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Association-dissociation process with aging subunits: Recursive solution
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The coupling of stochastic growth and shrinkage of one-dimensional structures to random aging of the
constituting subunits defines the simple association-dissociation-aging process which captures the essential
features of the nonequilibrium assembly of cytoskeletal filaments. Because of correlations, previously employed
mean-field methods fail to correctly describe filament growth. We study an alternative formulation of the full
master equation of the stochastic process. An ansatz for the steady-state solution leads to a recursion relation
which allows for the calculation of all emergent quantities with increasing accuracy and in excellent agreement
with stochastic simulations.
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I. INTRODUCTION

A variety of dynamical phenomena, such as the assembly
of cytoskeletal filaments [1], fibrillar aggregates [2], and
synthetic supramolecular polymers [3], are stochastic growth
and shrinkage processes of one-dimensional structures (fila-
ments). Dynamical queues, which model telecommunication,
computing, traffic engineering, and logistics processes, may
also be described as randomly growing and shrinking filaments
with calls, network packets, vehicles, or stock keeping units
as respective subunits [4]. Transformations may change the
subunit association and dissociation rates from the filament
ends leading to altered filament growth and shrinkage rates.

In particular, irreversible transitions (aging) of the consti-
tuting subunits lead to characteristic assembly and disassembly
cycles of cytoskeletal filaments [1,5]. Hydrolysis (aging)
within actin filaments converts adenosine triphosphate (ATP)
actin into adenosine diphosphate (ADP) actin [1]. Since ADP-
actin has a larger dissociation rate than ATP-actin, the filaments
become less stable as they grow older [1,6]. Similarly, the
accelerated dissociation of tubulin caused by the hydrolysis of
bound guanosine triphosphate (GTP) gives rise to the promi-
nent dynamic instability of microtubules [1,7]. Moreover, the
dynamics of various filaments of the bacterial cytoskeleton
seem to be driven by a similar ATP(GTP) hydrolysis cycle [8].
While the precise modeling of cytoskeletal dynamics requires
considerations of experimental details, such as the two-step
ATP hydrolysis within actin filaments [1,9] or the protofila-
ment interactions in microtubules [1,10], only three factors
are essential for the dissipative assembly-disassembly cycles:
(i) There is a pool of free ATP(GTP) resulting in a continuous
supply of the ATP(GTP) species [1]; (ii) hydrolysis takes
place at random subunits within the filaments [11,12]; and
(iii) hydrolysis results in an increased dissociation rate [1]. A
simple stochastic process incorporates these features and has
been used before to model cytoskeletal filaments [11,13–21].

Here we introduce the general term simple association
dissociation aging process (SADAP), because there are diverse
potential applications of this process. For instance, SADAPs
may serve as stochastic models for (computer) stacks, also
termed last in–first out (LIFO) queues, with two types of
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(data) packets: “Intact” packets enter the stack and leave it
with a certain rate. While in the stack, these packets may
become “corrupt” (no longer needed or damaged), leading to
a larger stack leaving rate. Furthermore, a particular SADAP
has been considered as a model for chaperone-assisted polymer
translocation [22].

Three stochastic processes, all having exponentially dis-
tributed transition times, define the SADAP as a Markov
process, see Fig. 1: (i) Subunits are incorporated with a
constant rate ω+ into the filament at one terminus called the
active end. Upon incorporation, a subunit is in state 1. (ii) By
means of aging with rate ωa, any state-1 subunit within the
filament can attain state 0. (iii) The subunit at the active end
dissociates with rate ω−,1 ≡ ω1 if it dwells in state 1 and with
rate ω−,0 ≡ ω0 if it dwells in state 0.

A crucial objective of statistical mechanics is the compu-
tation of the properties of a macroscopic system based on
microscopic laws. For a SADAP, one aims to predict the
(macroscopic) average filament growth or shrinkage from the
(microscopic) association, dissociation, and aging rates (ω+,
ω1, ω0, ωa). No standard techniques exist to determine the
stationary weights of the microstates for such driven systems
far from equilibrium [23,24], but exact results are known for
particular one-dimensional systems [25]. To our knowledge,
similar results have not been found for the SADAP and the
most detailed studies have been published in the context of
actin and microtubule assembly [11,13–20]. A mean-field
solution was already obtained in 1986 [13], but it turns
out that correlations are crucial. On these grounds previous

FIG. 1. Definition of simple association-dissociation-aging pro-
cess (SADAP). The internal state of each subunit is described by a
binary variable Si = 0,1. State-1 subunits enter the filament at the
active end with rate ω+. State-1 subunits are converted into state-0
subunits by aging with rate ωa. State-1 subunits (state-0 subunits)
leave the filament at the active end with rate ω1 (ω0). The state of the
N terminal subunits is represented by the sequence (S1,S2, . . . ,SN ).
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studies (including the very recent [20] which claims to account
for correlations) lead to incorrect predictions of collective
properties.

In this article, we present an analytical approach for solving
the SADAP. We introduce an alternative form of the full master
equation which describes all 2N joint probabilities of the
N terminal states. We found an ansatz for the steady-state
solution which allowed us to derive a simple nonlinear
recursion relation for all joint probabilities. This method
enables the calculation of the filament growth and shrinkage
velocities from the microscopic model parameters and the
precise construction of the phase diagram. We found that our
results are in excellent agreement with stochastic simulations.

The main sections (Secs. II–VIII) of the article provide a
self-contained description of our ideas, procedure, and results,
while Appendices A–F contribute details of the calculations
and additional information.

II. GENERAL CONSIDERATIONS

In the limit of large times, a SADAP attains a nonequilib-
rium steady state: State 1 is supplied at the active end and used
up by aging within the filament, whereas state 0 is supplied
within the filament by aging and used up at the active end by
dissociation. Therefore, the probability to find state 1 decreases
monotonically with increasing distance from the active end,
giving rise to a system which is not translationally invariant.

The filament growth velocity is determined by S1, i.e.,
the state of the subunit at the active end, since ω0 ̸= ω1 in
general. The average growth velocity is given by v = ω+ −
(ω1 − ω0)⟨S1⟩ − ω0, where the average value ⟨S1⟩ is the
probability to find state 1 at the active end. The calculation
of ⟨S1⟩ is highly nontrivial and the most important result of
our paper.

For the trivial case ω+ = 0, state-1 subunits are not added to
the filament, and the steady state ⟨Sn⟩ = 0 is attained, leading
to v = −ω0. Furthermore, the transient dynamics is also well
understood for this case, see Refs. [11,26] for detailed analyses
in the context of actin filaments.

III. FULL MASTER EQUATION

For ω+ > 0, every subunit n within the filament has a finite
probability ⟨Sn⟩ to be in state 1. The master equation for these
probabilities reads [13,18]:

∂t ⟨Sn⟩ = ω+ ⟨Sn−1 − Sn⟩ + ω1 ⟨S1(Sn+1 − Sn)⟩
+ ω0 ⟨(1 − S1)(Sn+1 − Sn)⟩ − ωa ⟨Sn⟩, (1)

where S0 ≡ 1. This master equation does not fully capture the
stochastic filament dynamics, as we will see below. In fact, the
terms ⟨S1Sn(+1)⟩ reflect the coupling of aging to dissociation.
So far, the mean-field approximation ⟨S1Sn⟩ ≈ ⟨S1⟩⟨Sn⟩ (for
n > 1) has been employed [13,18] for uncoupling, but this
leads to incorrect predictions, see Figs. 2, 3 and 4.

In order to account for correlations correctly, we thus need
to investigate the full master equation. For a segment consisting
of N subunits, this equation includes any combination of
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FIG. 2. (Color online) Probability ⟨S1⟩ as a function of the
association rate ω+. Shown are analytical results employing the
mean-field approximation [13] or the method in Ref. [20] (dashed
blue line), the Eqs. (10) and (11) combined with the “mean-
field cluster approximation” (cf. text, dash-dotted green line), and
Eq. (12) with g1 = 0, g3 = 0, and g5 = 0, respectively (three solid
red lines). Simulation results are shown as black dots. Parameter
values consistent with actin filaments are chosen, i.e., ω1 = 0.16/s,
ω0 = 6/s, and ωa = 0.01/s, see Ref. [11].

subunits n1, n2, . . . , nm, with 1 ! n1 < n2 < · · · < nm !
N , i.e.,

∂t

〈
Sn1 · · · Snm

〉

= ω+
〈
Sn1−1 · · · Snm−1 − Sn1 · · · Snm

〉

+ ω1
〈
S1

(
Sn1+1 · · · Snm+1 − Sn1 · · · Snm

)〉

+ ω0
〈
(1 − S1)

(
Sn1+1 · · · Snm+1 − Sn1 · · · Snm

)〉

− ωa m
〈
Sn1 · · · Snm

〉
, (2)

where, e.g., the ω+ term accounts for gain
[ω+ ⟨Sn1−1 · · · Snm−1(1 − Sn1 · · · Snm

)⟩] and loss
[ω+ ⟨Sn1 · · · Snm

(1 − Sn1−1 · · · Snm−1)⟩] of probability by
association of subunits. Since S0 ≡ 1, Eq. (2) also holds
for n1 = 1. Both Eq. (1) and the master equations given
in Ref. [20] are special cases of Eq. (2). Note that our
requirement of increasing indices ensures m ! N and that
the power set of {1,2, . . . ,N} contains 2N elements [27].
Therefore, by excluding the empty set, we have 2N − 1
variants of Eq. (2) which constitute a complete description of
the 2N states (S1, . . . ,SN ) of the terminal segment consisting
of N subunits. Note that in the more common representation of
these 2N states by Pα1,...,αN

≡ prob(S1 = α1, . . . ,SN = αN ),
one term is redundant, because of the normalization∑

α1
· · ·

∑
αN

Pα1,...,αN
= 1. In this representation, the full
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FIG. 3. (Color online) Average growth velocity v as a function
of the association rate ω+. The same parameter values and color code
as in Fig. 2 are used. The solid red line corresponds to g5 = 0.

master equation reads

∂tPα1,...,αN
= ω+

(
α1 Pα2,...,αN

− Pα1,...,αN

)

+ ω1
(
P1,α1,...,αN

− α1 Pα1,...,αN

)

+ ω0
(
P0,α1,...,αN

− (1 − α1) Pα1,...,αN

)

+ ωa

N∑

i=1

{
(1 − αi) Pα1,...,1−αi ,...,αN

− αi Pα1,...,αN

}
, (3)

where Pα2,...,αN
≡ prob(S1 = α2, . . . ,SN−1 = αN ) ≡

Pα2,...,αN ,1 + Pα2,...,αN ,0 is to be interpreted as a
marginal probability. For instance, the gain and loss
terms due to association of subunits are given by
ω+(α1(Pα2,...,αN ,1 + Pα2,...,αN ,0) −

∏N
i=1 αi Pα1,...,αN

) and
ω+(1 −

∏N
i=1 αi) Pα1,...,αN

, respectively. The probabilities in
Eqs. (2) and (3) may be transformed into one another by

Pα1,...,αN
≡

〈
N∏

i=1

(1 − Si)1−αi S
αi

i

〉

, (4)

〈
Sn1 · · · Snm

〉
≡

∑

α1,α2,...,αnm

Pα1,α2,...,αnm

m∏

i=1

αni
. (5)

IV. ANSATZ FOR STEADY-STATE SOLUTION

The steady-state solution of the master Eq. (2) can be
constructed by the following ansatz. Since state 1 is only
supplied at the active end, the probability ⟨Sn⟩ of finding
state 1 at position n decreases with the distance from this
terminus, motivating the ansatz ⟨Sn+1⟩/⟨Sn⟩ = b1, i.e., shifting
the subunit n by one decreases the probability ⟨Sn⟩ by the factor
b1 < 1. In fact, this ansatz was implicitly used in Ref. [13] to
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FIG. 4. (Color online) Phase diagram featuring growth and
shrinkage phases. Shown is the (ω+,ωa) plane for the (rescaled)
parameter values ω0 = 1 and ω1 = 10−3. The (dashed) blue line
represents the phase boundary (v = 0) as obtained from the mean-
field approximation, while the (solid) red line was calculated via
Eq. (12) with g5 = 0. At the position of the + (–) signs, simulated
filaments grow (shrink). This indicates that the red (solid) and not
the blue (dashed) line represents the correct phase boundary. Inset:
Complete phase diagram, where v = 0 is given by ω+ = ω1 for
ωa → 0, and ω+ = ω0 for ωa → ∞.

solve the mean-field approximation of Eq. (1). We generalize
this relation of constant ratios by

〈 ∏k
i=1 Sni

∏m
j=k+1 Snj +1

〉
〈 ∏m

i=1 Sni

〉 ≡ bm−k, (6)

where n1 < · · · < nm and 0 ! k < m. Shifting each of the
m − k subunits with indices nk+1, . . . ,nm by one decreases the
joint probability ⟨Sn1 · · · Snk

· · · Snm
⟩ by the factor bm−k < 1.

By a successive use of this ansatz, see Appendix A for details,
we find:

〈
m∏

i=1

Sni

〉

=
m−1∏

i=0

b
ni+1−ni−1
m−i rm, (7)

where rm ≡ ⟨S1 · · · Sm⟩ and n0 ≡ 0.

V. RECURSION RELATIONS

Next we derive conditional equations for the ratios bm by
inserting Eq. (7) into Eq. (2) at steady state and summing over
all index combinations, i.e.,

∑∞
n1<···<nm

∂t ⟨Sn1 · · · Snm
⟩ = 0.

We first consider the finite sum
N∑

n1=1

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

∂t

〈
Sn1 · · · Snm

〉
= 0 (8)

and obtain the simple expression

ω+
(
rm−1 − bN−1

m rm

)
+ ω1

(
bN−1

m rm+1 − rm

)

+ ω0
(
bN

mrm − bN−1
m rm+1

)
− m ωa rm

1 − bN
m

1 − bm

= 0, (9)
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see Appendix B for details of the calculation. For N → ∞,
this equation leads to

bm = ω+ rm−1 − (ω1 + m ωa) rm

ω+ rm−1 − ω1 rm

, (10)

for m " 1, where r0 ≡ 1. Next we focus on the general case
ω0 ̸= ω1, while the trivial special case ω0 = ω1 is handled in
Appendix C. For finite N , Eq. (9) leads to

rm+1 = ω+ rm−1 − (ω+ + ω1 + m ωa)rm + ω0 bm rm

ω0 − ω1
, (11)

for m " 1. Together with Eq. (7), the nonlinear recursion rela-
tions, Eqs. (10) and (11), allow us to express any ⟨Sn1 · · · Snm

⟩
and via Eq. (4) any Pα1,...,αN

as an explicit function of r1, i.e.,
the steady-state probability of the terminal subunit to attain
state 1.

VI. CALCULATION OF r1

For the steady-state solution of the full master equation (2),
we need only one additional equation relating bm and rm,
because we already have 2M Eqs. (10) and (11) for the 2M +
1 unknowns b1, . . . ,bM,r1, . . . ,rM+1. Next we discuss four
schemes (1)–(4) to obtain such an equation. While the options
(1) and (2) reduce our approach to already-known mean-field
results, (3) combines the recursions for bm and rm with the
so-called “mean-field cluster approximation” [28] and yields
considerably better results. Formidable results are obtained by
scheme (4), which is also exact in a certain limit.

(1) The mean-field approximation ⟨S1Sn⟩ = ⟨S1⟩⟨Sn⟩ used
in Refs. [13,18] could serve as a closure. This is equivalent
to r2 = b1r

2
1 which leads to a cubic Equation in r1, see

Appendix D 1. The solution from Refs. [13,18] is retrieved
and shown in Fig. 2.

(2) Even though a correct treatment of correlations is
claimed in Ref. [20], the mean-field approximation ⟨S1S2⟩ =
⟨S1⟩⟨S2⟩ is implicitly used in Eq. (18) of Ref. [20], as we show
in Appendix D 2. In consequence, the method from Ref. [20]
leads to the same closure relation and identical (mean-field)
values for ⟨S1⟩.

(3) The “mean-field cluster approximation” [28] estimates
the probability for a cluster of subunits from the probabilities of
two subclusters. Combining this idea with our ansatz leads to
more than one real solution with 0 ! r1 ! 1, see Appendix D 3
for details, from which we choose the particular r1 with the
closest distance to simulations, see Fig. 2.

(4) Some steady-state probabilities are negligibly small.
Let us consider the 2N+1 states of the terminal segment
consisting of N + 1 subunits. Since the probability to find
state 1 decays with the distance from the terminus, the prob-
ability P0,...,0,1 ≡ prob(S1 = 0, . . . ,SN = 0,SN+1 = 1) ≡ gN

must be very small compared to other probabilities
Pα1,...,αN ,αN+1 for all parameter values. Therefore, we obtain
an approximation of order N by neglecting these states,
i.e., setting gN = 0. Note that this approximation differs
fundamentally from truncating the system after a fixed number
of subunits, see Fig. 5 for comparison. Next, we rewrite the
probability gN by expanding the product in Eq. (4), inserting
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FIG. 5. (Color online) Joint probabilities Pα1,α2,α3 ≡
prob(S1 = α1,S2 = α2,S3 = α3) and individual probabilities
⟨Sn⟩ as functions of time. The steady states from simulations (colored
circles) of 105 filaments match the analytical results (colored lines)
from Eq. (12) with g5 = P000001 = 0. The joint probabilities Pα1,α2,α3

of particular configurations are very small, while ⟨Sn⟩ decays only
with ⟨Sn⟩ = bn−1

1 r1, where r1 ≃ 0.920 and b1 ≃ 0.826. Parameter
values as in Fig. 2 and with ω+ = 0.2/s.

Eq. (7) and rearranging the sum, see Appendix D 4 for details:

gN =
N∑

m=0

(−1)m rm+1

∑

k1+···+km+1=N−m

m+1∏

i=1

b
ki

m+2−i , (12)

where we sum over all non-negative integers k1, . . . ,km+1
for which k1 + · · · + km+1 = N − m holds. With Eqs. (10)
and (11), gN may be expressed as a rational function of r1. For
the first-order approximation, we have g1 = b

(1)
1 r

(1)
1 − r

(1)
2 =

0 which is equivalent to a quadratic equation in r
(1)
1 and has the

unique solution r
(1) −
1 in the physical regime 0 ! r

(1) −
1 ! 1, see

Appendix D 4 for details. For higher-order approximations,
i.e., N " 2, there are 2N+1 − N − 1 (complex) solutions
r

(N)
1 and in particular there is more than one solution with

0 ! r
(N)
1 ! 1. We determine these solutions numerically and

recursively identify the physical r
(N+1)
1 as the one which is

closest to r
(N)
1 , starting from the uniquely determined r

(1)
1 ,

see Fig. 6.

VII. RESULTS

To validate our results, we performed extensive stochastic
simulations, employing the Gillespie algorithm [29]. As ex-
pected, r (N)

1 converges to ⟨S1⟩ = r
(sim)
1 from these simulations,

see Figs. 2, 7, and 8. Likewise, the simulated velocities match
the analytical results, see Figs. 3, 9, and 10.

The mean-field methods (1) and (2) explicated in Sec. VI
systematically overestimate ⟨S1⟩, and therefore v, because they
neglect correlations: Since ω1 < ω0, the presence of state-1
subunits within the filament increases its stability, i.e., its
tendency to grow and hence its tendency to attain state 1 at
the terminus. In consequence, there is a positive correlation
between S1 and Sn, and in particular ⟨S1S2⟩ > ⟨S1⟩⟨S2⟩ ≡
⟨S1S2⟩m.f., which leads to ⟨S1⟩ < ⟨S1⟩m.f., see Fig. 2.

052137-4



ASSOCIATION-DISSOCIATION PROCESS WITH AGING . . . PHYSICAL REVIEW E 92, 052137 (2015)

Our approach allows for the precise calculation of all joint
probabilities, see Eq. (4) and Fig. 5, and all correlations, see
Appendix E for details. As expected, maximal correlation
coefficients are attained at parameter values corresponding to
intermediate values of ⟨S1⟩, where neither state 1 nor state
0 dominates the terminus, see Fig. 11. As the mean-field
approach systematically overestimates ⟨S1⟩, it underestimates
the critical association rates, where the growth velocity
vanishes, see Figs. 3, 9, and 10.

The presence of actin depolymerization factors
(ADFs)/cofilins in vivo increases ω0 [30] and leads to a much
larger ratio ω0/ω1. In consequence, correlations are even
more important and the mean-field approximation entirely
fails, see Figs. 8 and 10. Parameter values of microtubules in
vitro [5,10] are discussed in Appendix F and Figs. 7 and 9.

As the average growth-shrinkage behavior is the most
prominent macroscopic property of a SADAP, it is desirable to
precisely calculate the boundary between the growth (v > 0)
and shrinkage (v < 0) phase in parameter space. By rescaling
time in units of ω0 and fixing ω1, this boundary is represented
by the line in Fig. 4. For ωa → 0, the terminus is in state 1
and therefore the line is given by ω+ = ω1. Analogously, it
is given by ω+ = ω0 for ωa → ∞. Finding the boundary in
general relies on the accurate calculation of ⟨S1⟩. Therefore
mean-field solutions fail while our approach yields precise
results, see Fig. 4.

VIII. CONCLUSION AND OUTLOOK

We have analytically investigated the simple association-
dissociation-aging process (SADAP) and found an approach
which permits the recursive solution of the full master
equation (2). Most importantly, this enables the calculation
of ⟨S1⟩ beyond mean field, see Fig. 2. We have precisely
determined the average growth velocity v (Figs. 3, 9, and 10)
and the phase diagram (Fig. 4). Furthermore, our approach
allows for the calculation of the probabilities Pα1,...,αN

(Fig. 5),
correlation coefficients (Figs. 11 and 12), and the exact length
distribution $L ≡ rL − rL+1 of the cap of state-1 subunits
(Fig. 13). Via Eq. (7), we may also compute all higher-order
correlation functions.

In vitro, cytoskeletal filaments often generate force by
growing against an obstacle such as a cell membrane [5].
In that case, thermodynamics requires the association and/or
dissociation rates to be force dependent. In the light of our
results, the force-velocity relation has to be revalidated beyond
the mean-field approximation. This can be readily performed
with the presented approach.

Our calculations may also be generalized to more in-
volved association-dissociation-aging processes in which, e.g.,
subunit aging depends on the states of neighboring subunits.
The latter case has been discussed (but not solved) as “coopera-
tive hydrolysis” for actin filaments [31] and microtubules [32].

In a similar way, as the totally asymmetric simple ex-
clusion process is regarded a paradigm for one-dimensional
transport [24,33–35], the SADAP may become a paradigmatic
model for one-dimensional association-dissociation phenom-
ena and our approach may help to understand nonequilibrium
systems in general.

APPENDIX A: TRANSFORMATION OF THE ANSATZ

Here we explicate that the ansatz of constant ratios [Eq. (6)]
is equivalent to Eq. (7). First, the m subunits in ⟨Sn1 . . . Snm

⟩
are simultaneously moved to the terminus. Applying Eq. (6)
n1 − 1 times with k = 0 results in

〈
m∏

i=1

Sni

〉

= bn1−1
m

〈

S1

m∏

i=2

Sni−n1+1

〉

. (A1)

Second, the subunits with indices n2 − n1 + 1, . . . ,nm − n1 +
1 are simultaneously moved and the ansatz is applied n2 −
n1 − 1 times with k = 1:

〈

S1

m∏

i=2

Sni−n1+1

〉

= bn2−n1−1
m−1

〈

S1S2

m∏

i=3

Sni−n2+2

〉

. (A2)

This procedure is repeated m times with k = 0, k = 1, k =
2, . . . , k = m − 1. In the last step, the ansatz is employed
nm − nm−1 − 1 times with k = m − 1:

〈
m−1∏

i=1

Si Sm−1+nm−nm−1

〉

= b
nm−nm−1−1
1

〈
m∏

i=1

Sni

〉

. (A3)

Combining these procedures leads to Eq. (7). On the other
hand, Eq. (6) follows from Eq. (7) by insertion, establishing
their equivalence.
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FIG. 6. (Color online) Expressions of gN given by Eq. (12) as an
explicit function of r1 ≡ ⟨S1⟩. Shown are g1 in black, g2 in blue, g3 in
green, and g4 in red. The first-order approximation g1 = 0 provides a
unique physical solution 0 ! r

(1) −
1 ! 1, see Eq. (D9), whereas higher-

order approximations gN = 0 exhibit more than one solution with
0 ! r

(N)
1 ! 1. As the physical solution of order N + 1 must resemble

the physical solution of order N , the physical r
(N+1)
1 is uniquely

determined as the one with the minimal distance to the physical r
(N)
1 .

For this graph, we have chosen parameter values which are consistent
with actin filaments, i.e., ω+ = 0.2/s, ω1 = 0.16/s, ω0 = 6/s, ωa =
0.01/s, see Appendix F and Ref. [11]. We found r

(1)
1 ≃ 0.861, r

(2)
1 ≃

0.912, r
(3)
1 ≃ 0.918, and r

(4)
1 ≃ 0.920, while stochastic simulations

led to ⟨S1⟩ = r
(sim)
1 ≃ 0.920 and the mean-field approximation results

in r
(mf)
1 ≃ 0.990, cf. Fig. 2.
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APPENDIX B: PERFORMING THE SUM IN EQ. (8)

We proceed by inserting Eq. (2) into Eq. (8) while employing the transformed ansatz [Eq. (7)]. For clarity, we first consider
the auxiliary sums %I, %II, %III, %IV, and %V.

%I ≡
N∑

n1=1

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

⟨Sn1 · · · Snm
⟩ = rm

N∑

n1=1

bn1−1
m

n1+N∑

n2=n1+1

bn2−n1−1
m−1 · · ·

nm−1+N∑

nm=nm−1+1

b
nm−nm−1−1
1

= rm

N−1∑

n1=0

bn1
m

N−1∑

n2=0

bn2
m−1

N−1∑

n3=0

b
n3
m−2 · · ·

N−1∑

nm=0

b
nm

1 = rm

m∏

i=1

(
1 − bN

i

1 − bi

)
, (B1)

%II ≡
N∑

n1=1

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

⟨Sn1−1 · · · Snm−1⟩

=
N+1∑

n2=2

· · ·
nm−1+N∑

nm=nm−1+1

⟨S0 Sn2−1 · · · Snm−1⟩ +
N∑

n1=2

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

⟨Sn1−1 · · · Snm−1⟩

= rm−1

N−1∑

n2=0

· · ·
N−1∑

nm=0

bn2
m−1 · · · bnm

1 + rm

N−2∑

n1=0

N−1∑

n2=0

· · ·
N−1∑

nm=0

bn1
m bn2

m−1 · · · bnm

1

=
(

rm−1 + 1 − bN−1
m

1 − bm

rm

) m−1∏

i=1

(
1 − bN

i

1 − bi

)
, (B2)

%III ≡
N∑

n1=1

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

⟨Sn1+1 · · · Snm+1⟩ = bm%I, (B3)

%IV ≡
N∑

n1=1

· · ·
nm−1+N∑

nm=nm−1+1

⟨S1Sn1 · · · Snm
⟩

=
N+1∑

n2=2

· · ·
nm−1+N∑

nm=nm−1+1

⟨S1Sn2 · · · Snm
⟩ +

N∑

n1=2

n1+N∑

n2=n1+1

· · ·
nm−1+N∑

nm=nm−1+1

⟨S1Sn1 · · · Snm
⟩

=
(

rm + 1 − bN−1
m

1 − bm

rm+1

) m−1∏

i=1

(
1 − bN

i

1 − bi

)
, (B4)

and

%V ≡
N∑

n1=1

· · ·
nm−1+N∑

nm=nm−1+1

⟨S1Sn1+1 · · · Snm+1⟩ = rm+1

m∏

i=1

(
1 − bN

i

1 − bi

)
. (B5)

Using the master Eq. (2), the terms with coefficients ω+, ω1, ω0, and ωa in the sum [Eq. (8)] are given by

ω+ (%II − %I) = ω+
(
rm−1 − bN−1

m rm

) m−1∏

i=1

(
1 − bN

i

1 − bi

)
, (B6)

ω1 (%V − %IV) = ω1
(
bN−1

m rm+1 − rm

) m−1∏

i=1

(
1 − bN

i

1 − bi

)
, (B7)

ω0 [%III − %I − (%V − %IV)] = ω0
(
bN

m rm − bN−1
m rm+1

) m−1∏

i=1

(
1 − bN

i

1 − bi

)
, (B8)

ωa m %I = ωa m rm

m∏

i=1

(
1 − bN

i

1 − bi

)
. (B9)

Now, plugging Eqs. (B6), (B7), (B8), and (B9) into Eq. (8) and dividing by
∏m−1

i=1 ( 1−bN
i

1−bi
) results in Eq. (9).
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APPENDIX C: SPECIAL CASE ω0 = ω1

For this trivial special case, we find

ω+ rm−1 − (ω+ + ω1 + m ωa) rm + ω1 bm rm = 0 (C1)

instead of Eq. (11). Employing the case m = 1 of Eqs. (10)
and (C1), we obtain a quadratic equation for r1 which is solved
by

r±
1 = ω+ + ω1 + ωa

2 ω1
±

√
(ω+ + ω1 + ωa)2

4 ω2
1

− ω+

ω1
. (C2)

This equation was found earlier [16,20].

APPENDIX D: DETAILS OF THE CALCULATION OF
r1 ≡ ⟨S1⟩

1. Mean field

With our ansatz, the mean-field approximation ⟨S1Sn⟩ =
⟨S1⟩⟨Sn⟩ translates into r2 = b1 r2

1 . In fact, solving Eq. (1) of
the main text for the mean-field case [13,18] requires the ansatz
⟨Sn+1⟩/⟨Sn⟩ = b1, which is a special case of Eq. (6) for m = 1
and k = 0. Summing up Eq. (1) of the main text leads to

0 =
N∑

n=1

∂t ⟨Sn⟩ = ω+(1 − ⟨SN ⟩) + ω1(⟨S1SN+1⟩ − ⟨S1⟩)

+ ω0(⟨SN+1⟩ − ⟨S1SN+1⟩) − ωa

N∑

n=1

⟨Sn⟩. (D1)

For N → ∞, we obtain

0 = ω+ − ω1⟨S1⟩ − ωa

∞∑

n=1

⟨Sn⟩ = ω+ − ω1r1 − ωa
1

1 − b1

⇔ b1 = ω+ − (ω1 + ωa)r1

ω+ − ω1 r1
, (D2)
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1
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S
1

FIG. 7. (Color online) Probability ⟨S1⟩ as function of the associ-
ation rate ω+ for parameter values consistent with microtubules, i.e.,
ω1 = 24/s, ω0 = 290/s, and ωa = 0.2/s. The mean-field approxi-
mation [13] is shown as blue (dashed) line, the Eqs. (10) and (11)
combined with the “mean-field cluster approximation” as the green
(dash-dotted) line, and Eq. (12) with g5 = 0 is displayed as the red
(solid) line. Simulation results are shown as black dots.
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1
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S
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FIG. 8. (Color online) Probability ⟨S1⟩ as function of the associ-
ation rate ω+ for parameter values consistent with actin filaments in
the presence of actin depolymerization factors (ADFs)/cofilins. The
rates are rescaled to dimensionless form, see Appendix F for details,
and given by ω0 = 1, ω1 = 10−3, and ωa = 10−4, respectively. The
same color code as in Fig. 7 is used. Because ω1/ω0 = 103 ≫ 1,
correlations are very significant and the mean-field approach totally
fails.

while for N = 1, we find
0 = ω+ − (ω+ + ω1 + ωa)r1 + ω0b1r1 + (ω1 − ω0)r2.

(D3)
With the mean-field approximation r2 = b1 r2

1 , these two
equations lead to a cubic equation for r1 which has one solution
0 ! r1 ! 1, cf. Ref. [18].

2. Approximation in Ref. [20]

A supposedly alternative approach was reported by Li
et al. [20]. In fact, the approximation ⟨S1Sn · · · Sn+l−1⟩ =
⟨S1⟩⟨Sn · · · Sn+l−1⟩ is implicitly adopted in Eq. (18) of Ref. [20]
for the case ω0 ̸= ω1. This approximation and the ansatz in
Eq. (4) of Ref. [20] allows for a complete solution of the

0 10 20 30 40
−300

−250

−200

−150

−100

−50

0

50
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v
[1

/s
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20 25 30 35
−60
−40
−20

0
20

ω+ [1/s]

v
[1

/s
]

FIG. 9. (Color online) Average growth-shrinkage velocity v as
functions of the association rate ω+ for parameter values identical to
Fig. 7 and consistent with microtubules. Same color code as in Fig. 7.
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−0.04

−0.02
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FIG. 10. (Color online) Average growth-shrinkage velocity v as
functions of the association rate ω+ for dimensionless parameter
values identical to Fig. 8 and consistent with actin filaments in the
presence of actin depolymerization factors (ADFs)/cofilins. Same
color code as in Fig. 7. Because ω1/ω0 = 103 ≫ 1, correlations are
very significant and the mean-field approach totally fails.

SADAP. However, this solution is identical to the simple
mean-field solution as can be seen from the special case
l = 1,n = 2 (in the notation of Ref. [20]).

3. Cluster approximation

Another alternative is the “mean-field cluster approxi-
mation” [28] which estimates the probability ⟨S1S2S3⟩ by
the probability ⟨S1S2⟩ times the conditional probability
⟨S2S3⟩/⟨S2⟩. This leads to r3 ≈ b2r

2
2 /(b1r1) and with the

recursion Eqs. (10) and (11) to an equation of sixth order
in r1. A numerical analysis reveals that there is more than one
real solution with 0 ! r1 ! 1. Therefore, we do not proceed
with this approach but only choose the particular solution with
the closest distance to the simulations, see Fig. 2.
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ω+ [1/s]

co
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(S
1,

S
n
)

FIG. 11. (Color online) Dependence of correlation coefficient
corr(S1,Sn) ≡ cov(S1,Sn)/

√
var(S1) var(Sn) on association rate ω+

for n = 2 and n = 9. The black dots are obtained from simulations
and the red lines are calculated from Eq. (E1) via Eq. (12) with
g5 = 0. Parameter values are consistent with actin filaments, i.e.,
ω1 = 0.16/s, ω0 = 6/s, and ωa = 0.01/s [11].
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FIG. 12. (Color online) Decay of correlation coefficient for pa-
rameter values consistent with actin filaments, i.e., ω1 = 0.16/s,
ω0 = 6/s, and ωa = 0.01/s [11] and association rate ω+ = 0.2/s. The
black dots are from simulations while the two lines are obtained via
Eq. (12) with g5 = 0. The red (solid) line is calculated from Eq. (E1)
while the blue (dashed) line displays the asymptotic behavior, given
by Eq. (E2).

4. Negligible probabilities

Equation (12) is derived as follows:

gN ≡
〈

N∏

n=1

(1 − Sn) SN+1

〉

=
*[

1 −
∑

1!n1!N

Sn1 +
∑

1!n1<n2!N

Sn1Sn2 − · · ·

+ (−1)N S1 . . . SN

]

SN+1

+
(D4)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

L

Π
L

FIG. 13. (Color online) Distribution $L ≡ rL − rL+1 of the cap
length L of state-1 subunits at the terminus, i.e., probability that the
first L subunits are in state 1 while the subunit at position L + 1 attains
state 0. The black dots are from simulations, while the blue squares
are mean-field results and the red crosses are obtained via Eq. (12)
with g5 = 0. Apparently, correlations are significant for calculating
the correct distribution. Parameter values as in Fig. 12.
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= bN
1 r1 +

N∑

m=1

(−1)m
∑

1!n1<···<nm!N

bn1−1
m+1 bn2−n1−1

m . . .

× b
nm−nm−1−1
2 b

N+1−nm−1
1 (D5)

=
N∑

m=0

(−1)m rm+1

∑

k1+...km+1=N−m

m+1∏

i=1

b
ki

m+2−i , (D6)

where we sum over all non-negative integers k1, . . . ,km+1 for
which k1 + · · · + km+1 = N − m holds. The expansion of the
product in Eq. (D4) is performed in close analogy to the Mayer
cluster expansion of an N -particle interaction gas [36]. In
Eq. (D5), our ansatz is plugged in. Finally, the exponents were
simplified by using ni+1 " ni + 1, N " nm and the fact that
all exponents sum up to N − m.

For the first-order approximation g1 = 0, we have r
(1)
2 =

b
(1)
1 r

(1)
1 , where the superscript labels the order of approxima-

tion. Using the recursion relations in Eqs. (10) and (11), this
leads to a quadratic equation for r

(1)
1 which is solved by

r
(1)±
1 = ω+ + ω1 + ωa

2 ω1
±

√
(ω+ + ω1 + ωa)2

4 ω2
1

− ω+

ω1
. (D7)

These solutions are identical to Eq. (C2), which is exact
for the special case ω0 = ω1. Because of the inequal-

ity
√

(ω++ω1+ωa)2

4 ω2
1

− ω+
ω1

>

√
(ω++ω1+ωa)2

4 ω2
1

− 4ω1(ω++ωa)
4 ω2

1
, the so-

lution r
(1) +
1 is unphysical, i.e.,

r
(1) +
1 >

ω+ + ω1 + ωa

2 ω1
+ |ω+ + ωa − ω1|

2 ω1
" 1, (D8)

while r
(1) −
1 is the unique physical solution since

0 ! r
(1) −
1 <

ω+ + ω1 + ωa

2 ω1
− |ω+ + ωa − ω1|

2 ω1
! 1 (D9)

holds.

APPENDIX E: CORRELATIONS

After having determined r1 via Eq. (12), the recursion
relations [Eqs. (10) and (11)] along with Eqs. (7) and (4) allow
for the precise calculation of all joint probabilities Pα1,...,αN

and
all higher-order correlations corr(Sn1 , . . . ,Snm

). For instance,

the (two-point) correlation coefficient of the first and the n-th
state is given by

corr(S1,Sn) ≡ cov(S1,Sn)
√

var(S1) var(Sn)

≡ ⟨S1Sn⟩ − ⟨S1⟩⟨Sn⟩√
⟨S1⟩⟨Sn⟩(1 − ⟨S1⟩)(1 − ⟨Sn⟩)

=
bn−2

1

(
r2 − b1 r2

1

)
√

bn−1
1 r2

1 (1 − r1)
(
1 − bn−1

1 r1
) , (E1)

and its asymptotic behavior for large n reads

corr(S1,Sn)∼n→∞
r2 − b1 r2

1

b1 r1
√

(1 − r1)b1
b

n/2
1 , (E2)

see Figs. 11 and 12.

APPENDIX F: DIFFERENT PARAMETER VALUES

The parameter values in Figs. 2, 3, and 5 are consistent with
actin filaments: The random aging of subunits corresponds to
the random release of inorganic phosphate, since the prior
cleavage of bound ATP is more than an order of magnitude
faster [37]. The dissociation of state-1 subunits correspond to
the dissociation of ADP-Pi-actin from the barbed end, while
the dissociation of state-0 subunits correspond to dissociation
of ADP-actin from the barbed end. Therefore we have chosen
ω1 = 0.16/s, ω0 = 6/s, and ωa = 0.01/s, see Ref. [11].
The association rate ω+ is variable and proportional to the
concentration of ATP-actin monomers available for assembly.

For microtubules, the subunits represent tubulin dimers and
the aging corresponds to hydrolysis of bound GTP which
transforms GTP-tubulin into GDP-tubulin. This process occurs
not only at the plus ends but also within microtubules [12],
supporting our random aging model. Since there is controversy
about the involved rates and exact mechanisms [10,38], we
have simply chosen parameter values identical to Ref. [20],
i.e., ω1 = 24/s, ω0 = 290/s, and ωa = 0.2/s. Qualitatively,
we find identical results to actin filaments, see Figs. 7 and 9.

The dynamics of actin filaments in vivo is affected by actin
depolymerization factors (ADFs)/cofilins which selectively
bind to ADP-actin subunits and increase the dissociation rate
by a factor of 30 [30]. This leads to ω0/ω1 ≃ 103 and an
increased importance of correlations. For the simulations, we
have used dimensionless time and the rescaled rates ω0 = 1,
ω1 = 10−3, and ωa = 10−4, see Figs. 4, 8, and 10.
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