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Abstract

Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of
mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation
have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay
patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical
theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of
individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must
obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as
a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory
to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show
how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime.
Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped
into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze
non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data.
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Introduction

In each cell, the information encoded in the DNA is transcribed

into messenger RNAs (mRNAs), which then, in turn, are

translated into proteins. From a single-molecule point of view,

each mRNA has a finite lifetime and its decay arises from the

action of a variety of degrading enzymes that break down the

mRNA into its constituents, the nucleotides. The encounters

between mRNA and degrading proteins are largely dominated by

stochastic effects.

Given the relevance of mRNA concentration on protein

abundance [1–3], much effort has been dedicated to improve

our understanding of mRNA degradation [4]. In the past decades,

a number of different mechanisms responsible for the degradation

of the mRNA have been identified [5–9]. Some mechanisms of

degradation are known to affect the decay of all mRNA species

and are thus unspecific. In contrast, other mechanisms are known

to affect certain mRNAs more than others depending on different

physical and chemical properties of the nucleotide chain. For

example, micro-RNAs mediate the docking of degrading enzymes

specifically to each mRNA and contribute thus to the large

variation of the stability between mRNA species [8–13].

One widely studied degradation pathway in bacteria is known

as endonucleolytic degradation [5]. This degradation process is

initiated by cleavage within the nucleotide chain by the action of a

single protein or protein complex. For instance in E. coli, RNAse E

and its homologues are proteins responsible to initiate endonu-

cleolytic decay. Once the degradation process has been initiated, it

leads to a rapid decay of the attacked mRNA with a sudden

interruption of translation. In this case, the time scale related to

the random encounter between the degradation complex and the

mRNA primarily determines the lifetime of the mRNAs. It is

commonly believed that eukaryotic mRNAs are affected to a lesser

extent by endonucleolytic degradation than prokaryotic mRNAs

[5]. In eukaryotic cells, the most common mechanisms of

degradation are those that lead to decapping. This mechanism

requires deadenylation at the 39 region and the destabilization of

the 59 cap structure before degradation occurs in the 59 to 39

direction behind the last translating ribosome [5,14]. Different

exonucleolytic degradation pathways exist also in bacteria. In E.

coli, for instance, modification of the 39 stem-loop is a prerequisite

of exonucleolytic degradation initiation [5]. Moreover, in B. subtilis

a 59 exonuclease has been discovered recently [15,16]. Further-

more, a variety of miRNA and small-RNA mediated degradation

mechanisms have been identified [8,9,11,12]. These mechanisms

require several biochemical steps for complete degradation or

complete loss of functionality.

Irrespective of the degradation pathway, the lifetime of a single

mRNA is a random variable that will depend on the diffusion time

of the degrading complexes and on the time scale of enzymatic
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activity at the various steps of degradation. Moreover, the

particular form of the lifetime distribution for each species of

mRNA depends on the specific mechanisms that are responsible

for its degradation. A species of mRNA that is mostly degraded by

the action of an endonuclease, for instance, will have an

exponential lifetime distribution. The same holds also for

degradation processes which involve only one relatively slow,

rate-limiting step.

In contrast, during the decapping process of degradation or

during the degradation process triggered by miRNA, the mRNAs

undergo a series of biochemical modifications [11], several of

which are characterized by relatively slow rates, which implies that

their lifetime distribution cannot be described by a single

exponential function.

This simple observation has dramatic consequences. Indeed, a

basic result in probability theory states that the exponential

distribution is memoryless, i.e. the life expectancy does not depend

on the age of the process, while any other probability distribution

carries a memory of the past. For the mRNAs, this memory is

encoded in the biochemical transformations or in other transient

phenomena that characterize the aging of the mRNA.

In this paper, we show that complex mRNA degradation

processes necessarily lead to lifetime distributions that are not

exponential. Our study addresses the relationship between the

mRNA lifetime distribution and the experimentally observed

mRNA decay patterns. The diverse degradation processes

described above call for a general theory of mRNA degradation.

The theory that we present here provides a robust mathematical

framework, into which one can incorporate additional molecular

details about specific degradation mechanisms.

Experimentally, the decay patterns are often determined by the

measurement of the decaying average amount of each mRNA

species at steady state expression, in a cell culture after the

interruption of transcription. This method proceeds by taking

several samples at different time points, as described in [17–23].

The data points are then fit by an exponential function in order to

compute the half-life of the mRNAs. However, this fitting

procedure has many shortcomings. In Ref. [17] a considerable

amount of data have been eliminated because they could not be fit

by an exponential function and in Refs. [18,19] many rather

distinct decay patterns were observed so that the idea of a fit with a

simple exponential has been rejected for the majority of the

mRNAs.

Fig. 1 reproduces some of the measured decay curves for S.

cerevisiae from Ref. [23]. We highlighted those patterns that

strongly deviate from an exponential decay. The red patterns show

a marked cross-over from a quick decay at short time scales to a

slow decay at larger time scales. The blue patterns, instead, show

the opposite behavior with a cross-over from a slower decay at

short time scales to a quicker decay at large time scales. In the

background, the gray lines show those decay patterns that are

approximately exponential. In particular, the analysis of the data

shows that short-lived mRNA species tend to belong to the set of

the red decay patterns while long-lived mRNAs tend to belong to

the set of the blue patterns in Fig. 1.

The inhibition of transcription is likely to strongly stress the cells

and possibly leads to undesired side effects. Therefore, several

laboratories have developed an alternative method and applied the

non-perturbing pulse-chase technique to assess mRNA stability

[24–26]. This method is based on the labeling of the mRNAs with

a heavy nucleotide, which is added to the cell culture over a period

of time. Again, a measurement of the relative amount of labeled

mRNAs over time reveals the time scale of degradation for the

observed mRNA species. However, also here the pattern may or

may not be exponential and the quality of the data relies on the

number of recorded time points and on a good choice of the fitting

curve, which reflects the assumptions about the biochemical

mechanisms for the degradation process.

In this article, we will first derive a general relationship between

the mRNA lifetime distribution and the decay patterns for the

amount of mRNA, starting from a steady state expression level.

Furthermore, we will introduce the concept of mRNA aging and

show that the residual lifetime distribution of the mRNAs as well

as their potential protein yield change during the experimental

determination of the half-life. Finally, we will develop a model for

degradation by multiple steps and apply it to data of S. cerevisiae in

order to gain insight into the form of the associated lifetime

distributions and a possible classification of the decay patterns of

the entire mRNA pool.

Results and Discussion

First, it is important to distinguish between single-step and

multi-step degradation. On the one hand, endonucleolytic

degradation, depicted in Fig. 2A, is a prototype of single-step

degradation. On the other hand, the decapping mechanism shown

in Fig. 2B is a prototype of multi-step degradation. The lifetime

distribution of the mRNAs will resemble an exponential function if

there is only one rate limiting process relevant for degradation as

in Fig. 2A. Conversely, the lifetime distribution will have a more

complicated form if several biochemical modifications are

necessary as in Fig. 2B, and it will be directly related to the

details of the particular degradation pathway. Relatively simple

processes like those illustrated in Figs. 2A and 2B can be described

within the framework of continuous-time Markov chains, which is

a common mathematical tool in stochastic modeling of biological

processes (see Models and Methods for details). More complex

degradation processes may instead require different models.

Figure 1. Experimental mRNA decay patterns. The relative mRNA
number L defined in Eq. (1) can be measured at different time points
after the interruption of transcription for S. cerevisiae as adapted from
[23]. In this semi-log plot we show only those decay patterns that are
monotonically decreasing and satisfy the convexity properties accord-
ing to the general condition derived in Eq. (18). From the 51 decay
patterns shown here, 21 curves show a cross-over from fast to slow
decay (red) while 4 curves show a cross-over from slow to fast decay
(blue). This indicates that the purely exponential decay is only one of
several possible decay patterns.
doi:10.1371/journal.pone.0055442.g001

Theory of mRNA Decay
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Nevertheless, there exists a general mathematical framework that

links the degradation process to the decay pattern.

From Lifetime Distributions to Decay Patterns of mRNA
From a single-molecule point of view, the degradation process

determines the lifetime of each individual mRNA molecule. Since

the degradation process is largely dominated by random events, it

is appropriate to consider the lifetime of an mRNA as a random

variable. Thus, the most important quantity in our theory is the

probability density wU (t) for the random lifetime U of an mRNA

molecule. The density wU (t) can be determined either empirically

from data (see below) or theoretically, if all details of the

degradation process are known.

Once the function wU has been determined, one can compute

the analytical form of the decay pattern for the amount of mRNA

after the interruption of transcription. Our theoretical framework

accounts for the stochasticity of transcription and the random

lifetime of the mRNAs. These random effects lead to fluctuations

in the mRNA amount that are intrinsic to mRNA turnover (see

section Models and methods). Nevertheless, to explain the experi-

ments on mRNA decay, one just needs to describe the time

evolution of the average number of mRNA.

We first consider the situation, in which the population of each

mRNA species is at steady state. Under this condition, let Nr(0)
denote the average number of one species of mRNA at the time at

which transcription has been interrupted, and let Nr(Dt) denote

the amount of this mRNA species at time Dt after the stop of

transcription. The relative number of mRNAs per cell as defined

by L(Dt): Nr(Dt)
Nr(0)

is then given by

L(Dt)~
1

SUT

ð?
Dt

d u 1{WU (u)ð Þ , ð1Þ

where SUT is the average lifetime of an mRNA molecule and WU

is the cumulative lifetime probability defined as

WU (u)~

ðu

0

d twU (t) , ð2Þ

which describes the probability that an mRNA is degraded before

time u. Thus, the decay pattern of L(Dt) depends therefore on the

form of the lifetime probability density wU (t), which is determined

by the biochemical processes that lead to the degradation of the

mRNA. As mentioned, the computation leading to Eq. (1) assumes

steady state, in which mRNAs of all ages are present in the sample.

From the experimental point of view, it is sometimes convenient to

study a cohort of mRNAs that have been synthesized in a pulse of

transcription. In this case, all mRNAs have approximately the

same age and Eq. (1) is replaced by

Lpulse(Dt)~1{WU (Dt) : ð3Þ

In the remainder of this work, we will focus on the analysis that

Figure 2. Prototypical pathways of mRNA degradation. In panel A degradation is depicted as a relatively simple process determined by only a
single step, e.g. by unspecific and fast endonucleolytic decay, such as the degradation pathway mediated by RNase E in prokaryotic cells. In panel B,
instead, we show a schematic representation of the degradation pathway known as decapping which is one of the main degradation mechanisms in
eukaryotic cells. The decapping mechanism consists of several biochemical steps, possibly triggered by a specific miRNA, which contribute to
destabilize the mRNA until complete degradation takes place. This mechanism can be considered as a prototype of multi-step degradation.
doi:10.1371/journal.pone.0055442.g002
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assumes a steady state expression level of the mRNA and consider

Eq. (1) as the function that gives the decay pattern of the mRNAs.

A further consequence of Eq. (1) is that the shape of the decay

pattern must fulfill a certain convexity property as will be explicitly

shown in Eq. (18). Thus, only those patterns that decrease

monotonically with a non-negative second derivative are consis-

tent with a meaningful (i.e. positive) lifetime probability density.

This criterion provides a general constraint on the decay pattern

without assuming any specific degradation mechanism. All decay

patterns shown in Fig. 1 obey this bona-fide criterion, however

many other patterns deduced from the same experiment do not,

which presumably reflects the perturbing nature of experiments

that block transcription globally. We must notice, however, that

the convexity constraint does not hold if the cohort of mRNA

originates from a short transcriptional pulse.

A Stochastic Theory of Multi-step mRNA Degradation
The lifetime distribution WU of each mRNA species reflects the

characteristics of the degradation process of that species. By

inverting Eq. (1) one could in principle determine the lifetime

distribution WU directly from the experimentally observable decay

pattern. However, to obtain accurate results it would be necessary

to have a high temporal resolution in the experimental determi-

nation of L. Therefore, it is useful to construct a model that

reflects both some characteristics of the underlying degradation

mechanisms and allows a good fitting of the decay data even at a

relatively low temporal resolution. The inspiration for such a

model comes from the biochemistry of mRNA degradation. In

Fig. 2 we have illustrated two prototypes of mRNA degradation,

classified according to being a single or a multi-step degradation

process. A general and useful tool to model multi-step processes

are Markov chains. Here, any biochemical state is mapped onto a

state of the Markov chain and a biochemical modification of the

mRNA is reflected by a transition between states of the chain (see

Models and Methods). Such a model determines the functional form

of WU and is flexible enough to describe the different decay

patterns of the various mRNA species in the cell. Furthermore, this

approach opens the possibility to mathematically study different

biochemical models and to check their validity by comparing their

predictions to experimental data via Eq. (1).

By exploiting our Markov model, in Fig. 3A we analyzed two

instructive examples from the experimental decay patterns in

Fig. 1: The mRNA encoding MGS1 (Maintenance of Genome

Stability 1, red) and the small ribosome subunit protein (RPS16B,

blue). A comparison between the best fit with an exponential

function and the best fit with a multi-step model shows that the latter

is clearly more appropriate than a single exponential in describing

the decay profiles over the entire time course of the experiment.

Furthermore, in the case of MGS1 mRNA, the fit reveals a half-life

t1=2 which is substantially smaller than the estimated half-life from

an exponential fit. We can thus observe that a measurement of the

half-life t1=2 is not, in general, a good measure of the average

lifetime SUT of the mRNAs and it fails to predict the decay rate

accurately.

Age-dependent Rates of mRNA Degradation
Fig. 3A reveals that for the gene MGS1, degradation of the

corresponding mRNA becomes less efficient during the lifetime of

the molecule. In contrast, for the gene RPS16B, mRNA

degradation becomes effective only after a transient time. In both

cases, we concluded that the effective degradation rate vdeg

depends on the age a of the mRNA. In fact, the age-dependent

degradation rate vdeg(a) can be expressed in terms of the lifetime

probability density wU (a) and the cumulative lifetime probability

WU (a), according to the simple relation

vdeg(a)~
wU (a)

1{WU (a)
, ð4Þ

which is often termed the hazard or failure rate in the literature

[27] and is frequently used to describe the age-dependent division

process in cell populations [28,29]. The rate vdeg(a) determines

the probability of degradation of an mRNA of age a in the

(infinitesimal) interval a,azda½ Þ. A heuristic derivation of Eq. (4)

is given in the section Models and Methods.

Fig. 4 illustrates the age-dependence of the degradation rates for

the curves in Fig. 3. Clearly, the degradation rate varies strongly

during the lifetime of the two chosen mRNAs. The two examples

show that the changes of the degradation rates with age are

qualitatively different for the two mRNAs. While MGS1 mRNA is

initially relatively unstable, the maturation of the molecules leads

either to a stabilization of the mRNAs with their age or to a

selection of stable mRNAs from the pool. This form of the age-

dependent degradation rate indicates that strong degradation

processes are at work before or during the relatively slow process

of deadenylation. Phenomena such as differential nuclear mRNA

degradation, mRNA storage in cytoplasmic stress granules and

transient 39 uridylation can in principle all lead to a reduction of

the decay rate[30–32]. In contrast, young RPS16B mRNA is very

stable but aging processes lead to its destabilization. This indicates

that for RPS16B a series of relatively slow steps is necessary to

complete the degradation process, in agreement with the picture

provided by the decapping mechanism. A similar distinction is

thus relevant also for the two non-exponential categories in Fig. 5

(see below).

Note that from the definition of L given in (1) one can derive the

following relation

vdeg(a)~{
d 2L(a)=d a2

dL(a)=d a
, ð5Þ

by combining Eqs. (18) and the definition (4) of the age-dependent

degradation rate. This relation shows that the age-dependent

decay rate vdeg(a) can be directly deduced from the measured

decay pattern, when the latter has been determined with sufficient

precision. Hence, the conclusions drawn from Fig. 4 could, in

principle, be obtained without specification of a detailed decay

model. If the experiment is performed as a transcriptional pulse,

the relation between Lpulse and vdeg is given by

vdeg(a)~
1

Lpulse(a)

dLpulse(a)

d a
, ð6Þ

where Lpulse was defined in (3). Note that (5) and (6) provide the

same age-dependent degradation rate from two different exper-

imental procedures.

Residual and Functional Lifetimes
It was shown that the aging of mRNA affects both the

polysomal size distributions [33,34] and the rate of protein

synthesis [35]. From the point of view of mRNA degradation,

aging becomes manifest in the residual lifetime R of the molecule.

The residual lifetime of a randomly chosen mRNA is the

remaining time until it is degraded. The average residual lifetime

in a sample of mRNA molecules can be easily computed both at

the beginning of the experiment, corresponding to the steady state,

Theory of mRNA Decay
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and during the decay assays (see Models and methods). Fig. 6A shows

the behavior of the average residual lifetime SR(Dt)T as a function

of time Dt after the interruption of transcription for the two

mRNAs discussed in Fig. 3. One can clearly see that the average

residual lifetime changes with time reflecting the aging of the

mRNA population after the stop of transcription, which is a

consequence of the non-constant degradation rate in Fig. 4.

Because the remaining mRNAs are older, their average degrada-

Figure 3. mRNA decay patterns and lifetime distributions. Relative mRNA number L(Dt) as a function of the time Dt after the interruption of
transcription. (A) Two different experimental decay patterns are reproduced from [23] (circles) corresponding to the genes MGS1 (red) and RPS16B
(blue) of S. cerevisiae. The solid lines represent decay patterns as calculated by the Markov chain model and the corresponding rates are estimated
from a non-linear regression analysis (see Models and Methods for details about the fit parameters). For comparison, we also show a fit with a simple
exponential function (dashed lines) which is clearly not suitable to capture the entire information of the degradation process. In particular, the
exponential fit for the red data points suggests a half-life (intersection with the horizontal line) that is almost twice as large as the true half-life. (B) The
corresponding lifetime densities wU are derived using the rates obtained via the fit of Eq. (1) with the data. Evidently, both densities differ strongly
from an exponential distribution indicated by the dashed lines. While the red line shows a rapidly decaying lifetime distribution, the blue line is
broadly distributed, with a clear maximum at an intermediate time.
doi:10.1371/journal.pone.0055442.g003

Figure 4. Effective degradation rate vdeg(a) as a function of the age a of an mRNA. The lifetime distribution of an mRNA can be
translated into an age-dependent degradation rate vdeg(a) via Eq. (4). Here, we illustrate the change of the degradation rate during the lifetime of an
mRNA for the two decay patterns shown in Fig. 3. For the mRNA encoding MGS1 (red), the degradation rate is high for young mRNAs and decreases
to a constant value after some transient time. In contrast, for RPS16B mRNA (blue), the degradation rate is close to zero upon birth of the mRNA and
increases gradually to a constant value. For comparison, the constant rates corresponding to a fit of the decay data with purely exponential functions
(dashed lines) are also included.
doi:10.1371/journal.pone.0055442.g004

Theory of mRNA Decay
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tion rate has changed and, thus, the average residual lifetime can

increase (MGS1) or decrease (RPS16B). Only the exponential fit

shows no aging and a constant residual lifetime (dashed lines).

The residual lifetime is connected to the functional lifetime, which

is defined as the time over which the mRNA is available for

translation by ribosomes. The functional lifetime of an mRNA is

Figure 5. mRNA decay patterns in S. cerevisiae. The patterns are obtained from a systematic fitting procedure applying Eqs. (1) and (9) or (10) to
the experimental data from Ref. [23]. The curves show the theoretical decay patterns that minimize the deviation between theory and experiment.
Note that the experimental data points are omitted here for better legibility. The left panel shows 21 fitted curves that decay exponentially in good
approximation (the best fit was either an exponential function or fitting by another function leads to an error reduction of less than 10 per cent).
Conversely, 94 curves show a moderate decay followed by a fast decay (central panel, the best fit was obtained by Eq. (10) with mƒn) and 309 curves
decay rapidly at short times and then level off (right panel, the best fit was obtained by Eq. (9) with mwn). Thus, the majority of decay patterns does
not follow a single-exponential decay law. For this visualization of the different categories, we considered data that were nearly bona-fide (see text)
resulting in 424 genes. Moreover, in the central and right panel we highlighted a number of decay patterns that display a strong contrast to an
exponential decay.
doi:10.1371/journal.pone.0055442.g005

Figure 6. Average residual lifetime and residual protein synthesis capacity. (A) Average residual lifetime SRT as function of time Dt, as
defined in Eq. (20), after the interruption of transcription for MGS1 (red) and RPS16B mRNA (blue). Under steady state conditions, i.e. Dt~0, both have
similar residual lifetimes. However, if transcription is stopped, the remaining mRNA population ages. The average residual lifetime of MGS1 mRNA still
present in the cell at time Dt increases with Dt because only old mRNAs with a low degradation rate are still in the sample (see Fig. 4). In contrast, for
RPS16B mRNA the average residual lifetime decreases. Only for exponentially distributed lifetimes (dashed lines) the average residual lifetime stays
constant, which reflects the memoryless property of the exponential distribution; (B) Residual protein synthesis capacity C versus Dt as defined in Eq.
(7). The capacity C is proportional to the amount of proteins that will be produced by an average mRNA from the sample. The residual protein
synthesis capacity decays exponentially if the mRNA has an exponential lifetime distribution (dashed lines) but follows a different pattern if the
process of degradation is more complex. The small differences between the exponential and the true decay patterns indicate that the non-
exponential character of the lifetime distributions may be difficult to deduce from measurements of the residual protein synthesis capacity C.
doi:10.1371/journal.pone.0055442.g006

Theory of mRNA Decay
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estimated from the measurement of the number of proteins that

can be synthesized by the remaining mRNAs still present at any

given time point after the interruption of transcription [36,37].

This number is referred to as the residual protein synthesis capacity. In a

first approximation, the residual protein synthesis capacity C(Dt) of

an average mRNA is proportional to the number of remaining

mRNAs Nr and their corresponding average residual lifetime SRT
at any time Dt after the interruption of transcription. If we employ

the normalization condition C(0):1, it can be defined as

C(Dt):
Nr(Dt)SR(Dt)T
Nr(0)SR(0)T

: ð7Þ

Hence, it is fully determined by Eqs. (1) and (20).

The plot of the residual protein synthesis capacity C(Dt) is

shown in Fig. 6B. Note that only for exponentially distributed

lifetimes the synthesis capacity follows an exponential decay since

only in this case SRT is a constant. Conversely, for more complex

degradation processes, Fig. 6B indicates that the residual protein

synthesis capacity C(Dt) follows a different decay pattern for MGS1

and RPS16B mRNA than the pattern predicted by the exponential

fit.

Global Analysis of mRNA Decay Patterns S. cerevisiae
The methodology developed so far allows us to analyze large

sets of mRNA decay data and perform a classification of the

mRNAs according to their decay pattern. In Fig. 5 we show the

result of our systematic fitting procedure by using a (multi-step)

Markov chain with n~5 states. As mentioned earlier, the choice of

the number of states is by no means unique and our analysis does

not strongly depend on this choice. Our choice of n~5 is inspired

by biochemical studies that have identified five main steps in the

process of mRNA degradation, see e.g. Ref. [11]. The classification

method is based on a choice of parameters that minimize the

residual sum of squares (RSS), for details see Models and Methods.

For each decay pattern, we have attempted a fit with several

variants of the multi-step model. The black decay patterns in Fig. 5

decay approximately exponentially and thus require just one

parameter in order to obtain a fit that satisfies our criterion. The

blue and the red curves in Fig. 5, instead, require at least three

parameters in the Markov model in order to obtain a good fit (see

Models and Methods for details). The most important conclusion

from the decay patterns in Fig. 5 is that the majority of them do

not follow an exponential decay. The blue curves in Fig. 5 exhibit

a slower decay at short time scales and cross over to a faster decay

for longer time scales.

One particular example is provided by the decay pattern of the

mRNA RPS16B in Fig. 3. In these cases, the degradation rate

increases with age of an mRNA, similar to the blue curve in Fig. 4.

The red curves in Fig. 5 follow a different pattern: They decrease

faster at shorter time scales and cross over to a slower decrease at

larger time scales. This leads to an age-dependent degradation rate

that is qualitatively similar to the one of MSG1 in Fig. 4. One can

notice, in Fig. 5, that some red and blue curves appear to decay

close to exponentially. In the light of our results, one can consider

the exponential decay pattern as a limiting case of the other two

categories.

Conclusions
Complex degradation pathways lead to lifetime distributions

that cannot be described by a simple exponential distribution. This

implies that the decay pattern is not exponential either. Such non-

exponential patterns have been frequently observed, for instance

in [19]. As a consequence, any attempt to fit these non-exponential

patterns with a single exponential function leads, typically, to a

bad fit and to the elimination of some data sets [17]. Whenever the

degradation process can be described by a continuous-time

Markov chain, all decay patterns tend to look exponential in the

limit of long time scales. However, the time scale over which this

exponential behavior becomes evident may be quite long and may

vary strongly from one mRNA species to another.

Furthermore, our theory shows that by measuring only one time

point in a decay assay - such as for instance in pulse-chase

experiments - is, in general, not sufficient for a precise

determination of the average lifetime of the mRNA. This kind

of measurements, indeed, would deliver the correct decay rate

only if such a rate does exist, namely only if the lifetime

distribution were exponential. Detailed measurements of the decay

pattern, such as those shown in Fig. 1, reveal however that an

exponential decay represents just one of many possible decay

patterns. Moreover, for a non-exponential lifetime distribution, the

relationship between half-life and average lifetime is far more

complex than for an exponential lifetime distribution. This implies

that the half-life is in general not a good predictor of the average

lifetime.

The counterintuitive relationship between half-life and average

lifetime has important consequences for the comparison of mRNA

decay patterns under two different growth conditions, say A and B.

Because of the complex nature of the degradation pathway, it is,

for example, possible that the half-life under condition A is greater

than the half-life under condition B while, at the same time, the

average lifetimes obey the opposite inequality. Therefore, it is, in

general, not possible to compare the decay pattern of the same

mRNA species under two different conditions by using only one

single time scale. Furthermore, such a situation cannot be

adequately described by the qualitative statement that one

condition leads to a ‘faster decay’ compared to the other condition.

Instead, a detailed analysis of the two decay patterns is now

mandatory in order to draw any meaningful conclusions from the

comparison of the two growth conditions. Indeed, only such an

analysis can reveal those steps of the mRNA degradation process

that are primarily affected by switching from condition A to

condition B.

The theory presented here shows that there is a direct

relationship between the biochemical details of a putative

degradation pathway and the corresponding pattern in a decay

assay. As such, our theory can be used to check if a putative decay

mechanism is compatible with the observed decay pattern. The

next theoretical and experimental challenge is to bring these two

aspects of degradation closer together. Thus, one would like to use

the experimental knowledge about the biochemical degradation

pathway in order to predict the patterns measured during decay

assays such as those shown in Fig. 1. At present, such detailed

knowledge is still lacking and many quantitative details of the

decay processes have still to be elucidated. Nevertheless, our

theory provides a general, rather flexible framework for predictive

models of mRNA turnover which can be refined by incorporating

additional insights into the underlying biochemical processes. In

this way, one should be able to identify the molecular mechanisms

underlying the different functional forms for the mRNA lifetime

distributions as deduced here from the observed mRNA decay

patterns.

Typically, decay experiments are performed on non-synchro-

nized cell populations where individual cells can be in different

phases of the cell cycle. In general, the regulation of mRNA

stability can change during the cell cycle. In a recent experiment,
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measurements of mRNA decay in yeast cells were confined to

particular phases of the cell cycle [38]. There, it was found that for

some mRNAs the decay patterns did not differ much in S and M

phase, whereas others showed a distinct pattern. Moreover, the

decay patterns observed during one particular phase were found to

be non-exponential as well. In any case, to correctly assess changes

in the mRNA decay behavior between different conditions or

phases, it is necessary to formulate a theory of mRNA decay such

as the one developed here.

Our theory allows us to suggest a new experimental procedure.

Indeed, also the knowledge of the steady state distribution over the

biochemical state space of each mRNA species would allow

deriving its lifetime distribution. Therefore, experiments aimed at

measuring the relative amount of mRNA in the different states

could substitute experiments based on the stop of transcription and

thus eliminate the undesired effects of this procedure. The

theoretical foundation of this alternative procedure is a conse-

quence of the theory presented here. However, the elucidation of

all details goes beyond the scope of this study and will be

developed elsewhere.

Models and Methods

In this section we describe the models used to perform our

theoretical investigation. We start by introducing a relatively

detailed but rather intuitive Markov chain model, which maps the

biochemical states of an mRNA during the degradation process as

states of the chain. In the second part, we introduce the general

mathematical theory of mRNA decay and aging, which is not

based on any specific underlying model. This theory allows us to

derive general results concerning the convexity properties of the

decay patterns, the age dependent degradation rates, and the

distribution of the residual lifetimes.

Degradation Process as a Markov Chain
From the prototypical degradation processes illustrated in Fig. 2

we develop a suitable mathematical framework in order to derive

the associated lifetime distribution wU (t). This can be done by

translating the degradation pathways into the theoretical concept

of a Markov chain described in Fig. 7. Here, any biochemical state

is mapped onto a state of the Markov chain and a biochemical

modification of the mRNA is reflected by a transition from one

state to the next. In principle, many biochemical pathways of

mRNA degradation can be described in this manner, provided

one knows the details of the pathway. Markov chains, moreover,

provide a well known tool in stochastic modeling with applications

in many problems inspired by biology. One of the big advantages

of Markov chains is the simplicity of their mathematical treatment.

Some applications to single-molecule analysis similar to the one

presented here can be found in Refs. [39–42].

In Fig. 7, the transition rates li from one state i to state iz1 in

Fig. 7 are governed by the time scale of the particular biochemical

modification. For instance, the waiting time until arrival of the

responsible enzyme or the time scale of its catalytic activity might

be the rate limiting process for this step. The degradation

corresponds in our model to a transition into the absorbing state.

After every modification, i.e. in every state, degradation can in

principle take place before reaching the next state of the decay

chain. This degradation process is governed by the degradation

rate mi, which can be, in principle, different for every i. From the

theory of Markov chains we know that absorption, i.e. degradation

of the mRNA, is certain but the associated time scale is random. In

this mathematical framework, the lifetime density wU (t) is the

probability density of the absorption time.

For any given number n of modifications and for any choice of

the rates, one can compute the lifetime probability density wU (t)
by solving the corresponding Master equation. However, the exact

number of states related to each degradation process is not

precisely known in most cases. It remains, therefore, an

experimental and theoretical challenge to specify the relevant

steps in the degradation process and their associated rates.

To obtain a qualitative understanding of the processes, we have

applied some restrictions on the parameters. When all rates mi are

identical, i.e. satisfy mi~m, the lifetime probability density is

completely independent of n and is given by

wU (t)~m exp ({mt) : ð8Þ

Note that this result holds independently of the choice of the

rates li. In Fig. 3A the dashed decay curves are derived from a

model fit based on Eq. (8). The corresponding rates are

m~0:045min{1 (red) and m~0:032min{1 (blue), respectively.

Once the rates have been determined, Eq. (8) yields a constant

residual lifetime as in Fig. 6A and an exponentially decreasing

residual protein synthesis capacity as in Fig. 6B. Also the black

decay patterns in Fig. 5 are those for which no significant

improvement of the fit was possible by taking a model more

complex than Eq. (8). These decay patterns are thus genuinely

exponential.

The best non-exponential fits in Fig. 3 (solid lines) have been

obtained by using the Markov chain model in Fig. 7 with n~5
states and up to three independent rates, which were chosen as

follows. In all cases, we have set the rates li:l. There is no

evidence from biochemical studies that this is indeed the case.

Rather, this choice of li serves to reduce the number of free

parameters and thus improve our intuition about the behavior of

the various functions. As pointed out above, the non-exponential

behavior of the decay patterns roots in different degradation rates

Figure 7. Maturation and degradation of mRNA viewed as a
Markov chain. During its lifetime, each mRNA undergoes biochemical
modifications described by transitions from state i to state iz1 with a
rate li . These alterations may result in a change of the degradation rate
mi that governs the transition from state i to the absorbing state 0. The
probability density of the time to absorption provides the distribution
wU (t) for the lifetime of the mRNA. Many known degradation pathways
can be described in this manner and thus provide the mRNA lifetime
distribution if quantitative information about the rates is available. This
model can also be used to fit experimental data, as was done in Figure 3,
in order to derive the empirical lifetime distribution.
doi:10.1371/journal.pone.0055442.g007
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mi. Therefore, in a first variant, all but the first absorption rates

were the same, i.e. m1:m and mi:n for all iw1. The

corresponding absorption probability density has the form

wU (t)~
e{t(lzm) (lzm)(m{n)zet(lzm{n)ln

� �
lzm{n

: ð9Þ

All red curves in Fig. 5 resulted in the smallest deviation to the

experimental data by a fit of this equation together with (1) under

the constraint mwn. In this scenario, the equation is independent

of the number of states n as long as nw2.

In a second variant, we considered mi:m for all ivn and

mn:nw0. In this case, the lifetime probability density reads

wU (t)~me{(mzl) t
X4

k~0

(l t)k

k!
zne{n t l

lzm{n

� �4

1{e{(lzm{n) t
X4

k~0

((lzm{n)t)k

k!

 !
:

ð10Þ

All blue curves in Fig. 5 resulted in the smallest deviation to the

experimental data by fitting this equation together with (1) under

the constraint mƒn. The improvement obtained by fitting the data

with a multi-step model is displayed in Fig. 8. When one applies

only the exponential model, the fitting error is typically large and

less than half of the mRNAs lead to a residual sum of squares

smaller than 0.01. In contrast, with a multi-step model more than

95% of the data can be fitted with great accuracy (i.e. RSS v0:01).

Nevertheless, some mRNA decay patterns are truly exponential.

We have indeed rejected a more complex model, compared to the

exponential function, if the more complex model did not improve

the RSS by at least 10%. The black dots in Fig. 8 correspond to

those decay patterns for which the exponential fit performed

already very well and no significant improvement could be

obtained with a multi-step fitting. A table with a list of all genes

considered in this study and the optimal fit parameters to describe

their decay is provided in the supporting information.

For the two exemplary decay patterns shown in Fig. 3A, all

unknown rates were obtained from a fit to the experimental data

of the mRNA level of MGS1 and RPS16B. The lifetime probability

densities given by Eqs. (9), for MGS1, or (10), for RPS16B, are then

used in the fitting procedure via Eq. (1). For MGS1, we obtain the

rates l~0:019min{1, m~0:187min{1 and n~0:019min{1,

whereas for RPS16B, we have l~0:313min{1, m~0 and

n~0:037min{1. After determining these rates, we can now

compute quantities that are not easily accessible experimentally,

such as the lifetime probability distribution, the stationary age

distribution at steady state expression and the age-dependent

degradation rate.

mRNA Lifetime Distribution, Patterns of Decay and Aging
We consider a cell culture under homogeneous and balanced

growth conditions, in which the number of cells is kept constant by

the balance between population growth and dilution. Under these

ideal conditions, the number of mRNA molecules in the entire

population for any given expressed gene fluctuates according to a

Poisson distribution [43]. If U is the random lifetime of the mRNA

molecules of a given gene and wU (t) is its probability density, then

pst
k ~

vtcSUT½ �kexp {vtcSUTð Þ
k!

ð11Þ

is the stationary probability distribution for the number k of

mRNA molecules and vtc is the average transcription rate per cell.

We will assume that vtc is a constant and that fluctuations due to

transcriptional bursts in the different cells are averaged out at the

population level. Eq. (11) holds when the creation and degradation

of mRNA are in balance and is valid for any functional form of the

lifetime distribution wU [27,44].

To understand the fluctuations of the mRNA number at any

time interval Dt after the stop of transcription, we have to extend

the theoretical description of Refs. [27,44]. Let X (t) be the total

number of mRNAs transcribed with a constant rate vtc and Y (t)
be the number of mRNAs still alive at any time t. The probability

that k mRNAs are alive at time t is given by

PrfY (t)~kDX (0)~0g~
X?
n~k

PrfY (t)~kDX (0)

~0,X (t)~ngPrfX (t)~nDX (0)~0g ,

ð12Þ

where the second term on the right hand side arises from the

process of mRNA generation, whereas the first term can be written

as [27,44]

PrfY (t)~kDX (0)~0,X (t)~ng~
n

k

� �
pk(1{p)n{k : ð13Þ

Here, p denotes the probability that a single mRNA is still alive at

time t under the condition that the number of mRNA transcribed

until time t is n. The explicit form of p can be computed by

exploiting a property of the Poisson processes, namely that

conditional on X (t)~n the origination times of the n events are

uniformly distributed in the interval (0,t� [27]. In the case of

interest here, the origination time is in the interval (0,ts� but we

measure the number of mRNAs at time tszDt. Thus, each

mRNA has random origin O in the interval (0,ts� and random

lifetime U given by Eq. (2). An mRNA has not been degraded until

time tszDt if OzU§tszDt and thus

p~ PrfOzU§tszDtg~ 1

ts

ð ts

0

d s PrfZ§tszDtDO~sg~

~
1

ts

ð ts

0

d s PrfU§tszDt{sg~ 1

ts

ð tszDt

Dt

d u 1{WU (u)ð Þ ,
ð14Þ

where, in the last step we have used Eq. (2) and a suitable

transformation of variables. Inserting Eq. (14) into Eq. (13), we can

finally compute Eq. (12). If we assume that in decay experiments

the cells were growing sufficiently long to have reached a

stationary mRNA distribution such as in Eq. (11), we can consider

the limit case ts?? and the time-dependent distribution at a time

delay Dt following the interruption of transcription reads

pk(Dt)~
Nr(Dt)½ �kexp {Nr(Dt)½ �

k!
, ð15Þ

where
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Nr(Dt)~vtc

ð?
Dt

d u(1{WU (u)) ð16Þ

is the average number of mRNAs after time Dt and WU (u) is the

cumulative probability function defined in Eq. (2). Eq. (16) is

particularly interesting for the present study because it gives the

evolution of the average number of mRNAs after the interruption

of transcription.

The time-dependent distribution (15) to find k mRNA molecules

at time Dt after the interruption of transcription is similar to the

distribution obtained in Ref. [44] for a process after the start of

transcription. The similarity, however, is restricted to the fact that

both of them are Poisson distributions. The nature of the

parameter Nr(Dt) as in Eq. (16) is qualitatively different from

the parameter found in Ref. [44].

The relative number of mRNAs after a time delay Dt following

the interruption of transcription is given by

L(Dt):
Nr(Dt)

Nr(0)
, ð17Þ

which can be expressed explicitly as in Eq. (1). Hence, the half-life

t1=2 can be computed by solving L(t1=2)~1=2. Fig. 3 shows both

the experimental and the theoretical curves for the decay of L(Dt)
using the solutions (9) and (10) for the red and blue data,

respectively. An analysis of the first and second derivative of L(Dt)
shows also that

dL(x)

d x
~{

1{WU (x)

SUT
ƒ0 and

d 2L(x)

d x2
~

wU (x)

SUT
§0, ð18Þ

which implies that the decay pattern is always decreasing and

convex. Given the model independent nature of this relation, any

bona-fide data must satisfy these criteria.

The residual lifetime R of a randomly chosen mRNA is also a

random variable, whose distribution depends on the time Dt after

the interruption of transcription. A detailed analysis presented in

[44] provides a general form of the probability density of R for any

value of Dt

wR rDDtð Þ~ 1{WU (Dtzr)Ð?
Dt

d t 1{WU (t)ð Þ
: ð19Þ

A simple integration of this quantity shows that if wU is

exponential then wR~wU . This is trivial because of the

memoryless property of the exponential distribution. Nevertheless,

for any other functional form of wU we find that wR is a non-trivial

function. The average residual lifetime is determined by the

integral

SR(Dt)T~

ð?
0

d rrwR rDDtð Þ , ð20Þ

for any Dt§0. This expression enters into the determination of the

residual protein synthesis capacity C defined in Eq. (7). If the

Figure 8. Comparison of fitting errors. The plot shows the residual sum of squares (RSS) after fitting the exponential model (abscissa) and the
multistep model (ordinate) to the experiment data from Ref. [23]. Clearly, the multistep model leads to a considerable improvement of the fitting
procedure, resulting in an average error reduction by almost one order of magnitude. Moreover, we also display the errors corresponding to the
different categories in Fig. 5 as black, blue and red dots, respectively. The latter two represent the non-exponential patterns and typically imply a
strong reduction of the fitting error. Additionally, we have highlighted the two representative cases RPS16B and MGS1 belonging to the two non-
exponential categories, as given in Fig. 3A. One may notice that there are some black dots, corresponding to the exponential decay patterns in Fig. 5.
For these decay patterns, the fitting with a multi-step model does not provide a significant improvement of the fit compared to the exponential
function.
doi:10.1371/journal.pone.0055442.g008
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mRNAs are produced by a short transcriptional pulse, their

residual lifetime probability density is not given by Eq. (19). Since

in this case all mRNAs have the same age, the residual lifetime is

given by

w
(pulse)
R (rDDt)~

wU (Dtzr)

1{WU (Dt)
: ð21Þ

In the following, we provide a heuristic derivation of Eq. (4). The

transition from intact to degraded mRNA is given by the time-

dependent rate vdeg(a). The exact definition of vdeg(a) is given by

means of the transition probability

Prf mRNA (azda)~ degraded D mRNA (a)~ intact g

~vdeg(a)dazo(da)
ð22Þ

for da?0. This transition probability means that given an intact

mRNA of age a, its probability to be degraded within the next

infinitesimal interval of time da is vdeg(a)da. The probability 2(a)

that the mRNA is still intact at age a is then defined as

2(a)~ Prf mRNA (a)~ intact g : ð23Þ

Thus, using the conditional probabilities defined in (22) we obtain

the following differential equation

_22(a)~{vdeg(a)2(a) , ð24Þ

whose solution with the initial condition 2(0)~1 is given by

2(a)~ exp {

ða

0

dtvdeg(t)

� �
: ð25Þ

Since, by the definition of 2 given in (23) it holds that

2(a)~1{WU (a), the differential equation (24) delivers the

expression of vdeg(a) in terms of the probability density and its

cumulative function as given in Eq. (4).

Supporting Information

Table S1 Summary and the details of our fitting results for all

genes studied in this work. The data is organized as follows:

Column 1: Gene id. Column 2: Category (0 = exponential = black,

1 = slow-fast = blue, 2 = fast-slow = red).Column 3: Parameter l
(transition rate) [1/min].Column 4: Parameter m, first degradation

rate [1/min].Column 5: Parameter n, second degradation rate [1/

min].Column 6: Residual sum of squares (RSS).Column 7: Mean

lifetime SUT [min].Column 8: Half-life t1=2 [min].Column 9–17:

Experimental mRNA levels at time points

0,5,10,15,20,30,40,50,60 min after interruption of transcription

(data from [23])
(CSV)
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