
Curvature of double-membrane organelles generated by 
changes in membrane size and composition 
 
Roland L. Knorr, Rumiana Dimova*, Reinhard Lipowsky 
Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, 
Germany 
*Corresponding author: dimova@mpikg.mpg.de 
Tel: +49 331 567 9615; Fax: +49 331 567 9612 
 

Text S1 

Continuous deformation of a flat double-membrane sheet into a closed 
vesicle via cup-shaped intermediates 
 
In the limit of rsheet >> rrim, the bending energy of a sheet with non-zero homogeneous 
preferred curvature of the membrane (m1 ≠ 0, m2 ≠ 0, m3 ≠ 0) is 
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For the special case of nonhomogeneous preferred curvature of the membrane whereby 
m1 = m2 = 0 and m3 ≠ 0, this expression is reduces to the first term only. 
 

 
Figure S1: Geometrical parameters of a cup-shaped intermediate. The radius of the 
cup rcup and the curvature radius R are shown. The lower (dashed blue), upper (solid 
green) and the rim (solid red) segments are indicated with 1, 2 and 3, respectively. 
 
In the limit of R >> rrim, the bending energy of a vesicle or an organelle with asymmetric 
preferred curvature of the inner and outer membranes, i.e., m1 ≠ m2 is 
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where the asymmetry parameter m12 = (m1 – m2)/2; see also Fig. S1. For membranes with 
molecules symmetrically bound on both sides of the double membrane shape m12 = 0. 
The total bending energy of a cup-shaped organelle is  

1 2 3E E E E= + + ,        (S3) 



where E1 and E2 arise from the bending of the two, initially flat surfaces (corresponding 
to Eves for the closed organelle) and E3 is the contribution arising form the strongly bent 
rim (corresponding to Esheet for the flat sheet conformation). For the limit of R >> rrim, the 
sum E1 + E2 for the cup-shaped organelle with the total surface area  
A ≈ 2πrsheet

2 is given by [1]: 
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Here, we consider a cup-shaped organelle with molecules asymmetrically bound on both 
sides of the shape, i.e., m12 ≠ 0.  
The rim energy E3 can be approximately estimated considering the initial sheet and 
introducing the effective rim tension λeff: 
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Then for rcup >> rrim, a cup-shaped intermediate with length of the rim 2πrcup will be 
characterized by the rim energy: 

3 2πλeff cupE r≈         (S6) 

Taking into account that ( )211 2cup sheet sheetr r r M= −
, we obtain 
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For convenience we introduce the dimensionless reduced energy  
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The second term in this expression is constant for various curvatures M1 of the cup-
shaped vesicle. From expressions (S3), (S4) and (S7) we obtain 
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which depends mainly on the preferred curvature m12 and the curvature M1 of the cup-
shaped organelle. 
Results for the reduced total energy of double-membrane sheets with vanishing 
asymmetry parameter (m12 = 0) are plotted in Fig. 3 in the manuscript and in Fig. S2. 
Slow growth may kinetically trap the sheet close to the critical size flattening the energy 
landscape, see Fig. S2. At the critical size, the energy landscape exhibits a large, flat 
plateau around the sheet state and even very pronounced shape changes corresponding to 
the curvature range -1 < rsheetM1 < 1 do not change the total energy significantly (crosses 
in Fig. S2 correspond to a decrease of the bending energy by 1%). This suggests that the 
sheet may be kinetically trapped slowing down the sheet closure. On the other hand, fast 
growing sheets will pass the critical size and can become large compared to this size. In 
this state, relatively small morphological changes will be associated with a significant 
decrease in the bending energy and closure will be fast. 
 
Results for the reduced total energy of double-membrane sheets with different values of 
the asymmetry parameter m12 are plotted in Fig. S3. Nonzero asymmetry parameter 
breaks the symmetry of the energy profile; compare with Fig. 3 in the main text. 



 
Figure S2: Reduced energy E  of double-membrane organelles as a function of the 
reduced curvature rsheetM1 for m12 = 0 and m3 = 0. At and above the critical size, 
rsheet/rrim = 10.2, no barrier exists anymore, the closed organelle is the shape of minimal 
energy and bending of the flat sheet is energetically favorable. The points where the 
energy is decreased by 1 % of the energy of the initial sheet are marked with a cross (x). 
Small organelles close to the critical size can deform strongly without considerable 
change in the bending energy, while large organelles reduce their bending energy already 
at comparably small deformations. Thus, a large sheet has a high probability to close 
within a short time. Small sheets, even if larger than their critical size, will close after a 
considerable lag-time. 
 
Having obtained an expression for the energy of the double-membrane shapes, we can 
now proceed to determine the reduced critical sheet size r0

sheet/rrim as in reference [1] 
which leads to: 
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    (S10) 
This result shows that the reduced critical sheet size depends only on the reduced rim 
curvature m3rrim and the curvature asymmetry m12rrim. The expression (S10) for the 
critical sheet size is plotted in Fig. 5 for the symmetric case m12 = 0 and in Fig. S3 for m12 
≠ 0. For double-membrane spherical organelles with the reduced size r0

sheet/rrim ≅ 45 as 
considered in the main text, the reduced rim curvatures of symmetric sheets (m12 = 0), 
and of sheets with asymmetry parameter m12rrim = 0.02 are indicated in the figure caption. 
Inspection of Fig. S3 also reveals that sheets with this size and preferred curvature m12rrim 
> 2/45 will never be stable irrespective of the value of the sheet rim curvature. 
 



 
Figure S3: Reduced bending energy of double-membrane shapes, E , as a function 
of the reduced curvature rsheetM1 calculated for different values of the effective 
preferred curvature m12. Asymmetrical distribution of molecules on both sides of the 
shape changes the effective preferred curvature m12 and favors a certain direction of 
bending. The reduced energy is plotted for different values of m12, effective size rsheet/rrim 
= 7.65 and rim preferred curvature m3 = 0. For m12 = 0 (curve) as presented in Fig. 3 in 
the main text, the probabilities for upward or downward curving are equal. Nonzero m12 
breaks the symmetry of the energy profile. 
 

 
Figure S4: Dependence of the critical size r0

sheet of the sheet as a function of the rim 
curvature m3 for different values of the curvature asymmetry m12. All quantities are 
given in units if the rim curvature radius rrim. The regions below and above a curve 
correspond to conditions for stable sheets and double-membrane spherical organelles 
respectively. For r0

sheet/rrim ≅ 45 (black solid line) corresponding to the autophagosome 
size with rrim = 20 nm in Fig. 2C, the rim curvature m3 ≅ 1/(76 nm) or 1/(28 nm) for the 
case of symmetric sheets, i.e., m12 = 0, see black arrowheads, while for a sheet with 
asymmetry parameter m12rrim = 0.02   m3 ≅ 1/(54 nm) or 1/(32 nm), see green arrowheads. 
 



Text S2 

Enclosing of substrates with specific interaction with the membrane 
 
The basis of specific autophagy is the interaction between a particular ligand with a 
certain receptor. This interaction is attractive and reduces the free energy of the whole 
system. The total energy of this system is described by:  

1 2 3 adE E E E E= + + +        (11) 
With the adhesion energy Ead = WAad. The adhesion energy per unit area, W, is negative 
and Aad is the adhesion area. A receptor can bind its ligand provided they are sufficiently 
close to each other. If a flat membrane sheet and a specific substrate approach each other, 
the adhesion area Aad for initial binding is very small and thus will not contribute 
significantly to the total energy of the sheet E, see Fig. S5 which illustrates a case of 
weak adhesion. The more the sheet bends, the closer the curvature of the substrate and 
the membrane are and the larger the area of adhesion will be. Consequently, the effect of 
adhesion energy will be the stronger the closer the reduced curvature rsheetM to the 
substrate curvature is, see Fig. S5. Accordingly, the energy barrier can be significantly 
reduced by adhesion. 

 
Figure S5: Weak adhesion and bending of a double-membrane sheet around a 
substrate. The surface of the substrate (grey) is covered with receptors and the surface of 
double membrane with ligands. The regions where ligands (green) and receptors (red) are 
sufficiently close together to interact are indicated. (A) The flat membrane sheet adhering 
to the curved substrate has a very small area of interaction. (B, C) As the sheet bends the 
curvatures of the substrate and the membrane approach each other and the adhesion area 
increases. (D) The substrate is fully covered by the membrane and the sheet closes. 
 
In the main text, we showed that a reduction of the critical size will generally lead to a 
smaller size of the final double-membrane organelle. Thus, specific interactions of any 
kind between the membrane and another particle or organelle will theoretically decrease 
the size of the double-membrane organelle. In reality, the organelle size will be 
determined by the size of the particle to a large extend. 
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