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S1 Critical tube length for VM-A and VM-B morphologies

S1.1 Giant vesicle with necklace-like tube

Consider a giant vesicle with a spherical shape of radius R0. The vesicle membrane
has a large and negative spontaneous curvature m which favors highly curved mem-
brane segments, in contrast to the small curvature 1/R0 of the initial vesicle. When
the vesicle volume is reduced by osmotic deflation, the membrane can form an ‘N -
shape’ consisting of a large spherical mother vesicle together with a necklace-like
tube that protrudes into the vesicle interior. We have determined the N -shapes of
minimal bending energy as a function of reduced volume

v ≡ V

V0
≤ 1 with V0 ≡ 4π

3 R
3
0 (S1)

where v = 1 corresponds to the spherical mother vesicle without a necklace-like
tube. The results of the numerical energy minimization, which are based on the
shape functional in Eq. 3 of the main text, are displayed in Fig. 5.

The N -shapes of minimal bending energy contain the shapes L[N ] for which the
necklace consists of N spherical beads with radius Rss = 1/|m|, see Fig. 5. Such a
necklace-like tube has constant mean curvature M = m and, thus, vanishing bending
energy as follows from Eq. 3 of the main text. Furthermore, the mother vesicle has
the radius

RN = R0

√
1− N

(|m|R0)2
< R0 (S2)

as obtained from the conservation of membrane area which has the form

A0 = 4πR2
0 = 4πR2

N +N4π|m|−2 . (S3)

The necklace is anchored to the mother vesicle by an ideal membrane neck. The
latter neck is formed as one approaches the limit shape Lsto from the branch of
stomatocytes. [1] Likewise, the L[N ]-shapes with N ≥ 2 also represent limit shapes
which are obtained from necklace-like tubes with open necks, see Fig. 5. The L[1]-
shape is special because the necklace consists of a single spherical bead (or bud)
which is obtained from the limit shape Lsto by increasing the bead radius from
Rss = 1/(2|m|) to Rss = 1/|m|. The L[N ]-shapes with N ≥ 2 contain two types
of ideal necks, the anchor neck between the mother vesicle and the first bead as
well as the ss-ss necks between the small spheres of the necklace. Both types of
membrane necks are stable provided Rss ≥ 1/|m| [2] which includes the limiting
case Rss = 1/|m| considered here.

The volume of the L[N ]-shapes is given by

VN = 4π
3 R

3
N −N 4π

3 R
3
ss = V0

([
1− N

(|m|R0)2

]3/2
− N

(|m|R0)3

)
(S4)
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which decreases monotonically with increasing number N of the small beads. There-
fore, the sequence of L[N ]-shapes provides a possible, low-energy pathway for osmotic
deflation as depicted in Fig. 5 in the main text.

Because the bending energy of the necklace-like tube with Rss = 1/|m| vanishes, the
bending energy of the L[N ]-shapes arises from the mother vesicle alone, i.e.,

Ebe
(
L[N ]

)
= 8πκ (1−mRN )2 (S5)

which is equivalent to

Ebe
(
L[N ]

)
= 8πκ

[
1 + |m|R0

√
1− N

(|m|R0)2

]2
. (S6)

This energy also decreases monotonically with increasing bead number N , compare
Fig. 5.

S1.2 Giant vesicle with cylindrical tube

We now transform the L[N ]-shapes as considered in the previous section into alter-
native C [N ]-shapes for which the necklace-like tubes are replaced by cylindrical ones.
For each value of N , we perform this transformation in such a way that both the
membrane area and the vesicle volume are conserved.

The cylindrical tubes consist of cylinders that are closed by two spherical caps,
where one of these end caps is connected to the mother vesicle by an ideal neck.
The body of such a cylinder has length Lcy, radius Rcy = 1/(2|m|), and mean
curvature M = m which implies that this membrane segment has vanishing bending
energy. The radius of the mother vesicle is now denoted by Rls. Because the C [N ]-
shape is required to have the same membrane area as the L[N ]-shape, the length
scales Lcy and Rls are related via

R2
ls +

1

4|m|
Lcy +

1

4m2
= R2

N +
N

m2
. (S7)

A second relation between these two scales is obtained from the requirement that
the C [N ]-shape and the L[N ]-shape, which both include the mother vesicle, have the
same volume which implies

R3
ls −

3

16m2
Lcy −

1

8|m|3
= R3

N −
N

|m|3
. (S8)

When we combine the two relations (S7) and (S8) to eliminate Lcy, we obtain the
implicit equation

R3
ls

(
1 +

3

4|m|Rls

)
= R3

N

(
1 +

3

4|m|RN

)
− N + 1/4

4|m|3
(S9)
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for the mother vesicle radius Rls of the C[N ]-shape where RN can be expressed in
terms of R0 via (S2). The implicit equation (S9) directly implies that Rls < RN for
all positive values of N . Therefore, the C[N ]-shape has a smaller mother vesicle and
the membrane area stored in the cylinder exceeds the area stored in the N -necklace.
We now define the parameter ε via

Rls = RN (1− ε) (S10)

and consider the limit of large |m|R0, in which we obtain the asymptotic equality

ε ≈ N + 1/4

12

(
1

|m|R0

)3

(large |m|R0) (S11)

from the implicit equation (S9).

The bending energy of the C [N ]-shape is equal to

Ebe
(
C [N ]

)
= 8πκ(1−mRls)

2 + 2πκ (S12)

where the first and the second term represents the energy contributions from the
mother vesicle and from the two end caps of the cylinder, respectively.

S1.3 Critical tube length for necklace-cylinder transformation

We now compare the bending energy (S12) of the C [N ]-shape with the bending
energy (S5) of the L[N ]-shape. The mother vesicle of the C [N ]-shape has the bending
energy 8πκ(1 −mRls)

2 which is smaller than the bending energy 8πκ (1−mRN )2

of the L[N ]-shape because Rls < RN and |m|Rls � 1. However, the capped cylinder
has the bending energy 2πκ whereas the necklace has vanishing bending energy.
Therefore, when we transform the L[N ]-shape into the C [N ]-shape, we reduce the
bending energy of the mother vesicle but increase the bending energy of the tube.

We now define the reduced difference

∆ ≡
Ebe
(
C [N ]

)
− Ebe

(
L[N ]

)
8πκ

(S13)

between the bending energies of the C [N ]- and the L[N ]-shape, which has the form

∆ = (1 + |m|Rls)
2 + 1

4 − (1 + |m|RN )2 (S14)

or
∆ = |m|(Rls −RN ) [2 + |m|(Rls +RN )] + 1

4 (S15)

Replacing Rls by RN (1− ε), the latter relation becomes

∆ = −ε|m|RN [2 + 2|m|RN − ε|m|RN ] + 1
4 . (S16)
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The L[N ]-shape and the C [N ]-shape are energetically favored for ∆ > 0 and ∆ < 0,
respectively. The critical bead number N∗ and the critical tube length

L∗tu = N∗2Rss = N∗2/|m| (S17)

then follow from ∆ = 0.

In the limit of large |m|R0 and small ε ∼ (|m|R0)
−3, see (S11), we obtain the

asymptotic equality

∆ ≈ −N + 1/4

6|m|R0
+

1

4
(S18)

which implies the critical tube length

L∗tu = N∗2/|m| ≈ 3R0 . (S19)

It is interesting to note that exactly the same relation for the critical tube length
is obtained if one replaces the bending energy contribution from the mother vesicle
by the volume work performed on the tube by the pressure difference ∆P which
behaves as ∆P ≈ 4κm2/Rls for large |m|Rls and acts to compress the necklace-like
tube which has a larger volume than the cylindrical one. [3]

S1.4 Critical tube lengths for mother vesicle with many tubes

So far, we have explicitly discussed a mother vesicle with a single tube. However, the
above considerations can be easily extended to a mother vesicle with several tubes.
Indeed, all we have to do is to select one of the tubes and to redefine the membrane
area and the membrane volume in an appropriate manner. Thus, let us label the
selected tube by the index s and the remaining tubes by the index r = 1, 2, . . . . The
selected tube has the area As, the remaining tubes have the areas Ar. The redefined
membrane area Â0 is then given by

Â0 ≡ A0 −
∑
r

Ar ≡ Amv +As (S20)

with the area Amv of the redefined mother vesicle. If we envisage to inflate this
mother vesicle to retract the selected tube without changing the remaining tubes,
we obtain a spherical vesicle with radius R̂0 = [Â0/(4π)]1/2 and volume V̂0 = 4π

3 R̂
3
0.

Now, we have to replace the quantities R0, V0, and A0 in Eqs. S1 - S3 by R̂0, V̂0, and
Â0 and to repeat the whole calculation with the hatted variables. In this way, we
study the growth of the selected tube while all the other tubes remain unchanged. As
a result, we obtain the critical length L̂∗tu ≈ 3R̂0 for the selected tube. Because the
redefined vesicle radius R̂0 is smaller than R0, the critical length L̂∗tu is smaller than
L∗tu for a vesicle with a single tube. This difference can, however, be neglected for
the VM-A and VM-B morphologies studied here. Indeed, after the first two deflation
steps, the total area of all membrane tubes, A = As +

∑
r Ar, satisfies A ≤ 0.1A0,

see Fig. 3a in the main text, which implies that Â0 > 0.9A0 and R̂0 > 0.948R0
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irrespective of which individual tube we select. Therefore, the critical tube length
L̂∗tu of any selected tube lies within the interval 2.84R0 < L̂∗tu ≤ 3R0 and is always
much larger than the individual tube lengths observed for the VM-A and VM-B
morphologies.

When a necklace-like tube with length L∗tu is transformed into a cylindrical tube of
equal area A∗tu, the tube length becomes twice as large. Therefore, in equilibrium,
necklace-like tubes should have a length up to L∗tu whereas cylindrical tubes should
have a length exceeding 2L∗tu. As a consequence, the length distribution of the tubes
is predicted to exhibit a gap defined by the interval L∗tu < Ltu < 2L∗tu.

S2 Critical tube length for VM-C morphologies

For the VM-C morphologies, the vesicle membrane is partially wetted by the two
aqueous phases and the pe membrane segment separating the PEG-rich from the
external phase forms the intrinsic contact angle θin with the pd interface. For the
lipid-polymer systems studied here, all intrinsic contact angles were smaller than
90◦ (Fig. 8c in the main text).

Because of partial wetting, a membrane tube can lower its free energy by adhering
to the pd interface. Furthermore, the large separation of length scales between the
weakly curved pd interfaces and the strongly curved membrane tubes implies that we
can ignore the interfacial curvature and consider the adhesion of the tubes to planar
interfaces. In order to obtain explicit expressions for the corresponding adhesion free
energies, we also ignore possible deformations of the tube shapes by the adhesion.

S2.1 Adhesion free energy of necklace-like tube

First, consider a necklace-like tube consisting of N spherical beads with radius Rss =
1/|m| as in Fig. S4a. A single bead will immerse into the dextran-rich phase until
the angle between the pd interface and the pe segment of the bead membrane is
equal to the intrinsic contact angle θin. In the following, we will first consider an
arbitrary contact angle θ and then require that the adhesion free energy attains its
lowest value when this contact angle is equal to the intrinsic contact angle θin.

When the tube membrane forms the contact angle θ with the pd interface, the total
surface area Anl of the necklace-like tube is partitioned into two segments according
to

Anl = N 4πR2
ss = N4π|m|−2 = Amp +Amd (S21)

with the contact area

Amp = N 2πR2
ss(1 + cos θ) = N 2π|m|−2(1 + cos θ) (S22)
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between the inner leaflet of the membrane and the PEG-rich phase and and the
contact area

Amd = N 2πR2
ss(1− cos θ) = N 2π|m|−2(1− cos θ) (S23)

between the inner leaflet of the membrane and the dextran-rich phase. At the same
time, the area Apd of the pd interface is reduced by

∆Apd = N π(Rss sin θ)2 = N π|m|−2 sin2 θ (S24)

The interfacial free energy of the pd interface and the free, non-adhering necklace
fully immersed in the PEG-rich phase has the form

Fnl,fr = ΣpdApd + ΣmpAnl (S25)

with the interfacial tension Σmp of the interface between the inner leaflet of the
membrane and the PEG-rich phase. Likewise, the interfacial free energy of the
necklace adhering to the pd interface is given by

Fnl,ad = Σpd (Apd −∆Apd) + Σmp (Anl −Amd) + ΣmdAmd (S26)

with the interfacial tension Σmd between the inner leaflet of the membrane and the
dextran-rich phase. The adhesion free energy of the necklace-like tube is then given
by

Fnl ≡ Fnl,ad −Fnl,fr = (Σmd − Σmp)Amd − Σpd ∆Apd (S27)

or
Fnl = Anl

[
1
2 (Σmd − Σmp)(1− cos θ) − 1

4 Σpd sin2 θ
]
. (S28)

We now require that this free energy attains its equilibrium value when the contact
angle θ becomes equal to the intrinsic contact angle θin corresponding to ∂Fnl/∂θ = 0
for θ = θin. This requirement leads to

Σmd − Σmp = Σpd cos θin (S29)

and to the equilibrium value

Feq
nl = Anl Σpd gnl(θin) (S30)

for the adhesion free energy of the necklace-like tube with the angle-dependent
function

gnl(θ) ≡ 1
2 cos θ(1− cos θ)− 1

4 sin2 θ = −1
4 (1− cos θ)2 . (S31)

The second expression for gnl(θ) implies that the adhesion free energy Feq
nl is negative

for nonzero values of the intrinsic contact angle θin, which shows explicitly that the
adhering tube is energetically favored compared to the free tube immersed in the
PEG-rich phase. Furthermore, the adhesion free energy density Feq

nl /Anl as obtained
from (S30) depends only on two material parameters, the interfacial tension Σpd of
the pd interface and the intrinsic contact angle θin, both of which can be determined
experimentally, see Fig. 3b and Fig. 8c in the main text.
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S2.2 Adhesion free energy of cylindrical tube

Next, consider a cylindrical tube with two spherical end caps as in Fig. S4b. The
body of the cylinder has length Lcy and radius Rcy = 1/(2|m|); the spherical end
caps have the same radius as the cylinder. These two membrane segments have the
areas

Abod
cy = 2πRcyLcy =

π

|m|
Lcy and Acap

cy = 4πR2
cy =

π

m2
. (S32)

When the tube membrane forms the contact angle θ with the pd interface, the tube
area Acy is partitioned according to

Acy = Abod
cy +Acap

cy = Amp +Amd (S33)

with the contact areas

Amp = 2(π − θ)RcyLcy + 2πR2
cy(1 + cos θ) (S34)

and
Amd = 2θRcyLcy + 2πR2

cy(1− cos θ) . (S35)

At the same time, the area Apd of the pd interface is reduced by

∆Apd = 2RcyLcy sin θ + πR2
cy sin2 θ . (S36)

The interfacial free energies Fcy,fr and Fcy,ad have the same general form as in (S25)
and (S26). It then follows that the adhesion free energy of the cylindrical tube is
given by

Fcy = Abod
cy Gbod

cy +Acap
cy Gcap

cy (S37)

with the body contribution

Gbod
cy ≡ (Σmd − Σmp)

θ

π
− Σpd

sin θ

π
(S38)

and the cap contribution

Gcap
cy ≡ (Σmd − Σmp)12 (1− cos θ)− Σpd

1
4 sin2 θ . (S39)

The equilibrium value of the contact angle θ is again imposed by the condition
∂Fcy/∂θ = 0 for θ = θin which leads to the same relation Σmd − Σmp = Σpd cos θin
as in (S29). As a consequence, the adhesion free energy of the capped cylindrical
tube has the equilibrium form

Feq
cy = ΣpdA

bod
cy gcy(θin) + ΣpdA

cap
cy gnl(θin) (S40)

with the function

gcy(θ) ≡ θ

π
cos θ − sin θ

π
(S41)

and the function gnl(θ) as defined in (S31).
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S2.3 Critical area and critical length of adhering tubes

We now compare an adhering necklace-like tube with an adhering cylindrical tube
of the same tube area Atu which then satisfies

Atu = Acy = Anl . (S42)

The bending energy of the necklace-like tube vanishes whereas the capped cylin-
der has the bending energy 2πκ arising from the spherical end caps as in (S12).
Therefore, we have to consider the free energy difference

∆F = Feq
cy + 2πκ−Feq

nl (S43)

which can be rewritten in the form

∆F = 2πκ− ΣpdAtu

[
1− π

m2Atu

]
g(θin) (S44)

with the function

g(θ) ≡ gnl(θ)− gcy(θ) = 1
π (sin θ − θ cos θ)− 1

4 (1− cos θ)2 . (S45)

As shown in Fig. S4c, the function g(θ) is positive for 0 < θ < π. Therefore, the
shape of the adhering tube is determined by the competition between the bending
energy 2πκ of the spherical caps, which favors necklace-like tubes, and the adhesion
free energy, which favors cylindrical tubes. The spherical cap energy is independent
of the tube area whereas the adhesion free energy is proportional to this area. As
a consequence, short adhering tubes are necklace-like whereas long adhering tubes
are cylindrical. These two regimes are separated by the critical tube area

A∗tu =
2πκ

Σpd g(θin)
+

π

m2
(S46)

as follows from ∆F = 0. The first term directly reflects the interplay between the
membrane’s bending rigidity κ, the interfacial tension Σpd, and the intrinsic contact
angle θin for partial wetting. The second term on the right hand side of (S46)
represents a correction term arising from the spherical end caps.

In Fig. S4d, we compare the free energies of single necklace-like and cylindrical tubes
as a function of tube area Atu for the Ld 4 and the Lo 4 vesicles. The critical tube
area is about 4.4µm2 for the Ld 4 vesicle and about 80.7µm2 for the Lo 4 vesicle.

From an experimental point, it is easier to measure the length of individual tubes
rather than their area. The critical length L∗ad = N∗ad2/|m| of the necklace-like tube
with the critical bead number N∗ad is given by

L∗ad = A∗tu
|m|
2π

=
κ|m|

Σpd g(θin)
+

1

2|m|
. (S47)

When a necklace-like tube with length L∗ad is transformed into a cylindrical tube of
equal area A∗tu, the tube length becomes twice as large. Therefore, in equilibrium,
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necklace-like tubes should have a length up to L∗ad whereas cylindrical tubes should
have a length exceeding 2L∗ad. For the example displayed in Fig. S4d corresponding
to the fourth deflation step, the critical tube length L∗ad is 5.6µm for the Ld 4 vesicle
and 21.4µm for the Lo 4 vesicle.

S3 Tube flexibility and persistence length

The flexibility of membrane nanotubes can be characterized by the persistence length
for tube bending. This length scale governs the exponential decay of the two-point
correlation function between unit tangent vectors along the tube, in close analogy
to semiflexible polymers [4, 5]. A cylindrical tube of radius Rcy has the persistence
length [6, 7]

ξp = 2πκRcy/(kBT ) . (S48)

For Rcy = 1/(2|m|) corresponding to the state of lowest bending energy, this expres-
sion becomes

ξp =
πκ

|m|kBT
. (S49)

Using the overall partitioning of the membrane area with total tube area A and total
tube length L, a cylindrical tube has the spontaneous curvature |m| = πL/A which
implies the persistence length

ξp =
κ

kBT

A

L
(cylindrical tube) . (S50)

The persistence length of the necklace-like tube, on the other hand, is comparable
to the diameter 2Rss = 2/|m| of the small spheres which implies

ξp ' 2Rss =
1

π

A

L
(necklace-like tube) . (S51)

For the Ld membrane studied here, the bending rigidity κLd = 0.82 × 10−19 J and
κLd/(kBT ) = 20 at room temperature (25◦C). For the Ld 1 vesicle, we obtained the
total tube area A = 473µm2 and the total tube length L = 600µm. If the tubes
were cylindrical, we would obtain the spontaneous curvature |m| = 1/(0.251µm)
and the persistence length ξp = 15.4µm. If the tubes were necklace-like, we would
obtain the spontaneous curvature |m| = 1/(0.125µm) and the persistence length
ξp ' 0.25µm. Inspection of the Movies Ld 1 and Ld 2 reveals that the thermal
fluctuations of the tubes lead to hairpin-like conformations with curvature radii of
the order of 2µm which implies a persistence length below 2µm. Such an upper
bound for the persistence length is consistent with a necklace-like but not with a
cylindrical tube morphology.
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Figure S1: Shapes of aqueous droplets for different vesicle morphologies: The

images correspond to Ld j vesicles after the jth deflation step with j = 0, 2, 3, and 4 as

observed by differential interference contrast (DIC) microscopy (top row) and fluorescence

microscopy (bottom row). The two images with the same j-value display the same vesicle.

The white scale bar is 10µm in all panels. The images were obtained by a horizontally aligned

inverted microscope (Axiovert 135, Zeiss) equipped with a 40x long distance objective and

a mono-color camera.

Figure S2: Vertical cross sections of the Ld and Lo vesicles in Fig. 2: (a) Confocal

xz-scans of the Ld j vesicles in Fig. 2c; and (b) Confocal xz-scans of the Lo j vesicles in

Fig. 2d. The three vesicle morphologies VM-A, VM-B, and VM-C are explained in Fig. 1.
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(a)                                    (b)                                  (c) 

θin
Σpd Σpe

^

Σde
^

p

d
e

θp
θd θe

θeθd

θp Σpd

Σpe
^

Σde
^

Figure S3: Contact angles for the VM-C morphology: The latter morphology in-

volves one droplet of the PEG-rich phase p (yellow) and one droplet of the dextran-rich

phase d (blue), both embedded in the exterior phase e (white): (a) The pd interface meets

the membrane (red) along the contact line (two black circles). The latter line divides the

membrane up into two segments, the pe segment between the PEG-rich droplet and the

exterior phase as well as the de segment between the dextran-rich droplet and the exterior

phase. When viewed with optical resolution, the membrane exhibits a kink at the contact

line which defines the effective contact angles θp, θd, and θe; (b) The three arrows represent

the interfacial tension Σpd as well as the two membrane tensions Σ̂pe and Σ̂de within the pe

and de segments of the membrane. Mechanical equilibrium implies that the three tension

vectors add up to zero; and (c) Enlarged view of the smoothly curved membrane (red) close

to the contact line (black circle). The vertical broken line represents the common tangent

plane of the two membrane segments. The angle between this common tangent plane and

the plane tangential to the pd interface provides the intrinsic contact angle θin. [8] The

membrane nanotubes have been omitted here in order to focus on the shape of the mother

vesicle.
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θin

p

d

a b θin

p

d

c d

Figure S4: Adhesion of membrane nanotubes to the pd interface (VM-C mor-

phology): (a) Necklace-like tube with four spherical beads and (b) Cylindrical tube with

the same membrane area. Both tubes adhere to the pd interface which separates the PEG-

rich phase p (yellow) from the dextran-rich phase d (blue) and forms the intrinsic contact

angle θin with the tube membranes; (c) Functional dependence of the dimensionless free

energy difference g on the intrinsic contact angle θin as given by equation (S45); and (d)

Free energies of single necklace-like (dashed) and cylindrical (solid) tube protruding into the

Ld 4 (red) and Lo 4 (green) vesicle as a function of tube area Atu with Atu ≥ 8π/m2 where

the latter area corresponds to the 2-bead necklace L[2]. The dashed and solid lines cross

at the critical tube area A∗
tu which is equal to 4.4µm2 for the Ld 4 vesicle and to 80.7µm2

for the Lo 4 vesicle. The corresponding critical tube lengths are given by L∗
tu = 5.6µm for

the Ld 4 and by L∗
tu = 21.4µm for the Lo 4 vesicle. The free energy of the necklace-like

tubes is given by Feq
nl as in equation (S30); the free energy of the cylindrical tubes is equal

to Feq
cy + 2πκ with Feq

cy as in equation (S40).
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Figure S5: Different tube shapes with the same membrane area and tube length:

(a) Each unit cell of an unduloid is characterized by its neck radius Rne and its bulge radius

Rbu. The necklace-like tube corresponds to the ratio Rne/Rbu = 0, the cylindrical tube to

Rne/Rbu = 1; (b) For given membrane area A and tube length L, the mean curvature M

increases monotonically from M = −2πL/A for the necklace-like tube to M = −πL/A for

the cylindrical tube; and (c) Three examples of unduloids for fixed A and L that interpolate

between the necklace-like and the cylindrical tube with mean curvature M in units of πL/A

(right column). As we transform the sphere-necklace into the cylinder, the neck radius

Rne of the intermediate unduloid increases monotonically whereas the bulge radius Rbu

first increases and then decreases again. The latter radius has the value A/(2πL) both for

the cylindrical tube and for the sphere-necklace and attains its maximum at M = m =

−1.187πL/A with max(Rbu) = 0.662A/πL.

14



Table S1: Deflation path within the phase diagram of Fig. 2: The deflation path in

Fig. 2a,b consists of seven deflation steps which lead to seven compositions of the aqueous

polymer solution within the vesicle, labeled from j = 1 to j = 7. The initial compositions

in the exterior and interior solution are denoted by 0e and 0. The columns 2 - 7 display the

following quantities: Dextran weight fraction wd, PEG weight fraction wp, total polymer

mass density cj of the interior solution, as well as concentration ratio cj/c0, osmolarity ratio

Pe/P0 between the exterior and the initial osmolarities, Pe and P0. The exterior osmolarity

Pe is increased by exchanging the external medium by a hypertonic solution with constant

wd = wp = 0.0327 and an increasing weight fraction of sucrose. For j ≥ 0, the weight frac-

tions wd and wp represent the weight fractions of all dextran and all PEG molecules within

the interior solution, irrespective of whether this solution is uniform or phase separated,

and are characterized by the constant ratio wd/wp = 1.25. For comparison, the quantities

at the critical point (cr) are also included. ‘APS’ stands for ‘aqueous phase separation’ in

the vesicle interior. The last two rows describe the observed vesicle morphologies of the

liquid-disordered (Ld) and liquid-ordered (Lo) membranes. The VM-B and VM-C mor-

phologies correspond to phase separation with complete and partial wetting, respectively, of

the membranes by the PEG-rich phase.

comp. wd wp cj cj/c0 Pe/P0 APS Ld Lo
j [g/cm3] morph. morph.

0e 0.0327 0.0327 0.0664 1.000 no
0 0.0390 0.0312 0.0714 1.000 1.000 no
1 0.0436 0.0349 0.0800 1.120 1.254 no VM-A VM-A
cr 0.0451 0.0361 0.0829 1.161 1.350 no
2 0.0456 0.0365 0.0838 1.174 1.382 yes VM-B VM-B
3 0.0475 0.0380 0.0875 1.224 1.511 yes VM-C VM-B
4 0.0494 0.0395 0.0909 1.273 1.642 yes VM-C VM-C
5 0.0511 0.0408 0.0941 1.317 1.769 yes VM-C VM-C
6 0.0527 0.0422 0.0972 1.361 1.901 yes VM-C VM-C
7 0.0543 0.0434 0.1002 1.402 2.032 yes VM-C VM-C
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Table S2: Geometry of deflated Ld j and Lo j vesicles: The first four rows give

the lipid phase, the deflation step number (or polymer composition) j corresponding to

the Table S1, the vesicle morphology, and the osmolarity ratio Pe/P0. The following rows

contain the initial vesicle volume V0, the initial area A0, and the initial radius R0 before

the first deflation step, the apparent volume Vapp and the apparent area Aapp of the mother

vesicle after the deflation step j, the total tube area A = A0 − Aapp, the total tube length

L, and the fraction Λ of the total tube length corresponding to cylindrical tubes.

vesicle Ld 1 Ld 2 Ld 3 Ld 4 Lo 1 Lo 2 Lo 3 Lo 4

lipid phase Ld Ld Ld Ld Lo Lo Lo Lo
defl. step j 1 2 3 4 1 2 3 4

morph. VM-A VM-B VM-C VM-C VM-A VM-B VM-B VM-C
Pe/P0 1.25 1.38 1.51 1.64 1.25 1.38 1.51 1.64

V0 [µm3] 49296 30138 10223 30590 37384 14991 35177 37210
A0 [µm2] 6500 4683 2278 4730 5407 2940 5192 5390
R0 [µm] 22.7 19.3 13.5 19.4 20.7 15.3 20.3 20.7

Vapp [µm3] 43997 25671 8350 24030 33378 12770 28730 29230
Aapp [µm2] 6027 4208 1992 4049 5053 2642 4536 4754
A [µm2] 473 475 286 681 354 298 656 636
L [µm] 600 600 395 953 94 100 200 195

Λ 0 0 1
2 ±

1
2
a 1

2 ±
1
2
a 0 0 0 0.46

a For the VM-C morphology of the Ld membranes, we used the estimate Λ = 1
2 ±

1
2

corresponding to the whole range 0 ≤ Λ ≤ 1 of possible Λ-values.
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Table S3: Overlap of PEG and dextran chains along the deflation path: The

osmotic deflation steps generate the compositions j with total polymer concentration cj
inside the vesicles, irrespective of whether the interior solution is uniform or phase separated.

This concentration determines the reduced polymer concentration ε = |ccr − c|/ccr which

measures the distance from the critical consolute point with concentration ccr. For the

PEG and dextran chains studied here, the radii of gyration have been estimated to be

Rp = 4.05 nm and Rd = 21 nm. [9] The overlap concentrations of PEG and dextran are

then given by 1/[(4π/3)R3
p] = 0.00359/nm3 and 1/[(4π/3)R3

d] = 0.0258/(10 nm)3 which are

equivalent to the overlap weight fractions w∗
p = 0.0477 and w∗

d = 0.0193. We characterize

the degree of overlapping and the associated strength of repulsive chain-chain interactions by

the overlap ratios wp/w
∗
p and wd/w

∗
d. Columns 4 and 5 display the overlap ratios of the PEG

and dextran chains within the one-phase region. In this region, the large dextran chains

overlapped already at the lowest dextran concentration while the smaller PEG chains did not

overlap with each other but always overlapped with the dextran chains. The corresponding

ratios after phase separation are shown in columns 6 and 7 for the PEG-rich phase as well

as in columns 8 and 9 for the dextran-rich phase. In the PEG-rich phase, the overlap of the

PEG chains increased with each deflation step whereas the dextran chains became separated

after the third step. In the dextran-rich phase, the dextran chains overlapped more and more

strongly whereas the PEG chains became more and more dilute but had to overlap with the

dextran chains. Thus, all polymer solutions along the deflation path were semi-dilute.

comp. cj ε
wp

w∗p

wd

w∗d

wPE
p

w∗p

wPE
d

w∗d

wDE
p

w∗p

wDE
d

w∗d
j [g/cm3]

0e 0.0664 0.69 1.69
0 0.0714 0.139 0.65 2.02
1 0.0800 0.035 0.73 2.26
cr 0.0829 0 0.76 2.34
2 0.0838 0.011 0.94 1.36 0.57 3.53
3 0.0875 0.055 1.09 0.79 0.46 4.42
4 0.0909 0.097 1.18 0.56 0.39 5.03
7 0.1002 0.209 1.38 0.25 0.28 6.78
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Movie Ld 1: Morphology VM-A of Ld membrane

Giant vesicle bounded by an Ld membrane (red) after the first deflation step. The
interior aqueous solution had total polymer mass density c1 = 1.120 c0 = 0.965 ccr
and formed a uniform aqueous phase within the giant vesicle. The movie contains
the 3-dimensional scan of the vesicle, provided by a stack of 44 confocal scans cor-
responding to different separations z from the cover slide, varying from z = 1µm to
z = 44µm in increments of 1µm. The scan reveals many nanotubes that protrude
into the vesicle interior. The thickness of these tubes is below optical resolution; the
total tube length is 600± 100µm.

Movie Ld 2: Morphology VM-B of Ld membrane

Giant vesicle with an Ld membrane (red) after the second deflation step. The
interior aqueous solution had total polymer mass density c2 = 1.174 c0 = 1.024 ccr
and was separated into two aqueous phases forming a PEG-rich and a dextran-rich
droplet. The membrane was completely wetted by the PEG-rich phase and, thus,
not in contact with the pd interface between the two aqueous droplets. The movie
contains the 3-dimensional scan of the vesicle, provided by a stack of 37 confocal
scans corresponding to different separations z from the cover slide, varying from
z = 1µm to z = 37µm in increments of 1µm. The Ld membrane has formed many
nanotubes that protrude into the vesicle interior but are excluded from the dextran-
rich phase which is in touch with the cover slide and thus located at low z-values.
The thickness of these tubes is below optical resolution; the total tube length is
600± 100µm.

Movie Ld 4: Morphology VM-C of Ld membrane

Giant vesicle with an Ld membrane (red) after the fourth deflation step. The interior
aqueous solution had total polymer mass density c4 = 1.273 c0 = 1.097 ccr and was
phase separated into a PEG-rich and a dextran-rich droplet. The membrane was
partially wetted by the PEG-rich phase and formed effective contact angles, θp and
θd, with the pd interface between the two aqueous droplets (Fig. S3a). The movie
contains the 3-dimensional scan of the vesicle, provided by a stack of 82 confocal
scans corresponding to different separations z from the cover slide, varying from
z = 0.5µm to z = 41µm in increments of 0.5µm. The scan shows many nanotubes
that protrude into the vesicle interior and aggregate at the pd interface because of
partial wetting. The thickness of these tubes is below optical resolution; the total
tube length is 953± 150µm.
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Movie Lo 1: Morphology VM-A of Lo membrane

Giant vesicle with an Lo membrane (green) after the first deflation step. The in-
terior aqueous solution had total polymer mass density c1 = 1.120 c0 = 0.965 ccr
and formed a uniform aqueous phase within the vesicle. The movie contains the
3-dimensional scan of the vesicle, provided by a stack of 74 confocal scans corre-
sponding to different separations z from the cover slide, varying from z = 0.5µm
to z = 37µm in increments of 0.5µm. The Lo membrane has formed many nan-
otubes that protrude into the vesicle interior. The tube morphology can be opti-
cally resolved and is provided by short necklace-like tubes; the total tube length is
94± 14µm.

Movie Lo 2: Morphology VM-B for Lo membrane

Giant vesicle with an Lo membrane (green) after the second deflation step. The in-
terior aqueous solution had total polymer mass density c2 = 1.174 c0 = 1.024 ccr and
was phase separated into a PEG-rich and a dextran-rich droplet. The membrane
was completely wetted by the PEG-rich phase and, thus, not in contact with the pd
interface between the two aqueous droplets. The movie contains the 3-dimensional
scan of the vesicle, provided by a stack of 58 confocal scans corresponding to dif-
ferent separations z from the cover slide, varying from z = 0.5µm to z = 29µm in
increments of 0.5µm. The scan reveals many nanotubes protruding into the vesicle
interior without entering the dextran-rich phase which is in touch with the cover slide
and thus located at low z-values. The tube morphology can be optically resolved
and is provided by necklace-like tubes with an average bead radius of 0.63±0.10µm.

Movie Lo 4: Morphology VM-C for Lo membrane

Giant vesicle with an Lo membrane (green) after the fourth deflation step. The
interior aqueous solution had total polymer mass density c4 = 1.273 c0 = 1.097 ccr
and was phase separated into a PEG-rich and a dextran-rich droplet. The membrane
was partially wetted by the PEG-rich phase and formed effective contact angles, θp
and θd, with the pd interface between the two aqueous droplets (Fig. S3a). The
movie contains the 3-dimensional scan of the vesicle, provided by a stack of 74
confocal scans corresponding to different separations z from the cover slide, varying
from z = 0.5µm to z = 37µm in increments of 0.5µm. The Lo membrane has
formed long nanotubes that protrude into the vesicle interior and tend to aggregate
at the pd interface because of partial wetting. Detailed analysis of this scan (Fig. 6
in the main text) reveals the coexistence of necklace-like tubes with bead radius
Rss = 0.64±0.12µm and cylindrical tubes with tube diameter 2Rcy = 0.55±0.07µm.
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