ. Figure 2
shows how the plates separation (normalized with respect to the
liquid volume) depends on the contact angle. The normalized
plates separation increases monotonically with respect to the
contact angle.

When the solid plates are patterned with circular patches, the
contact line may be pinned at the boundary between domains
γ and δ. In that case, the contact angle θ is not unique, and its
value can vary between θγ and θδ. On the other hand, the size of
the circular patchR sets an intrinsic length scale to the system. It is
therefore more suitable to express the equilibrium distance as a

function of V and R. Substituting y(-l1) = y(l2) = R and using
the fact that sec2θ = 1 þ tan2θ = 1 þ 4R2/L2, we obtain

V ¼ π

4
L3ð2=3þ 4R2=L2Þ ð25Þ

The equilibrium contact angle itself may be expressed either as a
function of the plate separation L or the volume V

tan θ ¼ - 2R=L ð26Þ

V ¼ - 2πR3 cot3 θð2=3þ tan2 θÞ ð27Þ

To illustrate how the liquid bridge volume depends on the equilib-
rium distance of the plates, this dependency is plotted in Figure 3.

Wehavealso checkedouranalytical result againstSurfaceEvolver
simulation results (data points in Figures 2 and 3), and it is clear that
the analytical theory and numerical results compare favorably.
B. Asymmetric Cases. Our analytical relations can be used

to study cases where the two walls are different, as long as the ge-
ometry remains axisymmetric. These include (I) two homoge-
neous plates of different contact angles, (II) one homogeneous plate
and one chemically patterned plate, and (III) two chemically
patterned plates. They are more realistic scenarios than the sym-
metric situations we have considered in the previous section. The
solutions for all these three cases are given by

ðIÞ V ¼ π
cos θ1
cos θ2

� �3

l2
3ðsec2 θ1 - 1=3Þþπl2

3ðsec2 θ2 - 1=3Þ ð28Þ

L ¼ l2ð1þ cos θ1=cos θ2Þ ð29Þ

ðIIÞ V¼-πl2
3 cos3 θ1ð1þR2

2=l2
2Þ3=2ðsec2 θ1-1=3Þþπl2

3ð2=3þR2
2=l2

2Þ ð30Þ

L ¼ l2ð1- cos θ1ð1þR2
2=l2

2Þ1=2Þ ð31Þ

ðIIIÞ V¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ l2
2 -R1

2

q
2

3
l2
2 þ 2

3
R2

2 þ 1

3
R1

2

� �
þπl2

3ð2=3þR2
2=l2

2Þ ð32Þ

L ¼ l2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ l2
2 -R1

2

q
ð33Þ

Note that we have parametrized both the volumeV and the plates
separation L in terms of l2, and for case II, we have assumed that
the rightwall is chemically patternedwith a patch of radiusR2 and
the left wall is homogeneous.

Figure 2. Normalized plates separation L/(4V/π)1/3 as a function
of contact angle θ for mechanical equilibrium with external force
F = 0. Both solid surfaces are homogeneous and have the same
contact angle.
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Figure 4a shows how the normalized distance depends on the
contact angles for case I and Figure 4(b,c) how the normalized
volumedepends on the equilibriumplates separation for case II and
III, respectively. In Figure 4a-c, numerical results obtained using
Surface Evolver are also shown for comparison for several repre-
sentative cases. The qualitative understandings we obtain from the
symmetric cases still apply in the asymmetric cases. In particular,
the equilibrium distance and hence the liquid volume increases
monotonically with the contact angle. One new and interesting
aspect of the asymmetric cases is that for an equilibrium config-
uration to exist, oneof theplates canbehydrophilic, or in the case of
a patterned plate, one of the contact angles that the liquid bridge
forms can be less than 90�. This is in agreement with a recent study
byDeSouza et al.25However, we recall that for a liquid bridge to be
stable, the sum of the contact angles θ1 þ θ2 > 180� (eq 20).

IV. Effective Spring Constants for Small External
Forces

When the plates are displaced from their equilibrium distance,
there is a restoring force that pushes the system back toward its
equilibrium state. This is true as long as one of the plates is free to
move. One physical example is provided by an atomic force
microscopy (AFM) experiment where the position of the AFM
tip is not fixed.13,14 In this case, one should in principle take into
account that the AFM tip is curved, with a radius of curvatureRtip.
However, in the limit of y(l) , Rtip, the curvature of the AFM tip
can be neglected. The correction is of order y(l)2/Rtip

2.
In the previous section, we found the equilibrium distance for

F= f=0.Toobtain the spring constant of the liquid bridge, we use
a dimensionless expansion parameter ε=Mf. Subsituting this into
eqs 8, 11, 15, and 16, and keeping the first order correction terms
in ε, we obtain

MF ¼ - 2πΣRβε ð34Þ

MyðlÞ ¼ sin θð1- ε csc2 θÞ ð35Þ

Ml ¼ - cos θ- ε lnðcsc θþ cot θÞ ð36Þ

and

-
M

3
V

π
¼

X
θ¼ θ1, θ2

cos θ -
1

3
cos3 θ- ε cos θ ð37Þ

The barred symbols correspond to the perturbed values of the
parameters.

A. Symmetric Cases. Let us first derive the spring constant
for homogeneous and identical plates.We canuse eqs 36 and 37 to
obtain the relations

ΔM ¼ 2π cos θ

3VM2
ε ð38Þ

Δl ¼ -ΔMl- ε lnðcsc θþ cot θÞ
M

ð39Þ

for the change in curvature ΔM and displacement Δl up to first
order in ε.

Substituting the above equations into eq 34, we find that the
force-displacement relation is given by

F ¼ - k2Δl ð40Þ

Figure 3. Normalized liquid bridge volume V/R3 as a function of
normalized equilibrium distance L/R. Both solid surfaces are
patterned with circular domains of radius R.

Figure 4. Asymmetric plates. (a) Normalized plates separation
L/(4V/π)1/3 as a function of contact angle θ for two homogeneous
plates of different contact angles. (b,c) Normalized volume V/R2

3

as a function of normalized plates separation L/R2 for (b) one
homogeneous plate and one chemically patterned plate, with
domain radius R2, and (c) two chemically patterned plates, with
domain radii R1 and R2.
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with the spring constant

k � - 2πΣRβ

2
cos θ

2þ sin2 θ
þ lnðcsc θþ cot θÞ

� � ð41Þ

The factor of 2 in front ofΔl comes fromour convention to define
the distance between the plates as 2l for the symmetric cases.

The derivation for the patterned plates is slightly more elabo-
rate. First, we need to solve eqs 35 and 37 simultaneously to
obtain the relations

ð1þ cos2 θÞΔθ ¼ 2ε cot θ ð42Þ

ΔMR ¼ cos θ Δθ- ε csc θ ð43Þ
for the change in curvature ΔM and contact angle Δθ up to first
order in ε. Then we substitute our results for ΔM and Δθ into
eq 36 to obtain the displacement Δl

Δl ¼ -ΔMlþ sin θ Δθ- ε lnðcsc θþ cot θÞ
M

ð44Þ

Finally, after some algebra, we find that the spring constant k in
the force-displacement relation is given by

k ¼ - 2πΣRβ

2 -
cos θ

1þ cos2 θ
þ lnðcsc θþ cot θÞ

� � ð45Þ

We plot in Figure 5a how the spring constant of the liquid bridge
depends on the equilibriumcontact angle for both the homogeneous
and patterned surfaces. For a given contact angle, the spring con-
stant is stiffer for the patterned surfaces than for the homogeneous
surfaces. The spring constant also diverges at θ=90�, as k�1/
(θ- π/2) and k� 1/(θ- π/2)3 for the homogeneous and patterned

plates, respectively. Then it decreases monotonically with respect to
the contact angle. This is what one would expect intuitively. The
larger the contact angle, the weaker the liquid bridge is bounded to
the surface and hence it is easier to displace the bridges from
equilibrium. Furthermore, as we shall see below for the asymmetric
cases, a generic feature of our calculations is that the spring constant
diverges whenever θ1 þ θ2 = 180�. Naturally, for two symmetric
plates this occurs at θ= 90�.

For patterned walls, the liquid bridge is better parametrized as a
function of volume rather than contact angle. The spring constant
is plotted inFigure 5bas a functionof thenormalizedvolumeV/R3.
We have used eq 27 to relate the liquid bridge volume and the
contact angle. In terms of the liquid bridge volume, the divergence
happens when V/R3 approches zero.

As in the previous section, we also compare our analytical results
against Surface Evolver simulations. The latter are shown as data
points in Figure 5 and they agree well with the analytical formulas.
B. Asymmetric Cases. The same machinery can be applied

to cases where the two plates are not identical. One needs to
expand y, l,M, and θh to first order in ε and then solve eqs 34-37
self-consistently. Below we write down the results for the asym-
metric cases.As in the previous section,we consider (I) twohomo-
geneous plates of different contact angles, (II) one homogeneous
plate and one chemically patterned plate, and (III) two chemically
patterned plates.

ðIÞ ð- k=2πΣRβÞ- 1 ¼ ðcos θ1þcos θ2Þ2
3 cos θ1 - cos3 θ1 þ 3 cos θ2 - cos3 θ2

þ lnðcsc θ1 þ cot θ1Þþ lnðcsc θ2 þ cot θ2Þ ð46Þ

ðIIÞ ð- k=2πΣRβÞ- 1 ¼ ðcos θ1 þ cos θ2Þcos θ1
3 cos θ1 - cos3 θ1 þ 3 cos θ2 - cos3 θ2

þ cos θ2
sin2 θ2

þ lnðcsc θ1 þ cot θ1Þþ lnðcsc θ2 þ cot θ2Þ

-
2

sin θ2
-

2 sin3 θ2 cos θ1
3 cos θ1 - cos3 θ1 þ 3 cos θ2 - cos3 θ2

 !

� 2 cot θ2 þ 2 cos θ1=sin θ2 þ sin2 θ1 cos θ1=sin θ2 - sin θ2 cos θ1
2þ 2 cos2 θ2 þ 4 cos θ2 cos θ1 þ 2 sin2 θ1 cos θ1 cos θ2

 !

ð47Þ

ðIIIÞ ð- k=2πΣRβÞ- 1 ¼ -
2

sin θ1
f ðθ1, θ2Þ- 2

sin θ2
f ðθ2,θ1Þ

þ cos θ1
sin2 θ1

þ cos θ2
sin2 θ2

þ ln ðcsc θ1 þ cot θ1Þþ ln ðcsc θ2 þ cot θ2Þ

ð48Þ
where in the last equation f(R, β) is defined as

f ðR,βÞ ¼ 2 cot Rþ 2
cos β

sin R
þ sin2 β cos β

sin R
- sin R cos β

 

þ 2 sin3 β sin R
Rβ csc R-RR csc β

2RR cos β

!.
2þ 2 cos2 R

 

þ 4 cos R cos βþ 2 sin2 β cos β cos Rþ 2 sin3 β sin R
Rβ cos R
RR cos β

!

and the two contact angles are related via R1/R2 = sinθ1/sinθ2.
The spring constants are plotted as functions of the relevant

variables in Figure 6 for the asymmetric cases, with the data

Figure 5. Symmetricplates.Normalizedspringconstantof the liquid
bridge k/(2πΣRβ) is plotted as a function of (a) equilibrium contact
angle θ for both the smooth and patterned surfaces scenarios and
(b) normalized liquid volume V/R3 for the patterned surfaces case.
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points corresponding to Surface Evolver calculations for several
representative cases. In Figure 6a, it is plotted as a function of the
contact angles of the two homogeneous plates. As we have men-
tioned in the previous section, for asymmetric plates, equilibrium
liquid bridge configurations do not require both walls to be hydro-
phobic. The effective spring constant can therefore be defined as
long as θ1þθ2>180�. When θ1þθ2=180�, the spring constant
diverges and as before, its value decreases monotonically with
increasingθ1 andθ2. It can be shown that the divergence goes as k�
1/(θ1 þ θ2 - π).

The divergence in the spring constant is also observed for case
II, again when θ1 þ θ2 = 180� or in terms of volume when the
liquid bridge volume approaches zero. This is shown inFigure 6b.
In addition, this scenario shows one interesting behavior. For a
given liquid bridge volume, there is an optimal contact angle (for
the homogeneous plate) at which the spring constant is a max-
imum. This is because the spring constant depends on the contact
angles on both surfaces. When θ1 is large, the spring constant is
relatively weak as expected. When θ1 is small, the equilibrium
contact angle at the patterned wall θ2 is large and as a result the
spring constant is again relatively weak. The spring constant is

relatively stiff when the values of the two contact angles are
moderate.

Finally, the spring constant is shown as a function of the liquid
bridge volume and the ratio of the radii of the chemical patches for
case III in Figure 6c. Unlike the two asymmetric cases we have con-
sidered above, we observe no divergence in this scenario. Instead,
the spring constant reaches a plateau as the liquid bridge volume
approaches zero.We previously note that the divergence is observed
whenever θ1 þ θ2 = 180�. Here the two contact angles are related
via sin θ1/sin θ2 = R1/R2, and as a result, the condition θ1 þ θ2 =
180� is never satisfied for R1 6¼ R2. The maximum value of spring
constant and the rate at which its value decreases as a function of
volume depends strongly on the ratio of the radii of the chemical
domains. When the ratio approaches 1, the maximum spring con-
stant is very large and it decays rapidlywith volume.This is expected
sincewe ought to recover the symmetric scenariowhen the ratio is 1.
On the other hand, when the ratio is large, the maximum spring
constant is small and it decays very slowly with volume. To bemore
precise, here we have set R2 as the typical length scale, and the
variation is slow relative to this length scale.

V. Summary

We have theoretically studied the behavior of a liquid bridge
formed between a pair of rigid and parallel plates at and close to
mechanical equilibrium, corresponding to vanishing and small
external force F. We have computed the equilibrium distance of
the liquid bridge and derived its effective spring constant as it is
perturbed from equilibrium. The analytical results are then
verified against Surface Evolver simulations.

Our results for the equilibriumdistance is identical toCarter’s17

for the identically homogeneous plates scenario and compare very
well with recent molecular dynamics simulations by Yaneva
et al.24 for surfaces patterned with circular domains of radius R.
In their paper, Yaneva et al. tentatively used the relation tan θ=
-2R/L derived by Swain and Lipowsky22 to fit their data for the
equilibrium contact angle. Swain and Lipowsky derived this rela-
tion when they considered a liquid bridge formed between two
parallel stripes. This is essentially the two-dimensional version of
the problem considered in this paper. Our results here show that
the full three-dimensional treatment of the problem gives an
identical relation and hence explain why the molecular dynamics
simulations byYaneva et al. fit the theory bySwain andLipowsky
verywell even though theywere done for different geometries.We
have also extended our calculations to include caseswhere the two
plates are not symmetric. These cases are more realistic and
relevant to real experimental systems. Whereas in the symmetric
cases the plates have to be hydrophobic for the liquid bridge to be
inmechanical equilibriumwithF=0, this condition is relaxed for
the asymmetric scenarios as long as the sum of the contact angles
is larger than 180� (see eq 19).

Our model predicts that surface patterning plays an important
role in the effective stiffness of the liquid bridge. We find that the
spring constant diverges whenever the sum of the contact angles is
180� (see Figures 5a and 6a). This can be achieved for all the cases
we have considered here, except when the two walls are patterned
with different radii of chemical domains. In the later case, θ1þ θ2
>180�, and the spring constant is always finite. Another generic
property we observe is that the spring constant gets softer with
increasing contact angle and volume. However, the maximum
value of the spring constant and the rate at which it decreases
depends on the properties of the two plates. For example, it is
possible to devise a configuration where the spring constant is
relatively soft for a large range of parameters.

Figure 6. Asymmetric plates. Normalized spring constant of the
liquid bridge k/(2πΣRβ) is plotted as a function of (a) equilibrium
contact angle θ for two different homogeneous plates and (b,c)
normalized liquid volume V/R2

3 for (b) one homogeneous plate
and one chemically patterned (domain radiusR2) plate and (c) two
chemically patterned plates with different radii of chemical domains
R1 and R2.
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In our calculations, we have assumed that when the plates are
patterned, the contact line is pinned at the boundary between the
chemical domains, γ and δ. Such contact line pinning can also be
provided by topographical patterns, for example, by circular
grooves or posts. Furthermore, the contact line may also depin
as one varies an appropriate control parameter, such as the liquid
volume. In the case of chemical domains, the contact line will
move outward when θ > θδ and inward when θ < θγ. In this
scenario, the results we have derived here for the patterned plates
are only valid for contact angles θ that satisfy θδ> θ> θγ.When
the contact line is completely in the γ and δ domains, one can
simply use the results for the homogeneous plates. One may also
need to take into account the intrinsic contact angle hysteresis of
the surfaces.27 Here we define intrinsic contact angle hysteresis as
the variation in the value of the contact angle due to roughness or
chemical heterogeneities at a length scale which is much smaller
than R and V1/3. In that case, depending on whether the contact
line is advancing or receding, one should appropriately substitute
the contact angle in our formula with the advancing or receding
contact angle.

Another potential advantage of chemical patterning is that it
may offer a simple way to stabilize liquid bridges against tilt
perturbations. For two parallel homogeneous plates, a slight tilt

or misalignment can result in a substantial displacement of the
liquid bridge.20 Such structural instability is generally an un-
wanted feature, although in some special cases, such as the trans-
portation ofwater droplets by shorebirds,28 it can be of use.While
it remains to be shown by explicit calculations, we expect that
contact line pinning at the boundaries between the chemical
domains will hinder the displacement of the liquid bridge, at least
for moderate tilt angles.

The results presented in this paper are relevant for a number of
different physical systems where the liquid-bridge geometry plays
a role. For examples, Vogel and Steen11 have recently proposed
a switchable capillary-based adhesion device, and our calcula-
tions suggest a number of ways in which surface patterning can
be used to control the stiffness of the capillary bridges and hence
the strength of the adhesion. In a wet granular system,12 liquid
bridges form and they strongly influence the stability of the
system. Here the curvatures of the beads may become important.
Thus, one useful extension of the current work will be to inves-
tigate such effects on the equilibriumdistance and spring constant
of the liquid bridges, particularly in situations when they are not
symmetric. It is also of great interest to investigate the dynamical
response of the above-mentioned physical systems near equilib-
rium. For such studies, in addition to the results presented here,
one has to take into account the viscosity of the liquid and the
friction of the liquid bridge at the parallel planes, as well as solve
its hydrodynamic equations of motion.

(27) De Souza, E. J.; Gao, L.; McCarthy, T. J.; Arzt, E.; Crosby, A. Langmuir
2008, 24, 139.
(28) Prakash, M.; Qu�er�e; Bush, J. W. M. Science 2008, 320, 931.


