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A. Force fields and simulation details 

 

Conventional MD simulations with explicit solvent were conducted in GROMACS according to the 

following protocol: after initial solvation, the system was first optimized with 500 steps of steepest 

descent followed by another 500 steps of conjugate gradient minimization. After minimization, the 

system was heated from 0 K up to 310 K at a pressure of 1 atm with a short 100 ps MD simulation, 

followed by an equilibration period for 500 ps at a temperature of 310 K and a pressure of 1 atm by using 

Nosé-Hoover temperature- [1,2] and Parrinello-Rahman [3] pressure coupling. After the equilibration 

phase, production runs of 200 ns up to 800 ns duration at constant volume were conducted using a 

velocity-Verlet intergrator [4] with half-step averaged kinetic energies, and a temperature of 310 K was 

maintained with a multi-chain Nose-Hoover thermostat, with a chain depth of 10. The particle mesh 

Ewald (PME) method [5] was used to calculate electrostatic interactions, with a cut-off of 1.0 nm for the 

separation of the direct and reciprocal space summation. The cut-off distance for van der Waals 

interaction was 1.0 nm, and the parameters of the Lennard-Jones potential for the cross interactions 

between non-bonded atoms were obtained from the well-known Lorentz-Berthelot combination rule.  

MD simulations with implicit solvent were conducted in Amber using the generalized Born solvent 

model HCT [6,7] and/or OBC [8] with the dielectric constant set to 80. The simulation protocol is similar 

to the one for explicit solvation, including minimization, heating, equilibration and production. The length 
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of the production runs varies between 1-4µs. The temperature was controlled by Langevin thermostat 

with a collision frequency of 1.0 ps
−1

. The periodicity was disabled and the cut-off was set to be infinite.   

In all MD simulations, 1-4 interactions were scaled with the factors 1.0/1.0 (corresponding to the 

requirements of GLYCAM/CHARMM). Hydrogen bonds within water were treated with the SETTLE 

algorithm [9], and other constraints were treated with LINCS [10] in Gromacs or SHAKE [11] in Amber. 

A time step of 2 fs was used and the coordinates were saved every 2 ps. Visualizations were made using 

VMD [12]. The existence of hydrogen bonds as discussed in the main text has been determined by using a 

geometrical criterion of donor-acceptor distance no greater than 0.35 nm and hydrogen-donor-acceptor 

angle no greater than 30º.  

The modeling of oligosaccharides consisting of two, four, up to sixteen monosaccharide units was carried 

out with the software tool tLEaP, as part of the Amber 11 package. 

 

 

 

 

B. Adaptively Biased MD (ABMD) simulations. 

For free energy calculation with adaptively biased molecular dynamics simulations disaccharides 

corresponding to all linkages I-IV were considered (explicit solvent). The corresponding profiles are 

rendered stationary within 200 ns of simulation time (Figure S1), where for linkages II-IV beyond 100ns 

simulation time the shape of the free energy curves do not change appreciably any more. This means that 

from a very early stage onwards, the biased trajectory has uniform access to all relevant parts of 

glycosidic angular space. A continuous overall shift simply reflects the ongoing flooding within a basin 

defined by steric hindrances. A slight deviation from this characteristic is only observed for linkage I, 

where it is evident that some part of conformational space is visited only at a later stage of the flooding 

simulation, compare the free energy profiles (time slices) between 170ns and 190ns. In Figure S2, we 

show the probability distribution projected onto single glycosidic angles to the distributions as calculated 

from a typical 200ns MD trajectory, as a supplement to Table 1. The comparison suggests a nearly 

quantitative agreement.  
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Figure S1. Free energies taken from an ABMD simulation of disaccharides corresponding to linkages I-IV as a 

function of Φ or Ψ. The different colors correspond to free energy curves obtained at different times of the ABMD 

run with explicit solvent (a single curve is constructed from a time slice of the ABMD trajectory around the time 

indicated).  

Although the ABMD method directly yields smooth and rather extensive free energy landscapes, from 

which populations can be inferred by Boltzmann inversion and subsequent integration, we have to 

recognize that it is actually a non-equilibrium method, and its precision depends most sensitively on the 

flooding time scale τF, governing the growth rate of the biasing potential.  

However, in practice the method appears very robust, values for τF of about 1ns and even far below 

usually give residual RMS errors on the whole free energy landscape of around and less than 1kcal/mole 

after 150ns to 300ns simulation time [13], although the precision also depends on the particular system 



S4 

 

investigated. For our case, on account of previous studies with oligosaccharides in explicit solvent [14] 

we could confirm that there is hardly any difference between results with τF in the range of 20ps to 50ps, 

and the error should be at most a kBT (~0.6kcal/mole) up to values of 7kcal/mole above the global 

minimum (and in the majority of cases less than that). In order to rigorously converge occupation 

probabilities, a systematic and hierarchical procedure employing, for instance, parallel tempering would 

be needed [13]. This is, however, beyond the scope of the present study. The agreement between 

occupation probabilities inferred from ABMD simulations and from plain MD trajectory data displayed in 

Table 1 is, nevertheless, rather convincing. Just to illustrate the effect a residual error function on the free 

energy landscape would have: if we added penalty functions to the states defined in this work as to 

emulate a non-converged profile, adding/subtracting a value of ±0.1 kcal/mol would roughly correspond 

to a variation in population of around ±5% for A states and ±1% for B states.  
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Figure S2. Populations of the Φ-Ψ angles of (a) Linkage III, (b) Linkage IV, (c) Linkage I and (d) Linkage II in 

disaccharides calculated from MD trajectories and ABMD free energy profiles with explicit solvent. 
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Figure S3. Populations of Φ-Ψ glycosidic angles of (a) Linkage III, (b) Linkage IV, (c) Linkage I and (d) Linkage II 

in an octasaccharide fragment CDABC’D’A’B’ in explicit water compared with those in corresponding 

disaccharides (blue). 

 

 

C. Simulations with implicit solvent. 

To comprehensively compare the quality of implicit solvent models, we have acquired another series of 

free energy landscapes using generalized Born-models. Figure S4 displays the results of ABMD 

simulation of all relevant linkages in the gas phase, explicit and implicit solvent, projected onto single 

glycosidic angles. The discrepancy between the behavior in vacuum and that in a solvent 

(explicit/implicit) is obvious and expected. The possibility to form hydrogen bridges not screened 
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dramatically affects the population of the conformational energy minima and barrier heights. The 

differences between explicit and implicit solvation are small, 1kcal/mole at maximum, for most of the 

angular ranges much smaller than kBT (about 0.6kcal/mole).  

 

                   

Figure S4. Free energies taken from ABMD simulations of disaccharides corresponding to four linkages 

as a function of Φ or Ψ with implicit (black) and explicit solvent (red) and in vacuum (blue). 
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A subtlety arises with respect to the stability of ring conformations in longer O-antigen fragments. It 

should be expected that ring flips (from 
4
C1 to 

1
C4 for GlcNAc and from 

1
C4 to 

4
C1 for Rha) are extremely 

rare [15], with an overwhelming preference for the most stable conformation 
4
C1 for GlcNAc and 

1
C4 for 

Rha. In the simulations with explicit solvent, this situation is sufficiently well represented: in a typical 

200ns simulation, we may observe a flip on one saccharide ring once, with a duration of ~10 ps. Thus all 

simulation results can be safely interpreted in terms of the stable ring conformation. In all simulation runs 

using the CHARMM36 force field, we have never observed any ring flips. In simulations with the HCT 

or OBC implicit solvent model, ring flips can occasionally be observed during a simulation of 800 ns 

duration (GLYCAM), but in combination with the tendency of longer chains to assume compact 

conformations this leads to crumpled, trapped configurations. These conformations erroneously change 

the distribution of the end-to-end distance as compared to the results with explicit solvent. It is thus 

necessary to stabilize the expected dominant ring conformation found in solution. To achieve this, an 

external torsion restraint on each carbohydrate ring was applied to prevent ring flips, as shown in Table 4 

(main text). In this way, good agreement with the explicit solvent results in (Φ, Ψ) and also the end-to-

end distance distribution can be obtained.  

In addition to free energy landscapes we have also investigated rather fine details such as the formation 

and occupancies of intra-molecular hydrogen bridges. The trends in occupancy for all hydrogen bridges 

observed across the series of di-,  tetra- and octasaccharide fragments is fully reproduced in implicit 

solvent.  

 

 

 

 

 

 

 



S8 

 

D. Reduced backbone model and simulation of 4RU O-antigen 

polysaccharides. 

 

Figure S5: schematic drawing of the reduced backbone model studied with Monte Carlo simulations in this work.  

A reduced model is obtained from the fully atomistic one in the way sketched in Figure S5. A linear 

polysaccharide is represented as a sequence of bonds, carbohydrate rings are assumed rigid and are 

replaced with bonds (dashed lines) around which no rotation is allowed. In comparison, the torsions 

around glycosidic linkages are soft, and are represented by rotatable bonds (solid lines).  If we assume 

that the total free energy Ftot of the polysaccharide with N monomers projected onto the collection of 

glycosidic angles can be decomposed in additive contributions of its disaccharide fragments, we may 

write    
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where Fadd is the approximation to Ftot and Fi,i+1 is the free energy landscape of a disaccharide fragment 

composed of the consecutive rings i and i+1. For  Fi,i+1 we can directly use the landscapes shown in Figure 

2 (main text), and the whole conformational space can be sampled by independent, consecutive Monte 

Carlo moves involving trial rotations around  the glycosidic linkages, with an acceptance probability of 

min{1, exp(-β∆F)}, ∆F being the difference in free energy after single move. With a maximum step size 

of 30°, we typically arrive at an acceptance ratio between 25-35%. In the reduced backbone topology, we 

additionally keep a set of atoms so as to keep track of the ring orientations. We usually allow for 10
6
-10

7
 

MC steps in order to arrive at stationary distribution functions in the relevant quantities.  

The reduced models always produce smoothly decaying, unstructured tails in the end-to-end distributions 

for the molecules considered in this work, and in this way give strong support for intra-molecular 

interactions in case a distribution qualitatively differs from this behavior. Figure S6 again shows rete for 

the case of four repeat units in implicit solvent (Figure 9b, main text), where the deviations were most 
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pronounced, but now as function of time (same dataset as used for Figure 9). Figure S6 shows that 

frequent transitions between essentially one class of compact and one class of extended conformations 

take place.  
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Figure S6. The end-to-end distance (rete) of the 4RU sequenced by CDAB as a function of simulation time in an 

implicit solvent MD trajectory. 
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