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Abstract—Engineered constructs coupling a defined number
of molecular motors provide an opportunity to study the
cooperative transport of cargoes. Theoretical descriptions for
the dynamics of such complexes can help to understand
experimental data or to quantitatively formulate expectations
for such experiments and provide a general framework for
such analysis. Here, we review and extend recent theoretical
studies that focused on pairs of molecular motors to study
effects of coupling between the motors. We derive explicit
results for two elastically coupled kinesin-1 motors as a
function of the coupling strength using both linear and
nonlinear springs. In addition, we discuss the general
dynamics of such motor pairs, which is governed by
characteristic time scales for the spontaneous unbinding of
motors and for the built-up of strain forces that are
sufficiently large to affect the run length and/or the velocity
of the motors. We show how the comparison of these time
scales can be used to predict the distinct behavior of different
motor species, the effects of coupling, and the impact of the
single motor velocity on the observable dynamics of a motor
pair.

Keywords—Molecular motors, Cooperative cargo transport,

Elastic coupling, Multi-motor constructs, Stochastic model-
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INTRODUCTION

Force generation and active movements by cyto-
skeletal motors such as kinesins, dyneins, and myosins
are crucial for long-range transport in cells and for the
self-organization of their complex internal struc-
ture.31,47,55 They have also provided a blueprint for the
design of engineered nanoscale transport sys-
tems26,27,40 and inspired the general theoretical study
of nanoscale molecular machines.47 Our current
understanding of how these molecular motors work
has been advanced greatly by the use of single molecule
technology such as optical tweezers,58 which allowed

for the quantitative characterization of the motor’s
behavior under the influence of external force.
Together with theoretical descriptions of their kinet-
ics,22,46 the data from single molecule experiments
provide a detailed picture of the dynamics of individual
motors.

In cells, however, motors often work in teams rather
than as single molecules. This has been known for dec-
ades for the assemblies of millions of myosin motors in
muscle,32,33 but more recently it has also been realized
that cytoskeletal cargo transport relies on motor coop-
eration as well, although here the number of motors
forming a team is typically small (often between 1 and
10).25 In the simplest case, a cargo may be pulled by
several motors of the same type, for example several
kinesin-1 motors. Moreover, cellular cargoes are often
associated with motors belonging to different motor
species, which further increases the complexity of cargo
transport: Many cargoes move bidirectionally along
microtubules due to the presence of both kinesin and
dynein motors, which both walk along microtubules,
but in opposite directions.24,62 In addition, cargoes may
switch from microtubule-based transport to transport
along actin filaments, if myosin motors are present as
well.30 The cooperation of different motor species
obviously extends the range of dynamical behavior that
can be achieved with molecular motors.6 Beyond that,
there are several advantages that teams of motors pro-
vide over individualmotors.Most importantly theymay
be able to generate larger overall forces.60 In addition
motor cooperation can lead to longer runs,3,10,17 in
extreme cases up to millimeter.12 Motor cooperation
may also result in an increased velocity in situations
where themotors work against an opposing load force if
multiple motors share the load.23 However, a recent
study suggested that the load may not always be shared
equally by the motors.34 Finally, transport by multiple
motors provides additional opportunities for the regu-
lation of transport as illustrated by the effects of
microtubule-associated proteins.60,18

In recent years, it has therefore become more and
more evident that to understand transport processes in
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cells, one has to move beyond single motors and study
the cooperative action of several motors or motor
assemblies and the mechanism by which these motors
are coordinated.15,25,38 The first such studies used beads
covered by several kinesin or dynein motors.3,49,60

While these experiments provided some insight into
motor cooperation, they remained limited by the fact
that the number of cooperating motors could only be
controlled on average. An important improvement for
studying motor cooperation was thus the design of
synthetic assemblies of precisely defined numbers of
motors.48,53,63 Since then a number of studies have
investigated such defined motor complexes: The most
extensive studies have been done for a system of two
kinesin-1 motors coupled via a DNA scaffold,34,53 but
other studies have also used two kinesins coupled via an
antibody,63 two coupled myosin V motors,48 and a
myosin V motor coupled to a myosin VI motor.1 Motor
cooperation has also been studied with microtubule
gliding assays, in which motors immobilized on a sur-
face pull a microtubule along that surface.8,45

In parallel to these experimental efforts, the
dynamics of teams of cytoskeletal motors has also been
tackled by theoretical and computational approaches.
A general theoretical framework for studying motor
teams has been proposed in 2005 by our group.38 This
framework has been used to study unidirectional
transport by one team of motors belonging to the same
motor species3,38 and was later extended to bidirec-
tional transport by two teams of motors.50–52 In addi-
tion, several groups have developed models that include
detailed descriptions of the single motors involved and
that address specific effects such as the stochasticity of
stepping19,41,42 and the geometry of motor assem-
blies.13,20,21,40 As in the experimental studies listed
above, the focus of recent theoretical work has been on
assemblies of two motor molecules. In particular, sev-
eral recent studies have addressed the model case of two
coupled kinesin-1 motors. Somewhat surprisingly,
these studies came to qualitatively different conclu-
sions. One aspect that has been in the focus is the
question whether there is ‘‘motor interference’’, i.e.
whether motors impede their movements by exerting
forces on each other due to their stochastic stepping.
Experimentally, the interference issue was emphasized
by the observation that unbinding of a motor in a two-
kinesin assembly is enhanced when both motors are
bound to the microtubule.53 While some modeling
studied have reproduced this effect,19,20,36 others have
not or have in addition predicted a decrease of the
velocity41,61,64 that has not been observed. This con-
fusing (theoretical) situation has led us to re-examine
the case of two coupled motors.7,37

In a recent study7 we have shown that such systems
can exhibit four distinct transport regimes that depend

on both the parameters of the motor molecule itself
and on the elastic coupling between the motors. We
have proposed simple time scale arguments that lead to
an intuitive picture of the effects of elastic coupling
between two motors. In the present article, we continue
this line of thought. We use these time scale arguments
and the theoretical description of motor pairs devel-
oped in Berger et al.7 to address the effects of various
types of nonlinear elasticity and of different ways of
varying the single motor velocity. In addition, we also
provide explicit results for observable properties of an
assembly of two kinesins.

The article is organized as follows: We first introduce
the theoretical approach which is based on the general
framework proposed in Klumpp and Lipowsky38 and
the detailed model for two elastically coupled motors of
Berger et al.7 We also phrase the interference problem
in terms of the general description of Klumpp and
Lipowsky.38 Then we present explicit results for two
coupled kinesin motors obtained with this approach,
focusing on the dependence of the result on the cou-
pling constant. Finally, the last part of the article deals
with the time scale arguments. We discuss how they can
explain the different transport regimes found in our
previous study and how they predict different patterns
of motor interference for different types motor assem-
blies, specifically of kinesin-1 motors and of myosin V
motors. We then demonstrate the use of these time scale
arguments by addressing the effects of nonlinear cou-
pling between the motors, as well as the results of
varying the single motor velocity. As a result of these
theoretical considerations, we conclude that an exper-
imental study of motor assemblies that differ only in the
coupling between the two motors would be desirable.

THEORETICAL DESCRIPTION OF PAIRS OF

COUPLED MOLECULAR MOTORS

General Theoretical Framework

Our starting point for a theoretical analysis is a
general theoretical framework for transport by several
molecular motors,38 which we use here in the special
case of two identical motor molecules. Within this
theoretical description, a motor can bind to the fila-
ment, walk along it, and unbind from it. The state of a
cargo is characterized by the number of bound motors.
For a cargo transported by a motor pair there are thus
three states C0, C1, and C2 in which the cargo is
transported by 0, 1 or 2 motors, respectively (Fig. 1).
Since we are interested in the movement of the cargo
on length scales that are large compared to the motor
step size l ’ 8 nm,17 we characterize each cargo state
with an (average) velocity (v1 and v2). Transitions
between the cargo states occur when a motor binds to
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or unbinds from the filament. An individual motor
unbinds with rate �1; this rate also determines the
transition rate from state C1 to state C0, which occurs
when the only bound motor unbinds. The transition
from C2 to C1 is also based on unbinding of a motor,
more precisely on the unbinding of one out of the two
bound motors. Its rate, termed �2 will depend on the
single motor unbinding rate but is not identical to it.
Finally, binding of the second motor (when one is
bound) determines the transition from C1 to C2 and is
described by a binding rate p. We assume that every
run of a cargo starts with an unbound cargo first
binding to a filament via one motor into state C1.

The theoretical framework described so far allows
one to calculate explicit expressions for a number of
observable properties of the runs of cargoes pulled by

several motors.38 For example, the mean run time, i.e.
the average duration of a cargo run from initial bind-
ing to a filament to complete unbinding, is given by

Dtcah i � p þ �2
�1�2

ð1Þ

and the mean run length by

Dxcah i � pv2 þ �2v1
�1�2

: ð2Þ

The average velocity vca is obtained from the ratio,

vca �
Dxcah i
Dtcah i : ð3Þ

Furthermore, the distributions of these quantities
can be also calculated analytically, see Klumpp and
Lipowsky.38

The description given so far provides a general
framework for the analysis of transport by several
motors, but to make quantitative predictions, the
transition rates need to be specified. This is relatively
easy for state C1, where the cargo is transported by
only one motor. The parameters of this state, the
unbinding rate �1 and the velocity v1, can thus be taken
from measurements for individual motors. The binding
rate p is difficult to measure directly and depends in
general on the geometry of the assembly and other
typically poorly controlled factors. It has been deter-
mined indirectly (by fitting experimental data with a
model) for kinesin-pulled membrane tubes, kinesin-
driven beads and two-kinesin complexes. For the first
two systems a binding rate of ’5/s3,44 was found, while
the latter resulted in smaller binding rates.53,63

The parameters �2 and v2 that characterize state C2 are
even less straightforward. In the case of non-interacting
motors, in which the motors step independently of each
other,weobtain v2 = v1 and �2 ¼ 2�1; since the rate for an
unbinding event when both motors are bound, is the sum
of the single rates.38 Such non-interacting behavior is the
extreme case of a very loose coupling between the motors.
However, in general, the parameters �2 and v2 depend on
the dynamical parameters of a single motor and on the
interactions between the motors. In principle they can be
determined experimentally by careful analysis of trajecto-
ries of two-motor complexes provided that the cargo states
C1 andC2 can be identified. This approach has been taken
in a series of recent studies by Diehl and collabora-
tors,34,48,53 who distinguish microstates with one or two
load-bearing motors, although these do not necessarily
correspond to the statesC1 andC2 with one or two bound
motors, if the motors do not share the load. Likewise, in
glidingassays, trajectories canbepartitioned into segments
with one or two motor pulling the microtubule based on
the different swiveling behavior of the microtubule.45

FIGURE 1. Theoretical description of two coupled molecular
motors. The upper row shows the states of a cargo trans-
ported by two motors, where these states are defined by the
number of motors linking the cargo particle to the filament: In
state C1, the cargo is pulled by one motor and in state C2 by
two motors. In addition, it can unbind from the filament into
the absorbing state C0. In state C1 and state C2 the velocity of
the cargo is v1 and v2, respectively. The arrows indicate
transitions between the states with their associated rates, the
single motor unbinding rate �1; the effective unbinding rate �2

of one of the motors in a motor pair and the single motor
binding rate p. The two lower rows display our detailed
mechanistic model of two coupled motors that resolves state
C2 into microstates with different configurations of the motor
pair characterized by the strain force between the two motors:
In state (2, 0), the motors are bound with relaxed linkers such
that there is no force between the motors. When the motors
step either towards each other or away from each other, a
strain force is generated between them, as, e.g., in state (2,1);
there are two motor configurations that correspond to this
state. Transitions between the states correspond to stretching
or relaxing of the elastic linkers due to stepping of a motor
(with rates xs(2,i) and xr(2,i) respectively). Unbinding of a
motor occurs with the rate xoff(2,i). All these rates depend on
the force and thus on the state (2,i). The space of microstates
in the lower row is used to calculate the effective quantities �2

and v2 that result from the interplay of stochastic stepping,
strain force-generation, and unbinding.
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In such approaches, the theoretical framework
described above is not used in a predictive manner but
rather as an analysis tool. For example, a key result of
the studies of Diehl et al. was the observation of motor
interference, enhanced unbinding of motors in a two-
kinesin complex when two motors are bound and, as a
consequence relatively short run lengths. This result was
obtained by comparing the experimentally determined
rate �2 for a 2-kinesin complex with what is expected if
the two motors unbind independently, without any
interactions. It is however worth mentioning that earlier
experiments on kinesin-driven beads were consistent with
the long run lengths expected for non-interacting motors3

or showed run lengths even longer than expected.60

In order to make quantitative predictions using the
theoretical framework outlined above, one either needs
to specify the remaining parameters (i.e. those that are
not directly given by single motor observations such as �2
and v2) based on plausible assumptions or determine
them from a more microscopic model. To tackle this task
several groups (including ours) have developed a variety
of detailed models for coupled motors. These approaches
typically take one of two roads: They either start by
splitting the state with two bound motors, C2 into several
substates,7,14,19,20,37,57,61 in which case some results can
still be obtained analytically, or use detailed computa-
tional models that particularly emphasize on the geom-
etry of the motor-complex or the arrangement of motors
on a bead.13,39,41 In reference,37 a detailed chemome-
chanical network for two-motor complexes is used to
generate trajectories and to show that the parameters �2
and v2 can be deduced in a unique manner from the
statistical properties of the trajectories. As mentioned
already in the introduction, there exist considerable dif-
ferences between the predictions obtained from different
models with respect to interference effects.

Below we will follow the first type of approach using
the general model described in Berger et al.7 to obtain
specific results for coupled kinesin-1 motors and to
discuss effects of different types and strengths of cou-
pling (we note that we have also pursued a comple-
mentary approach to coupled motors,37 which starts
from a detailed description of the chemomechanical
dynamics of a single motor). We will specifically be
interested in the build-up dynamics of force between
the motors to study the conditions under which elastic
coupling between the motors leads to interference
effects such as enhanced unbinding (�2>2�1), as
observed for kinesin pairs,53 or a reduced velocity
(v2 < v1), as observed for pairs of myosin V motors.48

This type of motor interference depends on the single
motor dynamics, in particular on the reaction of the
motor to a force. Knowing the force-dependent
dynamics of a single motor from optical trapping
experiments, it is possible to predict the dynamics of

two elastically coupled motors. Following this line of
thought, we next introduce a theoretical description for
two elastically coupled molecular motors that provides
a detailed description of state C2, in which both motors
actively pull the cargo. This theory is based on a single
motor description that captures all relevant charac-
teristics as known from single molecule experiments.

Theoretical Description of Coupled Motors

Our detailed description of coupled molecular
motors that interact by exerting forces on each other is
based on the force-dependent dynamics of individual
motors that has been characterized extensively via
single molecule experiments. Our description of single
motors is summarized in the ‘‘Appendix’’. This
description is predicated on experimental observations
for kinesin-1, but can be adjusted to other motors as
well. It describes the following dynamic processes:
binding of the motor to the filament, unbinding, and
forward stepping (in a simple extension of the model,
backward steps can also be taken into account7). These
three processes are characterized by the corresponding
rates, which, in principle, could all be force-dependent.
However, as in several previous studies38,50 (but dif-
ferent from others19,20), we take the binding rate p to
be independent of force. A justification for this sim-
plification is given in the ‘‘Appendix’’. As a conse-
quence, we are left with two force-dependent processes,
unbinding and stepping. The two force-dependencies
are characterized by two characteristic force scales, the
detachment force Fd, which governs the increase of the
unbinding rate as a function of force, and the stall
force Fs at which the velocity of the motor vanishes.
These two characteristic force scales are crucial for
understanding the dynamics of a motor pair.

With this description of single motors at hand, we
come back to the description of a cargo transported by
twomotors. Our task is to deduce the parameters �2 and
v2 from a microscopic model.7 This model provides a
more detailed description of the cargo state C2. In this
state both motors are bound to the filament and pull the
cargo. The motors are coupled via their elastic linkers
to the common cargo, and the strain force developed
in this elastic element is a function of its extension.
Because of the discrete stepping of the motors the
extension is a discrete quantity and, thus, the force
between the motors can only have the discrete values

Fi � FðxiÞ: ð4Þ

We now describe the state of the cargo by the dis-
crete extension of the elastic elements, which defines a
series of substates ð2; 0Þ . . . ð2;NÞ of state C2, see
Fig. 1. Every state (2,i) is characterized by a force Fi

acting on the two motors or a corresponding extension
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xi of the elastic element. In state (2,0) the linkers are
relaxed. If one of the motors steps, the absolute
extension of both linkers increases by the motor step
size l and the cargo is in state (2,1). For identical
motors each linker is stretched by l/2. This stretching
induces a strain force between the motors. One motor
feels the force F1 = F(l/2) and the other motor feels
the opposing force �F1 = � F(l/2). To calculate the
forces Fi explicitly, the nature of the elastic element
needs to be specified. In the simplest case, we consider
the motor stalks as linear elastic springs with stiffness
j. Then Fi is obtained from the force-extension relation
of two such linear springs in series, Fi = j li/2. More
complex types of coupling will be considered below.

Transitions between the states ð2; 0Þ . . . ð2;NÞ occur
whenever a motor steps. We denote the transition rates
for extension of the linkers by xs and for relaxation by
xr. These transition rates are connected to the stepping
rates of the single motors under force and are obtained
by summing up the rates of all steps that result in
extension or relaxation, respectively,7 which leads to

xsð2; iÞ ¼ aðFiÞ ¼ VðFiÞ=l ð5Þ

and

xrð2; iÞ ¼ að�FiÞ ¼ Vð�FiÞ=l ð6Þ

for all states (2,i) with i> 0 and

xsð2; 0Þ ¼ 2að0Þ ¼ 2Vð0Þ=l ð7Þ

for state (2,0). In these expressionsVðFÞ denotes the force-
velocity relation of a single motor. Next, we have to con-
sider theunbindingof themotors.Unbindingofonemotor
is described by transitions from every state ð2; 0Þ . . . ð2;NÞ
to the stateC1 in which the cargo is transported by a single
motor. The corresponding transitions rates are given by
the force-dependent unbinding rates,

xoffð2; iÞ ¼ �1ðFiÞ þ �1ð�FiÞ: ð8Þ

With these definitions, we have expressed all rates in
terms of the single motor unbinding rate �1ðFÞ and
force-velocity relation VðFÞ (which could be taken
directly from experimental data, for the description we
use here, see the ‘‘Appendix’’). To calculate the two
quantities �2 and v2, which are determined by the
dynamics when both motors are bound, we treat the
state C1 as an absorbing state. The unbinding rate �2 is
then calculated as the inverse of the mean first passage
time to absorption and v2 as the average stepping rate
times the displacement, as shown in the ‘‘Appendix’’.

TWO COUPLED KINESIN MOTORS

The theoretical framework developed so far allows
us to calculate the two parameters �2 and v2 of the

two-motor bound state C2. In Fig. 2 we show these
parameters as a function of the spring constant j for
the kinesin parameters of Table 1. As expected, as the
coupling strength is increased, the velocity is reduced,
while the unbinding rate increases, indicating that the
motors exert force on each other that interfere with
their function. It is however worth noting that for
spring constants smaller than 0:3 pN/nm, the velocity
is only reduced by 25% whereas the unbinding rate is
increased by 100% compared to the non-interacting
case (j ¼ 0 pN/nm). Hence, we draw the conclusion
that kinesin motors interfere in such a way that they
pull each other off the filament, while maintaining an
almost constant velocity. Below this effect will be
explained by the comparison of two time scales char-
acterizing the built-up of force sufficient to force motor
unbinding and to cause significant slow-down of their
stepping, respectively.

The two parameters �2 and v2 calculated so far
characterize the state of the cargo where it is bound to
a filament through both motors. They can be measured
directly if trajectories can reliably be partitioned into
sequences of 1-motor runs and 2-motor runs, i.e. into
segments where the cargo is bound to the filament
through one or two motors, respectively, see also
Keller et al.37 The overall motility of such cargoes are
characterized by the average velocity and the overall
run length, which may also be determined without the
need to resolve such partitioning of the trajectories.
Within the model, these quantities can be calculated
via Eqs. 1 and 2. They are plotted in Figs. 2(c) and
2(d), again as functions of the spring constant j. Both
quantities depend also on the binding rate p, in con-
trast to the parameters �2 and v2, which do not. We
therefore show data for two different values of the
binding rate. The behavior of the two global transport
characteristics reflects the dependence of the parame-
ters of state C2: The run length exhibits a strong
decrease as the coupling strength is increased, reflect-
ing the increase in the unbinding rate �2: We note,
however, that this reduction is a reduction compared
to the case of non-interacting motors and not a
reduction compared to transport by one motor. In
fact, the run length of a two-motor assembly is always
found to be longer than that of a single motor. Only in
the limit of very strong coupling, we recover the run
length of a single motor, as in that limit the second
motors unbinds immediately after binding.

The average velocity of the cargo is reduced much
less than the run length, as expected based on the weak
effect of the coupling on v2. In fact for sufficiently
strong coupling, we find that the average velocity
increases again. This observation can be explained by
two counteracting effects. On the one hand, the
velocity in state C2, where both motors are bound,
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decreases (Fig. 2b), but on the other hand, as �2
increases the probability of being in that state
decreases as well. The overall effect on the average
velocity is thus even smaller than the effect on v2, with
approximately 5 and 10% maximal reduction in the
two cases we show. For both quantities, the impact of
coupling is more pronounced (i.e. the fold-change
compared to the non-interacting case is larger) for
larger binding rate p. This is, of course, due to the
increased fraction of time the cargo spends in state C2

with both motors bound, as coupling effects only play
a role in this state.

USING COMPARISONS OF TIME SCALES TO

UNDERSTAND COUPLED MOTORS

The complex behavior of two coupled motors with
several distinct transport regimes can be understood in a
more intuitive way by comparing different time scales
associated with the generation of strain forces between
the motors. In this section, we briefly review the time
scale argument introduced in our earlier work7 and then
use these arguments to explain the effects of nonlinear
coupling and of a modulation of the single motor
velocity. We wish to emphasize that the salient time
scales can be calculated exactly within the theoretical
framework developed in the previous section, but that
an alternative use of such arguments is to make quali-
tative or semi-quantitative predictions based on a intu-
itive picture of how the built-up of strain may be
accelerated or delayed by changing various parameters
of the systemor the type of coupling between themotors.

Time Scales for Strain Force Generation

The dynamics of cooperative motor transport is
governed by the interplay of three processes: the
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FIGURE 2. Characteristics of the dynamics for an elastically coupled kinesin pair and dependence on the coupling strength:
(a) effective unbinding rate �2 as a function of the spring constant j. For stronger coupling the unbinding rate increases; the motor
pull each other from the filament. For weak coupling the unbinding rate attains the value �2 ¼ 2�1; as expected for non interacting
motors; (b) average velocity v2 of a cargo simultaneously transported by two both motors. For strong coupling, the velocity
decreases. For weak coupling the cargo is transported with the single motor velocity; (c) overall cargo run length Dxcah i as in Eq.
(2) and (d) cargo velocity vca as in Eq. (3) obtained with the rates of (a) and (b) for two different binding rates p. For a larger binding
rate, the cargo is more often transported by both motors and therefore, the motor-motor interference effects are more pronounced
in the dynamics of the overall cargo. In all plots, the single motor parameters are those given in Table 1.

TABLE 1. Parameters used for the single kinesin descrip-
tion.

Parameter Symbol Value

Stall force Fs 6 pN56

Detachment force Fd 3 pN56

Force-free velocity v1 1 lm=s56

Force-free unbinding rate �0 1 s�156

Binding rate p 5 s�13,44

step size l 8 nm17
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stepping of the motors, the unbinding of the motors
and the build-up of strain forces between them. Thus,
strongly coupled and/or fast motors can quickly build
up a large strain force that pulls one of the motors
from the filament, while weakly coupled and/or slow
motors may unbind spontaneously before reaching
such a large force.

In order to systematically study which process dom-
inates and how that depends on the single motor prop-
erties and on the coupling, we compare three different
time scales: the time scale for spontaneous unbinding of
a motor and the two times it takes to build up motor-
motor forces that are comparable to the detachment and
stall force, respectively. An illustration of these time
scales is shown in Fig. 3. The time scale for spontaneous
unbinding tu is the average time that a non-interacting
motor pair remains bound to the filament via both
motors, i.e. the average time until one of the twomotors
unbinds. The time scale tFd for force induced unbinding,
is the time it takes to built up a strain force between the
motors that is comparable to the detachment force. The
time scale tFs for force-induced stalling is the time that is
required to generate a strain force between the motors
that is comparable to the stall force. These time scales
can be calculated from detailed mean first passage time
calculations, see Berger et al.7 The comparison of
these time scales allows us to develop an intuitive
understanding of the cooperative transport of two
elastically coupled motors as described in the following.

Distinct Transport Regimes for Different Motor Species

For two elastically coupled kinesin motors, the
unbinding rate increases dramatically as a function of

the coupling strength, while the velocity is only weakly
affected, see Figs. 2(a) and 2(b) . Thus, unbinding is
the dominant process in such a system. This conclusion
also follows from the comparison of the time scales.
For kinesin-1, the detachment force Fd is smaller than
the stall force Fs, and the strain force built up between
the motors will first reach the detachment force and
hence tFd < tFs. Unless the coupling is very weak, these
times are also shorter than the time for spontaneous
unbinding tu and thus force-induced unbinding is the
dominant process.

In our previous study, we have determined the
parameters �2 and v2 systematically as a function of the
motor parameters and the coupling strength and
identified four distinct regimes.7 The parameter that
could be varied experimentally for a given motor pair
is the coupling strength. Within the theory, a variation
of the spring constant corresponds to a path through
the different transport regimes, which however need
not cross all four regimes. For example, kinesin-1
motors can attain the ‘‘enhanced unbinding regime’’
described so far, a weak coupling regime and a strong
coupling regime. In the weak coupling regime, for
small j, there is almost no effect on the unbinding rate
and on the velocity, whereas the strong coupling re-
gime, for large j, is characterized by an enhanced
unbinding rate and a reduced velocity. Each regime
corresponds to an ordered sequence of the three time
scales, under the constraint that tFd < tFs: Weak cou-
pling is obtained for tu < tFd < tFs, enhanced unbind-
ing for tFd < tu < tFs, and strong coupling for
tFd < tFs < tu. The observations by the Diehl lab cor-
respond to the enhanced unbinding regime character-
ized by an enhanced unbinding rate with only a small

time

FIGURE 3. Different time scales associated with the competing processes of spontaneous unbinding, force-induced unbinding
and force-induced stalling: The time scale tu for spontaneous unbinding is the time, after which one of two weakly coupled motor
unbinds (upper row). The time scale tFd for force induced unbinding is the time two coupled motors need to build-up a strain force
comparable to the detachment force (middle row). The time scale tFs for force-induced stalling is the time two elastically coupled
motors need to build-up a strain force that is of the order of the stall force (lower row).
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effect on the velocity.53 As a side remark, we also note
that the comparison of time scales provides a natural
explanation why interference is always obtained in
models for coupled kinesins that assume that both
motors remain bound all the time,14,61 as this case
corresponds to the limit of infinite unbinding time
tu, which is part of the strong coupling regime.

Pairs of other types of motors may not attain the
same transport regimes as kinesin.7 For example, for
processive myosin motors, there is evidence that the
detachment force is larger than the stall force.1 Con-
sidering this fact, our theory predicts that tFs < tFd
and, thus, that the dominant effect of motor-motor
coupling should be a reduction of the velocity or
stalling of the motors. The three different ordered
sequences of the time scales now correspond to the
weak and strong coupling regimes as above and to an
intermediate ‘‘reduced velocity’’ regime. As a conse-
quence, a cargo simultaneously transported by two
processive myosin motors should have a reduced
velocity without a substantially enhanced unbinding
rate.7 In fact, this has been reported very recently for
coupled myosin V motors.48

Different Coupling: Nonlinear Springs, Cable-like
Springs

Above and in our previous study, we have described
the elastic coupling between the motors as a linear
spring. In general, however, biopolymers may have
nonlinear force-extension relations. Such non linear
force-extension relations can easily be incorporated in
our theoretical description via Eq. (4). In fact, as the
model in Fig. 1 specifies the states of the 2-motor
complex by the force acting between them, nonlinear
coupling only modifies the values of the force associ-
ated with the different states and does not increase the
complexity of the calculations. In the following, we

consider several nonlinear spring models that have
been used for kinesin motors. These models are based
either on considerations from polymer physics to the
kinesin stalk and tail domains or on experimental data
for force-extension relations.

As a first example, we consider two nonlinear force-
extension relations that have been reported for kinesin
(plotted in Fig. 4a), based on an analysis of the fluc-
tuations of the bead position in optical trapping
assays.2,19 In both cases, the force-extension relation
increases slowly for small extensions, but fast for large
extensions, corresponding to a soft spring that stiffens
under force. For comparison, we also show a case with
a linear spring, again using a stiffness reported for
kinesin, j ’ 0:3 pN/nm.16 For all three cases, we cal-
culated the unbinding rate �2 and the velocity v2 for the
cargo state where both motors are bound (Figs. 4b and
4c). The overall results are similar in all three cases, but
the interference effects are weaker for the two nonlin-
ear springs: the unbinding rate is smaller and the
velocity is larger than for the linear spring. This
observation implies that the smaller stiffness of the
nonlinear springs (for small extensions) is dominant, so
the motors coupled via the nonlinear springs need
more time to develop substantial strain forces. As thus
strain is built up more slowly, the interference effects
are less pronounced.

As a second example, we consider cable-like models
for the coupling. Cable models have been used in
several computational studies of cooperative motor
transport.39,41,42 These studies have typically not seen
strong interference effects. Cable models provide a
simple description of the elasticity of a polymeric
chain. In these models, the force-extension relation is
split into two regions corresponding to compression
and stretching of the polymeric linker. Under com-
pression, i.e. for chain extensions smaller than its rest
length l0, no strain forces are generated, while strain is
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FIGURE 4. Nonlinear coupling of a motor pair: (a) Three force-extension relation for the kinesin linker as reported in different
studies: (I) a linear spring (red) with stiffness j ’ 0:3 pN/nm,16 (II) a polynomial nonlinear force-extension relation (blue) deduced
by Atzberger and Peskin from experimental data.2 (III) A piecewise-linear force-extension relation (green) as suggested by Driver
et al;19 (b) the unbinding rate �2 and (c) the velocity v2 for these three different linker models. For the nonlinear couplings the soft-
spring behavior for small extensions dominates, resulting in smaller interference effects than for the stiffer linear spring.
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generated by stretching. In the stretching mode, i.e. for
extensions larger than the rest length l0, a linear force-
extension relation applies. In the case of two coupled
motors, two cables corresponding to the stalk of each
motor are connected, which results in an effective rest
length of 2l0.

It is possible to implement a cable model within the
framework used above, but because of the different
behavior under compression and stretching this is
more complicated than for the nonlinear springs con-
sidered so far and requires a few additional technical
steps, which we describe in the ‘‘Appendix’’. It is
however very simple to use the time scale arguments to
obtain a semi-qualitative understanding of this case.
Let us thus use these arguments to discuss what we
should expect for a cable-like elastic element. When
both motors start working together in the compression
mode, where the linkers are relaxed, no forces are built
up between the motors until their linkers are stretched
to a distance larger than 2 l0. Thus the motors need a
certain time to leave the compression mode. Likewise,
motors starting with their linker at its rest length have
a chance to enter the compression mode rather than
the stretching mode. Both dynamic scenarios result in
an offset time, given by the time it takes until the
motors start to interact via their linkers. This offset
time contributes to the times tFd and tFs required to
generate relevant strain forces. For this reason, we
expect, that in models using cable-like linkers, tu < tFd
and tu < tFs, and thus the interference is rather small
or even vanishing as has been seen in previous studies
using cable models.39,41,42

To test this argument, we have calculated the time
scales exactly within the theoretical framework of the
previous section, our calculation is based on an
extended state space that accounts for cable-like link-
ers by allowing for additional states corresponding to

the compression mode (described in the ‘‘Appendix’’).
Results of this detailed calculation are shown in Fig. 5.
In Fig. 5a, we plot the time tFd for strain generation
relevant for unbinding as a function of the rest length
l0 and compare it to the spontaneous unbinding time
tu. The time tFd increases with the rest length l0.
Already for a rest length of l0>30 nm, we have
tFd>tu ¼ 1=2�1 ’ 0:5s and the system is dominated by
spontaneous unbinding as expected from the qualita-
tive argument. In Figs. 5b and 5c, we show the corre-
sponding results for the unbinding rate �2 and the
velocity v2. Only for very short rest lengths, these
parameters show effects of motor-motor interaction
and deviate from the values expected for non-inter-
acting motors (v2 = v1 and �2 ¼ 2�1; which are indi-
cated by the blue lines). For large rest length l0,
interference effects in both the unbinding rate and the
velocity are hardly visible, in agreement with the pic-
ture that the motors unbind spontaneously before
generating substantial forces.

In summary, the motor linkers that act as cables
decrease the elastic coupling strength and thus the
interference effects. This conclusion agrees with previ-
ous studies based on cable models.39,41,42

Control of Travel Distance Through the Velocity

Another quantity that affects the time scales for the
built-up of strain force is the value of the (single
motor) velocity: As the strain is generated through
motor stepping, force is built up more rapidly if motors
step faster. As a consequence, interference effects
should be enhanced by speeding up the motors and be
reduced by slowing them down. Such variation of the
velocity can, for example, be achieved by changing the
concentration of ATP, which allows one to vary
the velocity over two orders of magnitude.54,56
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FIGURE 5. Cable-like coupling of the two motors: (a) Time scale tFd and tu as a function of the rest length l0 of a cable-like linker
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forces comparable to the detachment force is longer than the time tu for spontaneous unbinding. Thus, the system mainly unbinds
spontaneously and interference effects are rather small; (b) unbinding rate �2 and (c) velocity v2 of two active kinesins with cable-
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The dependence of the dynamic parameters on the
ATP concentration is, however, complex, as a varia-
tion of the ATP concentration modulates the chemo-
mechanical cycle of a motor37 and may also affect
other parameters in addition to the velocity. In par-
ticular, the ATP concentration may affect the (single
motor) unbinding rate. In the case of kinesin-1, whe-
ther this is the case or not depends on the concentra-
tions of ADP and inorganic phosphate in the medium.
A detailed study of the effects of the ATP concentra-
tion will therefore require a description of the chemo-
mechanical cycles of the motor.37 Here we consider
two idealized limiting cases, for which the velocity v1 is
varied while either the unbinding rate �1 or the ratio
between the velocity and the unbinding rate (v1=�1)
remains constant. These two modes of modulating the
velocity lead to rather different results.

We first consider the case, where the unbinding rate
is considered as independent of the velocity and is thus
kept constant. In this case, the time to build up strain
between the motors is increased by slowing down the
motors, while the time for spontaneous unbinding is
unchanged. For slow motors, the latter time scale can
be shorter than the time for building up a substantial
force between the motors. Therefore, slow motors

should be weakly coupled and behave as independent
motors with v2 � v1 and �2 � 2�1:

In Fig. 6, we plot the two parameters characterizing
state C2, �2 and v2 as well as the cargo run length as a
function of the single motor velocity v1. As expected
from the time scale argument, the unbinding rate �2
increases considerable as the single motor velocity is
increased, indicating that force between the motors is
built up more rapidly, see Fig. 6a. By contrast, the
velocity exhibits an (almost) linear increase with v1
(note that in Fig. 6b we plot the ratio v2/v1 which is
almost constant). The linear dependence reflects the
change in the prefactor of all rates related to stepping
of a motor. Interference effects on the velocity are very
weak, so only for strong coupling some nonlinear
effects can be seen (the deviations from constant ratios
in Fig. 6b) that reflect the slower built-up of strain
force for small v1. Likewise, for the run length of the
cargo the dominant effect is the linear impact of the
velocity, but there again are coupling-dependent non-
linear corrections, see Fig. 6c.

In the argument so far, we have assumed that the
velocity is varied, while the unbinding rate remains
unchanged. However, several experimental studies
have shown that the run length of a single kinesin is
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FIGURE 6. Effects of the single motor velocity on the dynamics of a motor pair: (a, d) Effective unbinding rate �2; (b, e) velocity v2

and (c,f) overall cargo run length Dxcah i for different spring constants j as functions of the single motor velocity v1. In plots (a)-(c),
we vary v1 while keeping the single motor unbinding rate �1 constant, whereas in (d)-(f) we keep the ratio of the unbinding rate �1

and v1, i.e. the single Úmotor run length constant. (a) For constant �1, the effective unbinding rate �2 increases with the single motor
velocity v1, as strain between the motors is built up more rapidly; (b) the velocity v2 is also affected and its ratio to v1 decreases as a
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the single motor velocity. Changing the single motor unbinding rate �1 together with the single motor velocity v1 leads to a different
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independent of the ATP concentration over a rather
wide range of ATP concentrations,59,63 contrary to
what one would expect if the ATP concentration only
affected the velocity. This observation indicates that a
variation of the velocity via the ATP concentration
also leads to a variation of the single motor unbinding
rate �1: It can be explained using models for the
chemomechanical cycles of kinesin,46 which also show
that this type of dependence is only expected for low
concentrations of ADP and inorganic phosphate. This
dependence can be interpreted as an effect of a con-
stant (or approximately constant) unbinding proba-
bility per step rather than a constant unbinding rate,
i.e. a constant unbinding probability per time. This
feature has some interesting consequences for coupled
motors that have been addressed experimentally in a
recent study for two kinesins coupled via an anti-
body.63 We note however that the run length becomes
dependent on the ATP concentration if the ATP con-
centration is sufficiently low;56 here, what concentra-
tion is sufficiently low depends on the concentration of
inorganic phosphate in the buffer.46

To discuss this issue within our theoretical frame-
work, we consider a second mode of varying the single
motor velocity. We express the single motor unbinding
rate �1 in terms of the single motor velocity v1 and the
run length Dxh i which leads to the relation �1 ¼ v1

Dxh i :
Inserting this relation into equation Eq. (2), and taking
into account possible interference between the motors
(which implied that the unbinding rate �2 ¼ �2ðv1Þ and
the velocity v2 = v2(v1) are functions of the single
motor velocity), we obtain the cargo run length as

Dxcah iðv1Þ ¼ Dxh i 1þ p � v2ðv1Þ
v1 � �2ðv1Þ

� �
: ð9Þ

In the case of a velocity dependent unbinding rate,
the rates of all dynamic processes within state C2 are
varied in parallel (all stepping rates are proportional to
v1 and all unbinding rates to �1; which is also propor-
tional to v1). As a consequence, all time scales char-
acteristic for state C2 are equally affected,
corresponding to an overall rescaling of the time unit.
Thus, in this scenario, interference effects are not
increased by increasing the velocity v1; instead the
presence or absence of interference (and its impact on
transport) are independent of the values of v1. As a
consequence, both the unbinding rate �2 and the
velocity v2 are linear functions of the single motor
velocity v1 (indicated by their constant ratios to v1),
simply reflecting the rescaling of the time unit, see
Figs. 6d and 6e. Realistically, the linearity between �1
and v1 will however break down for very small veloc-
ities, as otherwise nonmoving motors would never
unbind.

While the relative magnitudes of all rates within
state C2 are unaffected by the mode of varying the
velocity, the ratio of the unbinding rate �2 and the
binding rate p is affected by this variation. As a con-
sequence, the cargo run length now exhibits the
opposite behavior as in the case above. Figure 6f
shows that the run length is strongly increased for
decreasing single motor velocities, as the probability of
having both motors bound to the filament increases
strongly due to the reduction of the unbinding rate �2:
This is exactly the effect observed by Xu et al.63 with
two kinesin motors, who found the run length of two
coupled motors to increase when the single motor
velocity was decreased.

In summary, a reduction of the single motor velocity
has two effects on the cargo run length beyond the
obvious direct linear dependence on the velocity: (i)
The two-motor unbinding rate �2 tends to decrease as
strain is built up more slowly and interference effects
are reduced. This decrease of the unbinding rate acts to
increase the run length, which however is not sufficient
to overcome the reduction from the decreasing veloc-
ity. (ii) If the decrease of the motor velocity is coupled
to a reduction of the unbinding rate, as observed for
changes via the ATP concentration, the unbinding rate
�2 decreases relative to the rebinding rate p and thus
the cargo spends more and more time bound via both
motors. This again increases the run length, and this
increase is now large enough to overcome the reduc-
tion via the decreasing velocity. Finally, we note that
as already mentioned, the linearity between v1 and �1
will not be valid for arbitrarily small motor velocities
or, if the velocity is modulated via the ATP concen-
tration, only for a certain range of ATP concentra-
tions, so that a real system will exhibit a combination
of the two behaviors discussed here. A detailed analysis
of the ATP-dependence of motor cooperation there-
fore requires an explicit model for the chemomechan-
ical cycle of the motors.37

CONCLUDING REMARKS

In this article, we have reviewed and extended our
previous study7 of pairs of coupled molecular motors
and discussed effects of nonlinear elasticity and of the
modulation of the single motor velocity (e.g. by vary-
ing the ATP concentration). We have emphasized that
a large number of observations can be understood by
comparing time scales for the built-up of strain forces
between the motors with the time scale for spontane-
ous unbinding: If strain is generated slowly, motors
unbind spontaneously before sufficient forces have
been built up. In that case, the elastic coupling between
the motors has almost no effect on the dynamics of a
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cargo pulled by a motor pair. If, however, strain is
built up rapidly, the coupling leads to interference
between the motors which may lead to enhanced
unbinding or/and a reduced velocity. These four
dynamic behaviors define the distinct transport re-
gimes discussed in our earlier work.7 Which behavior is
observed depends on two properties of the motor pair:
(i) It depends on the parameters of the individual
motors, i.e. on the motor type. For coupled kinesin-1
motors, we find that enhanced unbinding is the dom-
inant effect, while for coupled myosin V motors, our
model predicts a reduced velocity. Both theoretical
results are in agreement with experimental observa-
tions;48,53 and (ii) it also depends on the strength and
the type of the coupling as shown for example by the
results of Fig. 2. These effects have not been addressed
experimentally yet, but the coupling strength could be
varied in engineered motor complexes by using dif-
ferent linkers for the two motors.

Throughout this article, we have considered the
motor pair as not experiencing an external force. An
obvious next step in the analysis described here is an
extension to the case where the motors work against an
external load force. This case is expected to involve
additional time scales, for example the time over which
imbalances in the loads experienced by the two motors
disappear and equal load sharing is established.

APPENDIX A: THEORETICAL DESCRIPTION

OF SINGLE MOTORS

In this appendix, we briefly summarize the descrip-
tion of single motors that we use as an ingredient for
the model of coupled motors. This description is based
on the measured force-dependencies of three dynamic
processes: motor binding to the filament, unbinding
from the filament, and stepping. For simplicity we only
consider forward steps, but backward steps can also be

taken into account by a straightforward extension of
the model.7 The essential ingredient of our model is the
force-dependence of the rates of these three processes.

The fore-dependence of the unbinding rate is
described by

�1ðFÞ ¼ �0 expðjFj=FdÞ; ð10Þ

an exponential increase with the absolute value of the
force F, as suggested by experiments with kinesin-156

and by theory,4 see Fig. 7c. Here, the force is scaled to
the detachment force Fd which is of the order of pN.56

The detachment force can be considered as the char-
acteristic force that the motor can sustain for an
extended period of time before unbinding. When
backward steps are not modeled explicitly, the force-
dependence of the stepping rate a is obtained from the
force-velocity relation VðFÞ through aðFÞ ¼ VðFÞ=l;
where l is the step length.

Typically, the velocity of a motor decreases with an
opposing force until the motor stops under the stall
force Fs. For assisting forces, the velocity of kinesin
can be taken as constant, as found experimentally for
kinesin.11 To capture kinesin’s behavior, we describe
the force-velocity relation by a piecewise linear func-
tion,

VðFÞ �
v1 F<0

v1ð1� F=FsÞ 0 � F<Fs

0 F � Fs;

8<
: ð11Þ

which involves two parameters: the stall force Fs as the
characteristic force for stalling and the velocity v1 for
the force-free case, see Fig. 7b. Other functional forms
of the force-velocity relation, including non-constant
behavior for assisting forces can be implemented in the
same way, as shown in Berger et al.7 Finally, we take
the binding rate p as independent of the force.

A few comments are in order: (i) Here we use simple
expressions for the force-dependence of the unbinding
rate and the velocity aimed more at capturing the core
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FIGURE 7. Force-dependent dynamics of a single motor: (a) Sketch of a typical single molecule experiment, in which a single
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stepping rate is determined via aðF Þ ¼ VðF Þ=l :; (c) parametrization of the force-dependent unbinding rate of the single motor.
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properties of the observed dependencies than at a
precise quantitative description. Complex, but more
accurate expressions can however be incorporated into
our modeling approach. Likewise, the approach can
easily be adapted to molecular motors whose dynamic
parameters exhibit different force-dependencies (an
example would be the different force-dependence of
unbinding for dynein43). (ii) In this description of the
motor the internal chemomechanical states of motor
proteins9,46 are not described explicitly. All effects due
to the different mechanochemical states must be
accounted for implicitly via the rates a, �1 and p.
Effects of the chemomechanical cycles will be studied
elsewhere.37 (iii) In total, this description of a single
motor depends on six parameters. Their values for
kinesin-1 are summarized in Table 1. The number of
parameters will in general increase if more complex
descriptions of the force-dependencies are used.

APPENDIX B: THEORETICAL DESCRIPTION

OF THE BINDING PROCESS

In this appendix, we provide a justification for our
description of the binding process by a constant binding
rate. Other more complicated approaches have been
discussed in several studies.19,20,35,48 Our approach is
based on the observation that binding and unbinding
proceed along different pathways: whereas unbinding
dominantly occurs from strained configurations (all
states (2,i) with i> 0), motors mostly bind in a relaxed
configuration, i. e. to state (2,0). Therefore, we describe
binding with a single rate that is independent of the
force.

In the following, we expand on this picture of the
binding process. If the cargo is bound only by one
motor to the filament, the other motor is in a relaxed,
strain-free configuration. The unbound motor searches
diffusively for a binding site. In the case of strong
coupling, it is rather rare that thermal fluctuations
push the motor to a binding site that requires binding
under strain. The dominant binding configuration is
the relaxed configuration (2,0), as assumed in the main
text. For small stiffness j, it is more likely that the
motor also binds to different states (2,i) in which the
motor is stretched. However, since, in this case, the
coupling strength j is small, the overall induced strain
force that influences unbinding and stepping is also
small.

To estimate the effect of binding under strain for
intermediate coupling strength, we assume that the
probability distribution of the unbound motor to bind
to state (2,i) is given by the Boltzmann distribution
Pinit
i � N�1

e�jðliÞ2=2kBT with normalization N ¼

P
i e

�jðliÞ2=2kBT: Then, the average elastic strain force
under which binding of the second motor occurs, is
given as Fh iinit�

P
i FiP

init
i ; with the elastic strain force

Fi ¼ 1
2jli: We calculated this quantity. For the kinesin

parameter given in Table 1 and kBT ’ 4:1 pN nm, we
found that its maximal value is very small, 0:15 pN; at
an elastic coupling strength of about 0:17 pN/nm. As a
consequence, the overall effect of binding under strain
is negligible and the restriction that the motor rebinds
only in its relaxed state provides a very good approx-
imation.

APPENDIX C: DETAILED CALCULATION

OF �2 AND V2

In the following, we describe the method we use to
calculate the effective unbinding rate �2 and the
velocity v2 of two motors bound to the filament
simultaneously.5,7 We consider the discrete network of
states depicted in the lower row of Fig. 1. This network
describes the strain force-dependent dynamics of the
motor pair in terms of their stepping and unbinding.
We assume that the two motors start working together
in the state (2,0) in which both motor linkers are
relaxed. The state (2,N) corresponds to a force, which
is equal or large the single motor stall force, such that
the motors are not able to step anymore. The effective
unbinding rate is then determined by the inverse mean
first passage time to reach state (C1) provided that the
process has started in state (2,0). The velocity v2 is
determined by the average stepping rate times the
displacement of the cargo per motor step. Technically
speaking, we consider a Markov process on the net-
work shown in Fig. 1 with an absorbing state (C1). In
general, average quantities such as the mean time to
absorption or the average stepping rate can be
obtained from the time-dependent probability distri-
bution for the network. However, a more intuitive and
elegant way to obtain these quantities has been pro-
posed by Hill.28,29 The basic idea is to use the ensemble
average instead of the time average. The ensemble
average is determined using a time-independent prob-
ability distribution that is obtained from a modified
network without the absorbing state: As soon as the
process reaches the absorbing state, it is re-started at
the initial state. A network for such dynamics is
obtained by eliminating the absorbing state and redi-
recting all transitions directed towards the absorbing
state to the initial state. In this way the original net-
work shown in Fig. 1 is closed to the modified network
shown in Fig. 8. The probability distribution P2,i for
the closed network is determined from the solution of
the steady state master equation,
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@tP2;0 ¼ �½xsð2; 0Þ þ xoffð2; 0Þ�P2;0 þ xrð2; 1ÞP2;1

þ
XN
j¼0

xoffð2; jÞP2;j ð12Þ

@tP2;i ¼ xsð2; i� 1ÞP2;i�1 � ½xsð2; iÞ þ xrð2; iÞ
þ xoffð2; iÞ�P2;i þ xrð2; iþ 1ÞP2;iþ1

for 0<i<N

@tP2;N ¼ xsð2;N� 1ÞP2;N�1 � ½xrð2;NÞ
þ xoffð2;NÞ�P2;N:

Here P2,i is the probability of being in state (2,i) before
absorption. Together with the normalization condi-
tion, this set of equations can be solved with a back-
ward substitution, since P2,N only depends on P2,N-1.
Now, the inverse mean first passage time is the rate of
being absorbed, which is given by probability current
into the absorbing state,

�2 ¼
XN
i¼0

xoffð2; iÞP2;i: ð13Þ

Averaging the stepping rates of both motors, we obtain
the velocity

v2 ¼
l

2

XN
i¼0

½aðFiÞ þ að�FiÞ�P2;i: ð14Þ

APPENDIX D: THEORETICAL DESCRIPTION

OF CABLE-LIKE LINKERS

To be able to describe cable-like linkers within our
detailed model for two coupled motors, we have to
extend the state space of Fig. 1. We add N� states with
a negative index, which are associated with the com-
pression mode, i.e. Fi = 0 for all these states. The
choice of a negative index ensures that the state in
which the motors are separated by one step length still

corresponds to state (2,1) as before. The number N� of
these states depends on the rest length l0. For example,
if l0 = 0, there is no compression mode and therefore
N� = 0 and we recover the case of a linear spring. For
convenience, we choose the rest length l0 to be a mul-
tiple of the step size l and therefore N� = 2 l0/l.
Otherwise an appropriate rounding function has to be
introduced. We illustrate the system in Fig. 9, in which
the shaded gray areas are associated with the com-
pression modes. Because of the assumed geometry, we
do not distinguish whether motors walk towards each
other or away from each other, compare Fig. 1.
Therefore, we assign to every state ð2;�N� þ 1Þ . . . ðNÞ
two configurations that correspond to the two columns
in Fig. 9. The only state with a unique configuration is
the state (N�), in which the effective distance is zero.
Accordingly, we adjust the rates for stretching, relax-
ation and unbinding:

xsð2; iÞ ¼
2að0Þ i ¼ N�

að0Þ N�<i � 0
aðFiÞ 0<i<N;

8<
: ð15Þ

xrð2; iÞ ¼
að0Þ N�<i � 0

að�FiÞ 0<i � N;

�
ð16Þ

xoffð2; iÞ ¼
2�1ð0Þ N� � i � 0

�1ðFiÞ þ �1ð�FiÞ 0<i � N:

�
ð17Þ

We note that for N� = 0, the case that corresponds to
a simple linear spring, we recover the rates specified in
Eqs. (5)-(7).

In the extended model, there are N� + 1 force-free
states, in which the linkers are relaxed. We consider all
of these states as possible initial states and therefore
assume that when on motor is active, the other motor
binds with equal probability w = 1/(N� + 1) into any
of these N� + 1 force-free states.

With these extensions of the model, the unbinding
rate �2 and the velocity v2 are then determined in the
same way as for the original model described in the
main text.

FIGURE 8. Closed version of the network of network in the lower row shown in Fig. 1 obtained by redirecting all arrows that lead
into the absorbing state back into the initial starting state (2,0).
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