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The possible correlation profiles of networks with a given scale-free degree distribution are restricted and
bounded by maximally correlated configurations. Dissortative networks consist of nested bilayers, in which
low-degree vertices are connected to high-degree vertices. The number of these bilayers attains a constant
value for large network size N. Assortative networks exhibit monolayers of low-degree vertices, the number of
which grows monotonously with N. Analytical relations for the Pearson correlation coefficient r of these
extremal configurations are derived and shown to provide lower and upper bounds on the possible r values.
Both bounds are found to vanish for large networks.
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I. INTRODUCTION

In recent years, many real world systems have been suc-
cessfully described as complex networks �1–3�. Especially
scale-free networks, in which the probability P�k� of finding
a vertex with k neighbors decays as a power law P�k��k−�

have been studied intensively. Generally, the degree distribu-
tion alone does not suffice to completely describe the inner
structure of a given network. An important additional mea-
sure is given by the so-called assortativity by degree �4,5�,
which quantifies the tendency of vertices to be connected to
other vertices of similar degree. Networks are assortative if
vertices with high degree preferably connect to other vertices
with high degree. Networks are dissortative if vertices with
high degree are linked to vertices with low degree. Technical
and biological networks have been found to be dissortatively
mixed, while social networks show assortative correlations
�see �2,4,5� for detailed lists�.

Degree correlations play an important role for many struc-
tural properties of networks, e.g., percolation thresholds
�4,6,7�, mean distance �6,7�, or robustness against vertex re-
moval �4,5,8�. Likewise, they also affect the properties of
dynamical processes taking place on networks, such as epi-
demic spreading �9–11�, stability against stimuli and pertur-
bation �12,13�, or synchronization of oscillators �14,15�.

In this paper, we analyze in detail a class of maximally
correlated scale-free networks. These networks provide valu-
able limiting cases for all possible correlation profiles of net-
works with scale-free degree distributions. We provide an
analytical description in terms of the most commonly used
measures of assortativity. In particular, we give asymptotic
boundary values for the range of all possible values of the
Pearson correlation coefficient, which is found to vanish for
large networks.

Further, we give an intuitive characterization of maxi-
mally correlated networks in terms of layers of vertices of
the same degree. We find a pronounced community structure
that can be useful for the understanding of various phenom-
ena taking place on scale-free networks.

Our paper is organized as follows: in Sec. II, we introduce
the basic parameters of our system, discuss the different
measures of assortativity, and review the algorithm from
�6,7� that we use to construct maximally correlated networks.

We then analyze the structural properties of �i� maximally
dissortative and �ii� maximally assortative networks before
we close with a brief discussion and summary.

II. MODELS AND METHODS

We use scale-free networks with a fixed degree distribu-
tion given by

P�k� =
1

A
k−� for k0 � k � kmax

= 0 otherwise, �1�

where A denotes the normalization constant. The structural
parameters of our networks are the number of vertices N, the
exponent �, and the minimal degree k0. In this work, we
focus on the range 2���3, which applies to most real
world networks. Further, we consider only simple networks
without multiple connections or self-loops �29�. For the
maximal degree kmax, we use the so-called natural cutoff
�16�

kmax = k0N1/��−1�. �2�

A combination of the two relations �1� and �2� leads to the
normalization constant

A = �
k=k0

kmax

k−� � �
k0

kmax

k−�dk =
1

� − 1
k0

1−�	1 −
1

N

 . �3�

Depending on the parameters � and k0, there is a certain
network size, below which kmax exceeds N. In the latter case,
we use kmax=N−1, so that the maximal degree can be written
as

kmax = min�k0N1/��−1�,N − 1� �4�

for all values of N. The natural cutoff follows from the well-
known configuration model �17� that we use to generate the
networks for our simulations. Many structural properties of
scale-free networks depend on the scaling of kmax with N,
such as the probability of multiple links and self-loops �18�
or clustering �19�. As discussed in detail in �18,20,21�, the
cutoff also plays an important role for the construction of
scale-free networks with a given correlation profile. As men-
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tioned before, we consider the opposite case: We take the
degree distribution as fixed and study the subsequent con-
straints on the maximal degree correlations. The qualitative
results presented below do not depend on the choice of the
maximal degree, while the analytical calculations can easily
be adapted to other choices of kmax.

A. Measures of assortativity

A complete description of the degree correlations within a
network is provided by the joint probability P�j ,k� that a
randomly chosen link connects two vertices of degree j and
k. This quantity has been used in �22,23� to study the corre-
lations in protein interaction networks and the internet. The
interpretation of P�j ,k� is often difficult because of large
statistical fluctuations that occur especially for high degrees.
As a more robust measure the average degree

Knn�k� � �
j

jP�j�k� �5�

of the neighbors of a randomly chosen vertex of degree k
was introduced in �24,25�, where P�j �k� denotes the condi-
tional probability that the neighbor of a vertex with degree k
has degree j. The conditional probability P�j �k� is related to
the joint probability P�j ,k� via

P�j�k� =
P�j,k�
PM�k�

, �6�

where PM�k� is the probability to find a vertex of degree k at
the end of a randomly chosen edge with

PM�k� =
P�k�k

�
k�=k0

kmax

P�k��k�

=
P�k�k
k�N

. �7�

Here and below, the index N of  · �N indicates an average
over all N vertices. In uncorrelated networks, the degrees of
two neighboring vertices are statistically independent, so the
joint probability factorizes as Pu�j ,k�= PM�j�PM�k� and
P�j �k� is identical to the probability PM�j�. Inserting Eq. �7�
in Eq. �5� leads to

Knn
u �k� � Knn

u � �
j

j jP�j�
k�N

=
k2�N

k�N
, �8�

i.e., Knn does not depend on k in networks without degree
correlations. Assortatively mixed networks are associated
with an increase in Knn as a function of k, while dissortative
networks show a decrease in Knn as k increases.

An even more compact and widely used measure for as-
sortativity has been introduced in �4,5�. The assortativity of a
given network is measured by a single scalar parameter r that
is basically the Pearson correlation coefficient

r �
�
j,k

jk�P�j,k� − PM�j�PM�k��

�M,j�M,k
. �9�

for the degrees j and k of the two vertices on both ends of a
randomly chosen edge �30�. The correlation coefficient is

normalized by the standard deviations �M,j ��j2�M − j�M
2

and �M,k��k2�M − k�M
2 , such that its value lies in the range

−1�r�1. Note that the index M of  · �M indicates an aver-
age over all M edges in the network. From Eq. �9� it is easy
to see that uncorrelated networks, with P�j ,k�= Pu�j ,k�
= PM�j�PM�k� are characterized by a vanishing correlation
coefficient r=0. A positive correlation coefficient r�0 indi-
cates assortative mixing, negative values likewise dissorta-
tive correlations. However, as we will show below, this dis-
tinction can be misleading for networks with broad degree
distributions and should be checked carefully.

B. Rewiring procedure for maximal correlations

There is a variety of algorithms available in order to con-
struct correlated networks. In Refs. �5,21,26�, different meth-
ods are introduced, for which both the degree distribution
and the correlation structure are given. Such algorithms are
especially useful for the analysis of real world networks,
where null models are needed that conserve certain statistical
properties, but are otherwise as uncorrelated as possible. In
this paper, we follow a somewhat complementary approach.
We study the constraints that a prescribed degree distribution
of a network poses on its possible degree correlations. We
therefore use a rewiring algorithm from Refs. �6,7� that al-
lows for the construction of maximally correlated configura-
tions for a given network with fixed degree sequence. In each
step of the iterative algorithm, two edges with four vertices
at their ends are chosen at random. Now, we label these
vertices with a, b, c, and d such that their degrees ka, kb, kc,
and kd are ordered as

ka � kb � kc � kd. �10�

Breaking of the two edges and rewiring of the vertices to
form pairs a, b and c, d leads to assortative networks, while
connecting a with d and b with c leads to dissortative net-
works. For simple networks, we check during an additional
step, whether the new connections are allowed and return to
the previous configuration otherwise.

The networks that are obtained after iteration of this pro-
cedure are maximally assortative or dissortative both in an
intuitive fashion as well as in the sense that the Pearson
coefficient attains its maximal or minimal value rmax or rmin,
respectively. To show this, we rewrite definition �9� of r as

r =
jk�M − j�Mk�M

�M,j�M,k
�11�

=

�
m=1

M

jmkm −
1

M
	�

m=1

M

km
2

�
m=1

M

km
2 −

1

M
	�

m=1

M

km
2 . �12�

From degree distribution �1� we know that there are NP�k�
vertices of degree k in the network and hence NP�k�k edges
emerging from them. Therefore, we can express the sums
over all M links in Eq. �12� as sums over all degrees and
obtain
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�
m=1

M

km = �
k=k0

kmax

NP�k�k2 = Nk2�N, �13�

�
m=1

M

km
2 = �

k=k0

kmax

NP�k�k3 = Nk3�N. �14�

Using Eqs. �13� and �14�, we can rewrite r in Eq. �12� in
terms of the moments of the degree distribution, which leads
to

r �
Ar − Br

Cr − Br
, �15�

with

Ar � �
m=1

M

jmkm, �16�

Br �
N2

M
k2�N

2 , �17�

and

Cr � Nk3�N. �18�

Since the degree distribution P�k� is fixed, both Br and Cr are
fixed as well and do not change as one rewires the network.
The only term that is affected by this rewiring is Ar as given
by Eq. �16�, which enters the numerator of Eq. �15�. There
are only three possibilities to distribute two edges between
four vertices, which lead to the terms

kakb + kckd, �19�

kakd + kbkc, �20�

kakc + kbkd �21�

in Ar. These terms satisfy the relations

kakd + kbkc = kakc + kbkd − �ka − kb��kc − kd� , �22�

kakc + kbkd = kakb + kckd − �ka − kd��kb − kc� . �23�

It now follows from these two relations together with Eq.
�10� that

kakd + kbkc � kakc + kbkd � kakb + kckd. �24�

Therefore, configuration �19� gives the biggest and configu-
ration �20� the smallest contribution to Ar and, thus, to r.
These are exactly the chosen configurations in the two ver-
sions of the algorithm, so successive iteration of these
choices will eventually lead to an asymptotic network with
maximal degree correlations, where r attains its maximal and
minimal values rmax and rmin respectively. In general, it is
possible that such a simple “hill climbing” algorithm be-
comes trapped in local minima. We therefore checked very
carefully that this is not the case in this system. First, we
performed several realizations of the random search path
starting from the same initial network, each with O�M2� it-

eration steps. When we compare the resulting networks, we
find that all properties discussed below are preserved across
all final network configurations. Second, in analogy with
simulated annealing, i.e., with increasing the temperature in
order to overcome local energy barriers, we allowed for ran-
dom rewiring with a certain probability p in each iteration
step. Starting from completely random rewiring with p=1
and decreasing the “temperature” stepwise to p=0, we again
converge to the same final configurations as before.

In the following sections, we will analyze the structure of
such networks in detail and give analytical expressions for
rmin and rmax. We begin with a discussion of maximally dis-
sortative networks.

III. MAXIMALLY DISSORTATIVE NETWORKS

A. Structural properties

Figure 1 shows the average nearest-neighbor degree
Knn�k� for maximally dissortative networks for different net-
work sizes N and decay exponent �. All curves exhibit the
expected decrease of Knn with increasing k, only for large k
some curves show a small increase in Knn�k�. The respective
vertices have so many edges that they cannot be saturated
with low-degree vertices alone so that they connect also to
some vertices with a higher degree. This effect is more pro-
nounced for networks with small N and small exponent �.
For sufficiently large N and �, we find the high-degree region
k��0 for which Knn�k��k0, i.e., all vertices with degree k
��0 are predominantly connected to k0 vertices. Close in-
spection of Figs. 1�a� and 1�b� reveals that for large networks
the value of �0 does not depend on N.

For a more detailed analysis of the structure of these net-
works, we consider the adjacency matrix A, which has N
	N entries Aij with Aij =1 if the vertices i and j are con-
nected and Aij =0 otherwise. When the indices are rearranged
according to the degree of the vertices, one can clearly iden-
tify distinct rectangular patterns of connected vertices �see
Fig. 2�. These patterns correspond to nested bilayers, where
vertices with low degree are connected to vertices with high
degree. Since the adjacency matrix is symmetric with Aji
=Aij, the “necklace” contains a central cluster with degree
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FIG. 1. �Color� Average degree Knn of the nearest neighbors of a
randomly picked vertex with degree k for maximally dissortative
networks with different sizes N and exponent �a� �=2.9, �b� �
=2.5, and �c� �=2.1. All curves are averages over 100 networks
with k0=6. Sufficiently large networks in �a� and �b� show a plateau
with k��0 for which Knn�k�=k0. The asymptotic values �0


 as
given by Eq. �32� are indicated by the arrows.
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kme. On the low-degree side, the vertices are characterized by
a single degree kn�kme, the vertices on the high-degree side
have degrees in between the boundary values �n�k��n−1.
The outermost bilayer consists of the k0 vertices that connect
to all vertices with �0�k�kmax, which leads to the region of
Knn�k��0��k0 that can be identified in Fig. 1. The second
bilayer contains all vertices with k0+1 on the one side and all
vertices with �1�k��0 on the other side, the third one all
vertices with k0+2 and �2�k��1, and so forth. The total
number of bilayers is limited by the central cluster of kme
vertices, around which they are nested �see Fig. 2�. Note that
in principle, network realizations might be generated, in
which some of the bilayers disconnect completely from the
rest of the network. However, in practice, in our simulations
we find that the corresponding degree sequences, for which
the numbers of edges on both sides of a bilayer match ex-
actly, are extremely unlikely to occur �31�.

In addition to the necklace of clusters, we find for small
networks as in Figs. 2�a� and 2�b� that the last row and col-
umn, which represent the kmax vertices, are connected to sev-
eral low-degree layers, corresponding to the increase in Knn
for large degrees in Fig. 1.

In the following, we will consider these effects in more
detail and begin with the influence of the kmax vertex. It
follows from the expression in Eq. �4� that the upper cutoff is
given by kmax=N−1 for

N � N1 � k0
��−1�/��−2�, �25�

so vertices with degree kmax are connected to all remaining
vertices in the network. For N�N1, the kmax vertex no longer
spans the entire network but is still connected to all vertices
with k0�k�kA. The value of kA can be determined from the
relation

kmax = �
k=k0

kA

Nk � �
k0

kA

NP�k�dk =
1

1 − �

N

A
�kA

1−� − k0
1−�� ,

�26�

where Nk denotes the number of vertices with degree k. Solv-
ing Eq. �26� for kA leads to

kA = k0�1 − 	1 −
1

N

k0N�2−��/��−1��1/�1−��

. �27�

For N=256, �=2.9, and k0=6, relation �27� gives kA�8,
which agrees well with Fig. 2�a�, where the kmax vertex pro-
trudes into the layer of k=8. In the limit of large networks
with NN1, expression �27� behaves as kA�k0, and all
edges of the kmax vertex are saturated by k0 vertices �see Fig.
2�c��. As we have seen above, the k0 vertices are numerous
enough to saturate all vertices with degree k��0, which
leads to the formation of the outermost bilayer. The value of
�0 can be obtained from

Nk0
k0 = �

k=�0

kmax

Nkk , �28�

or

NP�k0�k0 = �
k=�0

kmax

NP�k�k � �
�0

kmax

NP�k�kdk

=
1

2 − �

N

A
�kmax

2−� − �0
2−�� . �29�

Solving Eq. �29� for �0 leads to

�0 = k0	� − 2

k0
+ N�2−��/��−1�
1/�2−��

. �30�

For large networks with

N  N2 � 	 k0

� − 2

��−1�/��−2�

, �31�

the degree �0 attains the constant value

�0 � �0

 � k0

��−1�/��−2��� − 2�1/�2−��. �32�

This behavior can be seen in Figs. 1�a� and 1�b�, where the
values of �0


 as obtained from Eq. �32� are indicated. For �
=2.1 as in Fig. 1�c� the value of N2 as defined by Eq. �31� is
given by N2�3.6	1019�264, so the depicted network sizes
are too small to observe the plateau behavior.
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FIG. 2. �Color� Adjacency matrix A for three maximally dissortative networks with �=2.9, k0=6 and different sizes �a� N=256, �b�
N=512, and �c� N=1024. The vertices are arranged according to their degree, starting with the k0 vertices at the upper left corner to the kmax

vertex, whose connections are displayed in the last row and column. Red dots represent nonzero matrix elements Aij =1. Since Aij =Aji the
diagrams are symmetric with respect to the dashed diagonals. The bars at the top and on the left of each matrix provide a guide to the eye
by highlighting groups of vertices with identical degree by the same color. All network sizes in �a�–�c� show pronounced rectangular regions
that correspond to bilayers of vertices.
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Using expression �32� for �0, we can also determine the
values of the degrees �n that determine the borders of the
large degree side of the bilayers. As in Eq. �28�, the degree
�1 can be computed by

Nk0+1�k0 + 1� = �
k=�1

�0

Nkk , �33�

the higher values �2 ,�3 , . . . then follow from iteration of Eq.
�33� with the respective limits in the summation. As we have
seen in Fig. 2, the series of bilayers is limited by the central
degree kme. The value of kme can be determined using the
condition that the number of edges attached to all vertices
with k�kme is equal to the number of edges attached to all
vertices with k�kme. Solving the implicit equation

�
k=k0

kme

Nkk = �
k=kme

kmax

Nkk , �34�

we obtain

kme = 21/��−2�k0�1 + N�2−��/��−1��1/�2−��. �35�

This expression becomes independent of N in the limit of
large networks and attains the asymptotic value

kme � kme

 � 21/��−2�k0. �36�

The number Nbi of bilayers as given by kme−k0 is therefore
limited and reaches

Nbi � max�Nbi� = kme

 − k0 �37�

for large networks.

B. Scaling relation for rmin

After the detailed description of the layered structure of
maximally dissortative networks, we will now discuss
asymptotic estimates for the corresponding minimal assorta-
tivity coefficient r=rmin. We start from the general expres-
sion as given by Eq. �15�. As we have seen before, the only
term that depends on the degree correlation is Ar as given by
Eq. �16�; minimal assortativity rmin can therefore be ex-
pressed as

rmin =
min�Ar� − Br

Cr − Br
. �38�

In the following, we will first determine the asymptotic be-
havior of Br and Cr as given by Eqs. �17� and �18� and then
address the scaling behavior of min�Ar�. We start with the
total number of edges M, which can be obtained from

M = Nk�N = N �
k=k0

kmax

P�k�k =
N

A �
k=k0

kmax

k1−� �
N

A�k0

kmax

k1−�dk

=
� − 1

� − 2
Nk0

1 − N�2−��/��−1�

1 −
1

N

. �39�

The moments of degree distribution �1� have the general
form

kn�N = �
k=k0

kmax

P�k�kn � �
k0

kmax

P�k�kndk

= k0
n � − 1

n + 1 − �

1

1 −
1

N

�N�n+1−��/��−1� − 1� . �40�

It now follows from expressions �39� and �40� for the total
edge number M and the second moment k2�N that the term
Br as defined in Eq. �17� scales as

Br � k0
3N3/��−1� for 1 � � � 2 �41�

�k0
3N�5−��/��−1� for 2 � � � 3 �42�

�k0
3N for 3 � � �43�

in the limit of large N. Likewise, the large-N behavior of the
term Cr is given by

Cr � k0
3N3/��−1� for 1 � � � 4 �44�

�k0
3N for 4 � � , �45�

as follows from expression �40� for the third moment k3�N.
Finally, we now derive the scaling behavior of min�Ar�. In

order to do so, it is convenient to assign an arbitrary but fixed
direction to each edge m, such that it emanates from a vertex
with degree jm and points at a vertex with degree km. Now
we label the edges in such a way that the degrees of the
vertices they point at increase, i.e.,

k1 � k2 � ¯ � kM . �46�

In dissortative networks, low-degree vertices are connected
to high-degree vertices. The smallest value of Ar is then ob-
tained in a configuration, where the degrees of the vertices,
from which the edges in Eq. �46� emanate, decrease. This
corresponds to

jm = Jm � kM−m �47�

so that the sequence of J1 ,J2 , . . . ,JM satisfies accordingly

J1 � J2 � ¯ � JM . �48�

When self- and multiple connections are allowed, it is al-
ways possible to rewire a given network such that Eqs.
�46�–�48� are fulfilled. However, in dissortatively mixed net-
works multiple edges do not play an important role anyway,
because these networks contain many vertices with small de-
grees that can be connected to the few hubs, and multiple
connections can therefore be avoided. In the limit of large
networks, the fraction of multiple edges vanishes, so we can
use Eqs. �46�–�48� also for simple networks. The choice in
Eq. �47� leads to

min�Ar� = �
m=1

M

kmJm = �
m=1

M

kmkM−m. �49�

Since the term kmkM−m does not change when we substitute
m by M −m, we also have
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min�Ar� = 2 �
m=M/2

M

kmJm = 2 �
m=M/2

M

kmkM−m. �50�

From the ordering of the factors Jm in Eq. �48� we can derive
the following inequalities:

JM/2 = kM/2 � Jm � JM = k0 for M/2 � m � M .

�51�

When these inequalities are used in expression �50� for
min�Ar�, we obtain both an upper and a lower bound for
min�Ar� as given by

2kM/2 �
m=M/2

M

km � min�Ar� � 2k0 �
m=M/2

M

km. �52�

By construction, the value of kM/2 is given by the central
degree kme in Eq. �35�, for which the vertices with degree
k�kme have the same number of edges as the vertices with
k�kme. For large N, relation �35� implies the scaling behav-
ior

kme � 21/��−2�k0N1/��−1� for 1 � � � 2 �53�

�21/��−2�k0 for 2 � � . �54�

The sum over M /2 edges in Eq. �52� can again be trans-
formed into a sum over all degrees,

�
m=M/2

M

km = �
k=kme

kmax

NP�k�k2 � �
kme

kmax

NP�k�k2dk

=
N

A
1

3 − �
�kmax

3−� − kme
2−�� , �55�

together with the asymptotic behavior of kme in Eq. �54� we
find

�
m=M/2

M

km � k0
2N2/��−1� for 1 � � � 3 �56�

�k0N for 3 � � . �57�

We now combine the asymptotic behavior of kme and
�m=M/2

M km as given by Eqs. �53�, �54�, �56�, and �57� with the
two inequalities contained in Eq. �52�. First, we insert Eqs.
�53� and �56� into Eq. �52� and obtain

c1k0
3N3/��−1� � min�Ar� � c2k0

3N2/��−1� �58�

for 1���2 with two �-dependent constants c1 and c2. This
implies the asymptotic behavior of min�Ar� as given by

min�Ar� � k0
3N� for 1 � � � 2 �59�

for large N where the exponent � satisfies the inequalities

2

� − 1
� � �

3

� − 1
. �60�

Second, we use the asymptotic behavior in Eqs. �54� and
�56� together with the inequalities �52� to obtain

c1�k0
3N2/��−1� � min�Ar� � c2k0

3N2/��−1� �61�

for 2���3, which leads to

min�Ar� � k0
3N2/��−1� for 2 � � � 3. �62�

For the region ��3, we combine the two asymptotic rela-
tions �54� and �57� with the inequalities �52� and obtain

min�Ar� � k0
3N for 3 � � . �63�

Putting the relations for min�Ar� as given by Eqs.
�59�–�63� together with Br and Cr in Eqs. �41�–�45� we fi-
nally arrive at a general expression for the scaling behavior
of the Pearson coefficient for maximally dissortative net-
works:

rmin � − c1��,k0� for � � 2

� − N�2−��/��−1� for 2 � � � 3

� − N��−4�/��−1� for 3 � � � 4

� − c2��,k0� for 4 � � , �64�

with the two �- and k0-dependent constants c1 and c2. For
2���3 the same result has also been derived in �27�.

For 2���4 it follows from Eq. �64� that the correlation
coefficient vanishes in the limit of large N, which is con-
firmed by simulations �see Fig. 3�. This is surprising since
the structure of the underlying networks is nevertheless
highly correlated, as we have seen in the previous section.
We conclude that while uncorrelated networks are charac-
terized by a vanishing correlation coefficient, the opposite
is not necessarily true. Especially for large networks, the
Pearson coefficient is not sufficient to judge the correlation
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FIG. 3. �Color online� Pearson coefficient rmin for maximally
dissortative networks as a function of network size N for different
values of the scaling exponent �. All data points are averages over
100 networks with minimal degree k0=6, error bars denote the stan-
dard deviation. The lines are fits using Eq. �64� with the amplitude
as the only fit parameter. For all values of the exponent �, the data
for the minimal Pearson coefficient rmin decay to zero for large N,
in good agreement with the theoretical predictions. The inset shows
the same data for �rmin� as a function of N in a double-logarithmic
plot. All curves clearly exhibit the expected power-law scaling as in
Eq. �64�.
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structure of a given network, and additional measures need
to be taken into account.

IV. MAXIMALLY ASSORTATIVE NETWORKS

We will now turn to maximally assortative networks,
starting with a discussion of their main structural character-
istics.

A. Structural properties

For a first overview, we consider again the adjacency ma-
trix A �see Fig. 4�. Using the previously explained ordering
according to the degree of the vertices, we find pronounced
quadratic regions in A. These regions represent monolayers
of vertices, which are only connected to vertices of the same
degree. A comparison of Figs. 4�a�–4�c� shows that the num-
ber of such layers grows with network size N. Furthermore,
inspection of these figures also reveals a region of high-
degree vertices with k�kmax, the edges of which span sev-
eral layers of vertices and thereby limit the number of low-
degree vertices that are connected only to vertices of the
same degree. The relative size of this region of high-degree
vertices in the lower right corner in Figs. 4�a�–4�c� decreases
with increasing network size N.

For a more detailed analysis, we consider again the aver-
age nearest-neighbor degree Knn�k� in Fig. 5 for networks
with different sizes N and exponent �. Most curves exhibit a
region of low degrees k�ks, for which Knn�k��k. This cor-
responds to the described layers of vertices that saturate
all their edges with vertices of the same degree. We also see
that ks increases with N. This region is followed by a region
of degrees k with Knn�k��k. The corresponding vertices are
not only connected to vertices with the same degree, but
additionally to vertices of higher degree. As we have seen
in Fig. 4, these edges emerge from high-degree vertices that
are not numerous enough in order to saturate all their edges
with vertices of the same degree. Subsequently, they have
to “export” some of their edges to vertices with smaller k.
All depicted networks in Fig. 5 show therefore a dissortative
region for large k, where Knn decreases with growing k,

although the networks are maximally assortative. This effect
is more pronounced for smaller values of �. None of the
networks with �=2.1 in panel �c� exhibits a region of small
k, where vertices are only connected among themselves. In
the following, we will state the qualitative observations more
precisely by analytical considerations.

Scale-free networks are characterized on one hand by a
large number of low-degree vertices that could in principal
form regular subgraphs, where all vertices have the same
degree. On the other hand, there are few vertices with very
large degrees that cannot saturate all their edges only among

themselves. In between lies some degree k̂, where the num-
ber of vertices Nk̂ and the number of respective half edges

Nk̂k̂ attached to them is exactly sufficient to form a complete
graph characterized by

Nk̂k̂

2
=

Nk̂�Nk̂ − 1�
2

, �65�

or

kmax

kmax

k0

k0

k0+1

k0+1

k0+2

k0+2

· · ·

· · ·

kmax

kmaxk0

k0

k0+1

k0+1

k0+2

k0+2

· · ·

· · ·

kmax

kmaxk0

k0
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k0+2

k0+2

· · ·

· · ·

(a) N = 256 (b) N = 512 (c) N = 1024

FIG. 4. �Color� Adjacency matrix A for three maximally assortative networks with �=2.5, k0=6 and different sizes �a� N=256, �b�
N=512, and �c� N=1024. As in Fig. 2, the entries are ordered according to the degree of the vertices. The bars on top and on the right of each
panel correspond to groups of vertices that have the same degree. Red dots indicate nonzero matrix elements Aij =Aji=1. In �a�–�c� we find
an increasing number of pronounced layers of vertices that are connected to vertices with the same degree. The number of such layers is
limited by the large degree vertices that form a region in the lower right corner that spans several layers.
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FIG. 5. �Color� Average degree Knn of the nearest neighbors of a
randomly picked vertex with degree k for maximally assortative
networks for different sizes N and exponent �a� �=2.9, �b� �=2.5,
and �c� �=2.1. All curves are averages over 100 networks with k0

=6. In �a� and �b� we find for sufficiently large networks a region of
small degrees k�ks, for which Knn�k��k. For N=218 the values of
ks as given by Eq. �75� are indicated by the arrows. For large k, all
curves show dissortative behavior, where Knn decreases with in-
creasing k.
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k̂ = Nk̂ − 1. �66�

Approximating Nk̂−1 by Nk̂=NP�k̂� we find from Eq. �66�

k̂ = 	 N

A
1/��+1�

. �67�

Vertices with k� k̂ can connect only Nk�Nk−1� edges from
their total of Nkk edges to other vertices of the same degree
k, the rest has to be connected to other vertices with different
degrees. For the whole network a total number of Me has to
be exported in such a fashion,

Me � �
k=k̂

kmax

�Nkk − Nk�Nk − 1�� � �
k̂

kmax

�Nkk − Nk�Nk − 1��dk

= �
k̂

kmax

�NP�k�k − NP�k��NP�k� − 1��dk

=
1

2 − �

N

A�k0
2−�N�2−��/��−1� − 	 N

A
�2−��/��+1��
−

1

1 − 2�
	 N

A
2�k0
1−2�N�1−2��/��−1� − 	 N

A
�1−2��/��+1��
−

1

1 − �

N

A�k0
1−�N�1−��/��−1� − 	 N

A
�1−��/��+1�� . �68�

Taking only the leading terms for large N into consideration,
we obtain for ��2,

Me � 	 1

� − 2
−

1

2� − 1

	 N

A
3/��+1�

. �69�

Since these Me edges will be connected to vertices with k

� k̂, the overall number of edges Ms that can be connected
only between vertices of same degree will be reduced to

Ms � Mk�k̂ − Me, �70�

where Mk�k̂ denotes the number of edges emerging from

vertices with k� k̂:

Mk�k̂ = �
k=k0

k̂

Nkk � �
k0

k̂
NP�k�k dk

=
1

� − 2�k0
2−� N

A
− 	 N

A
3/��+1�� . �71�

Together with the relation for Me in Eq. �69� we obtain for
Ms in Eq. �70�

Ms =
k0

2−�

� − 2

N

A
− 	 2

� − 2
−

1

2� − 1

	 N

A
3/��+1�

. �72�

This expression is in fact negative for network sizes

N � Nb �
k0

2

� − 1
	 3�

2� − 1

��+1�/��−2�

, �73�

so networks with N�Nb do not show range of small degrees
k�ks, where vertices are only connected to other vertices of

the same degree. The values obtained from Eq. �73� corre-
spond nicely to our simulation results from Fig. 5: for �
=2.9 we find Nb�250, and Nb�1956 for �=2.5. For �
=2.1 relation �73� evaluates to Nb�4.3	1010, which is far
beyond network sizes that are accessible to computer simu-
lation and explains our findings from Fig. 5�c�, where none
of the curves shows a region of Knn�k��k.

Using Ms in Eq. �72� we can now give an estimate for the
degree ks. For the range k0�k�ks a total of Ms edges is
available. Solving

Ms = �
k=k0

ks

Nkk � �
k0

ks

NP�k�k dk =
N

A
1

� − 2
�k0

2−� − ks
2−��

�74�

for ks we obtain

ks = k0
��−1�/��+1��� − 1�1/��+1�	 3�

2� − 1

1/�2−��

N1/��+1�.

�75�

The theoretical values from Eq. �75� agree well with our
simulations in Fig. 5, where they are indicated for N=218 in
panels �a� and �b�. Further, relation �75� confirms our obser-
vation that the number of low-degree monolayers Nmo with
k�ks increases with network size N since

Nmo � ks − k0 + 1 � N1/��+1�. �76�

B. Scaling relation for rmax

In analogy with the case of dissortative networks in Eq.
�38�, the Pearson coefficient attains its maximal value rmax
when

rmax =
max�Ar� − Br

Cr − Br
�77�

is fulfilled. Following our considerations about the structure
of such networks, we estimate max�Ar� through three parts:

max�Ar� = b1 + b2 + b3. �78�

The first contribution b1 is given by the edges within the
layers with k�ks, the second term b2 consists of the edges

that connect vertices with k� k̂ to complete subgraphs, and
b3 finally gives the contribution of the exported edges.

We begin with b1. In each layer of vertices with degree
k�ks there are 1

2Nkk edges with degrees k on both of their
ends, their contribution to the sum in Eq. �16� is therefore

b1 � �
k=k0

ks 1

2
Nkkk2 � �

k0

ks 1

2
NP�k�k3dk

=
1

2�4 − ��	 3�

2� − 1

�4−��/�2−��	 N

A
5/��+1�

−
k0

4−�

2�4 − ��
N

A
.

�79�

The second contribution is given by 1
2Nk�Nk−1� edges that

form complete graphs of vertices with degree k� k̂,
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b2 � �
k=k̂

kmax 1

2
Nk�Nk − 1�k2 � �

k=k̂

kmax 1

2
Nk

2k2

� �
k̂

kmax 1

2
�NP�k��2k2 dk

=
1

2�2� − 3��	 N

A
5/��+1�

−
k0

3−2�

A2 N1/��−1�� . �80�

The third term b3 compiles the contribution of the Me edges

that the vertices with k� k̂ cannot saturate between them-
selves. We estimate their contribution by the assumption that

they emerge from vertices with degree k̂�k�kmax and point

at vertices degree ks�k� k̂. The mean degrees of the verti-
ces on the two ends of any edge are then given by ks�k

� k̂�M and k̂�k�kmax�M. The contribution of these edges to
max�Ar� within this rough approximation is then given by

b3 � Meks � k � k̂�Mk̂ � k � kmax�M . �81�

The mean values in Eq. �81� are computed by

k1 � k � k2�M �
�

k1

k2

PM�k�kdk

�
k1

k2

PM�k�dk

, �82�

with the definition of PM�k� from Eq. �7� we find

ks � k � k̂�M =
� − 2

3 − �

2� − 1

� + 1 �1 − 	 3�

2� − 1

�3−��/�2−���

		 N

A
1/��+1�

�83�

and

k̂ � k � kmax�M =
� − 2

3 − �
A�2−��/��+1�k0

3−�N�5−��/��2−1�.

�84�

With Eqs. �83� and �84�, together with Me from Eq. �69� we
can now compute b3 in Eq. �81� and find

b3 = k0
3−� � − 2

�3 − ��2�1 − 	2

3
−

1

3�

�3−��/��−2��

	A�−�+2�/��+1�N�3�+1�/��2−1�. �85�

Combining the three terms from Eqs. �79�, �80�, and �85�
yields the following scaling behavior of max�Ar� in Eq. �78�
for large network sizes N:

max�Ar� � �N5/��+1� + �N5/��+1� + �N�3�+1�/��2−1�, �86�

where �, �, and � are constants depending on � and k0. A
comparison of the contributions leads to

max�Ar� � �N�3�+1�/��2−1� for 2 � � � 3

N5/��+1� for 3 � � .
� �87�

With Eqs. �77�, �42�, �44�, and �87� we can finally give the
asymptotic behavior of the Pearson coefficient rmax for large
maximally assortative networks,

rmax ��− N�−�−2�/��−1� for 2 � � � �r

N−1/��2−1� for �r � � � 3,� �88�

with the “threshold” value

�r �
1

2
+ �17/4 � 2.56. �89�

According to Eq. �88�, rmax vanishes for large networks. Note
that the value of rmax always remains negative for ���r.
Following the usual definition of assortativity according to
the sign of the Pearson coefficient, such networks cannot
display assortative mixing at all. For this range of �, the
dissortative part in Knn is so dominant that it overwhelms the
assortative part �see also Fig. 5�. Although some of the esti-
mates that lead to Eq. �88� are quite rough, we find good
agreement with our simulations, see Fig. 6, where rmax is
shown as a function of network size N for different values of
�. For �=2.1 and �=2.3 the maximal assortativity rmax is
indeed found to be negative, �=2.5 shows slightly positive
values, �=2.7 and �=2.9 clearly positive ones.

V. DISCUSSION

As we have shown above, the correlation profile of scale-
free networks exhibits two limiting cases, representing maxi-
mally dissortative and assortative mixing. The corresponding
Pearson coefficients rmin and rmax as given by Eqs. �64� and
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FIG. 6. �Color online� Pearson coefficient rmax for maximally
assortative networks as a function of network size N for different
values of the scaling exponent �. All data points are averages over
100 networks with minimal degree k0=6, error bars denote the stan-
dard deviation. The continuous lines are fits as obtained from the
relations in Eq. �88� with the amplitude as the only fit parameter.
The dashed lines connect the data points to guide the eye. In agree-
ment with the theoretical results, the Pearson coefficient rmax is
negative for networks with ��2.5 and goes to zero for large N.
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�88� provide lower and upper bounds for the possible values
of r, as indicated by the shaded area in Fig. 7. The region of
possible r values shrinks with growing network size N. In the
limit of large N, both rmin and rmax vanish, even though the
underlying networks are not uncorrelated. Furthermore, it is
important to note that networks with ���r with �r�2.5
always exhibit a negative correlation coefficient. As dis-
cussed in �18,21�, this counterintuitive behavior is related to
the scaling of kmax in Eq. �2�. The large degree vertices have
to export many of their edges into layers of low-degree ver-
tices, giving rise to a dissortative part in the network that
eventually dominates the overall structure �see also Fig. 5�.

It has been previously recognized that the degree se-
quence of networks imposes constraints on their correlation

structure and Pearson coefficient, see in particular Ref. �28�,
where such constraints have been illustrated for acyclic and
small network graphs. In the present study, we addressed the
constraints arising from a scale-free degree sequence and ob-
tained quantitative results for the structure of maximally cor-
related scale-free networks. Furthermore, we have shown in
a quantitative manner how this structure evolves as one var-
ies the network parameters N, �, and k0.

We find that these networks are characterized by pro-
nounced communities of vertices with the same or similar
degree. Dissortative networks exhibit nested bilayers of ver-
tices with small degree on the one side and vertices with
large degree on the other side �see Fig. 1�. Counterintuitively,
the number of these bilayers does not grow with network
size, but saturates for large networks with given parameters
� and k0 �see Eq. �37��. In Fig. 4 we also find a layered
structure for assortative networks, where layers of low-
degree vertices with k�ks form subgraphs, in which all ver-
tices have the same degree. The number of these monolayers
is limited by large degree vertices, which cannot saturate all
their edges by connections to vertices with the same degree.
This effect decreases with increasing network size and ks
grows monotonously with N as in Eq. �75�.

In light of these quantitative results on the layered struc-
ture of correlated networks, various structural and dynamical
phenomena taking place on them may be better understood,
since the analysis can possibly be done separately for each
layer.
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=2.7. Data points and fits from relations �64� and �88� are identical
to the corresponding curves in Figs. 3 and 6. The shaded areas
indicate the range of possible r values for any realization of a scale-
free network with the corresponding parameters �N ,� ,k0�. For net-
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�a� and �b�, the region shrinks to zero for large network size N.
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