
Additions and Corrections

Spontaneous tubulation of membranes and vesicles reveals
membrane tension generated by spontaneous curvature

Reinhard Lipowsky a

Faraday Discuss. 2013, 161, 305-331 (DOI: 10.1039/c2fd20105d).
Amendment published 17th October 2013

In Section 6 of Ref.1, lipid vesicles enclosing two aqueous phases,
α and β, have been considered. These phases typically form two
droplets that partially wet the vesicle membrane and, thus, partition
this membrane into two distinct membrane segments, αγ and βγ,
with surface areas Aαγ and Aβγ. In Section 6.1, it was argued that
the vesicle shapes involve only a single Lagrange multiplier tension,
Σ, which is conjugate to the total membrane area A = Aαγ + Aβγ,
because we have only a single constraint acting on this total area.
The latter argument is, however, deceptive: in general, we need
two Lagrange multiplier tensions Σαγ and Σβγ as one can see most
clearly if one views these two quantities as the mechanical tensions
that act to stretch (or compress) the two membrane segments.

Thus, consider the equilibrium shapes of vesicles with minimal
energy Eve for fixed droplet volumes Vα and Vβ as a function of total
membrane area A. For each value of A, these equilibrium shapes
are characterized by certain segmental areas Aαγ and Aβγ. Likewise,
the bending energy of these shapes consists of two terms, Ebe,αγ(Aαγ)
and Ebe,βγ(Aβγ), corresponding to the two segments. The mechanical
tensions Σαγ and Σβγ within these segments are then given by
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where the derivatives are taken at constant volumes Vα and Vβ. The
dots indicate terms arising from additional energy contributions2 of
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the αβ interface and the contact line. The values for Σαγ and Σαγ

as obtained from (1) and (2) will, in general, differ because the two
membrane segments are exposed to different environments and are,
thus, characterized by different elastic parameters. In addition, the
segmental areas Aαγ and Aβγ can depend on the total membrane
area A in a nonlinear manner, reflecting the variable partitioning of
this area between the two segments.

For Σαγ �= Σβγ, the equations (66) and (67) in Ref.1, which de-
scribe the total membrane tensions Σ̂αγ and Σ̂βγ, assume the form3

Σ̂αγ = Σαγ + σαγ = Σαγ + 2καγ m
2
αγ (66∗)

and
Σ̂βγ = Σβγ + σβγ = Σβγ + 2κβγ m

2
βγ . (67∗)

Furthermore, the relation (73) in Ref.1 is then replaced by
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and the equations (77) - (79) are no longer valid. Finally, equation
(80) in Ref.1 now attains the more general form

Σαβ cos(θin) = Σ̂βγ − Σ̂αγ = Σβγ + σβγ − Σαγ − σαγ . (80∗)

If the αγ membrane segment forms nanotubes, the mechanical ten-
sion Σαγ of this segment can be neglected because it is much smaller
than the spontaneous tension σαγ,1 and the total tension

Σβγ + σβγ ≈ σαγ + Σαβ cos(θin) (3)

within the βγ segment must balance both the spontaneous tension
σαγ of the αγ segment and the interfacial tension Σαβ of the liquid-
liquid interface between the two droplets.
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