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External forces influence the elastic coupling effects during cargo transport by molecular motors
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Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a
common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain
forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors’
stepping and unbinding behavior and thereby the ability to transport cargos. Based on a generic single motor
description, we introduce a framework that explains the response of two identical molecular motors to a constant
external force. In particular, we relate the single motor parameters, the coupling strength and the external load
force to the dynamics of the motor pair. We derive four distinct transport regimes and determine how the crossover
lines between the regimes depend on the load force. Our description of the overall cargo dynamics takes into
account relaxational displacements of the cargo caused by the unbinding of one motor. For large forces and weak
elastic coupling these back-shifts dominate the displacements. To develop an intuitive understanding about motor
cooperativity during cargo transport, we introduce a time scale for load sharing. This time scale allows us to
predict how the regulation of single motor parameters influences the cooperativity. As an example, we show that
up-regulating the single motor processivity enhances load sharing of the motor pair.
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I. INTRODUCTION

The complex internal structure of eukaryotic cells relies
on an active transport system powered by motor proteins [1].
These molecular motors convert chemical energy into me-
chanical stepping by hydrolyzing ATP. Three families of
motor proteins have been identified: myosins walking along
actin filaments as well as kinesins and dyneins moving
along microtubule tracks [2]. In muscles, millions of myosin
motors form assemblies to cooperatively slide filaments [3,4],
but cytoskeletal cargo transport is usually mediated by the
cooperative action of a small number of motors belonging
to the same or to different motor families [5–7]. Cargos
transported by different motors can display complex motility
patterns [8]. In the presence of both kinesins and dyneins,
which walk in opposite directions, the movement of the cargo
can be unidirectional or bidirectional. Both modes of transport
can be interrupted by extended pauses [9]. However, the
simplest case is transport by a team of identical motors [10,11].
Such systems have been studied in several in vitro experiments
demonstrating the advantage of having more motors on a
cargo: increasing the number of motors increases the overall
run length of the cargo and the maximal force the motor team
can generate [12–15]. In addition, in the presence of a load
force the velocity of the cargo increases with the number of
motors actively sharing the load [16]. On the other hand, recent
experimental studies seem to suggest that load sharing is rather
rare in the case of kinesin motors [17] and highly dependent on
the type of motor and their interactions in living cells [18–20].

In the last couple of years, it became more and more evident
that systematic studies of the dynamics of cargos transported
by motor teams strongly contribute to our understanding of
intracellular transport. Whereas the first experiments changed
the number of motors in a rather unspecific manner by
covering beads with motors [14,15,21], a more controlled
method has been introduced recently based on the synthetic
assembly of motors to DNA scaffolds [22]. Such synthetic
scaffolds allow to construct a specific number of binding

sites and even allow to bind different motors [23]. In several
experiments, the interaction of two coupled kinesins has been
addressed [22], also under external load forces [24]. Other
experiments using DNA scaffolds have studied assemblies of
two myosin V motors [25], two nonprocessive myosin Vc [26],
several processive and nonprocessive kinesin motors [27], and
a tug-of-war between dynein and kinesin motors [23].

Motivated by gliding assay experiments, early theoretical
studies considered transport driven by a large number of mo-
tors [28,29]. About a decade ago, a rather general framework
has been introduced to study transport by a small number
of identical motors [10]. In this framework, the directed
movement of the motors is described in a deterministic manner,
but motor binding and unbinding as stochastic processes. Other
studies included stochastic stepping and the geometry of the
system [30–33]. However, these studies could not explain
the experimental observations that two coupled kinesins pull
each other from the filament, but move with a velocity that is
close to the velocity of a single motor [22]. This interference
effect has been studied theoretically by explicitly considering
the coupling between the motors not only for kinesin, but
also for dynein and myosin motors [11,17,34,35]. In general,
depending on the single motor dynamics and the elastic
coupling, motor pairs can exhibit four different transport
regimes [11]. The emergence of these distinct regimes can
be understood from intuitive time scale arguments that were
derived for transport in the absence of an external load
force [11,36].

In this article, we extend our description of two elastically
coupled motors and include a constant external load force. This
approach allows us to study the implication of such a force on
the four different transport regimes. In contrast to previous
studies, our description provides a rather general framework
that can be applied to kinesin, myosin, and dynein motors. To
intuitively understand how motors cooperate, we introduce a
time scale for load sharing. If this time scale is larger than
the time for spontaneous unbinding, the motors do not have
enough time to reach a load-sharing configuration and, thus,
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cooperate poorly. On the other hand, by increasing the single
motor processivity, motors are able to share the load more
frequently.

Our article is organized as follows. After a short review of
our force-dependent single motor description, we consider a
system of two elastically coupled motors under an external
load. We first focus on two-motor runs, during which the
cargo is actually pulled by both motors, and determine the
average velocity and the average duration of these runs. By
comparing three different time scales we identify four distinct
transport regimes and discuss these regimes in the context of
three different motor families as provided by kinesin, myosin,
and dynein. Furthermore, we study the overall dynamics of
cargo transport by two motors and introduce a time scale for
load sharing which represents the relaxation time from an
initial state, in which one motor carries the whole load, to a
final state, in which the load is shared equally between the two
motors.

II. ELASTICALLY COUPLED MOLECULAR MOTORS
UNDER AN EXTERNAL LOAD

In the following, we consider cargo transport by two
molecular motors and take their elastic coupling via the cargo
explicitly into account. In addition, we study the influence of an
external force acting on the cargo. Our theoretical description
of two motors starts from the well-established single motor
dynamics, which ensures consistency with the results of single
motor experiments.

A. Single motor description

We consider a single motor as a stochastic stepper that
moves forward with the force-dependent stepping rate α(F ),
unbinds from the filament with the force-dependent unbinding
rate ε1(F ), and rebinds with the binding rate π . The stepping
rate is determined by the experimentally accessible force-
velocity relation V(F ) according to α(F ) = V(F )/l, where
l is the step size of the motor. We take a load force opposite
to the walking direction of the motor to be positive, whereas a
negative force is an assisting force. For the sake of simplicity,
we use a piecewise linear force-velocity relation that captures
the response of a molecular motor to an external load as given
by

V(F ) ≡






v for F < 0
v(1 − F/Fs) for 0 ! F ! Fs
0 for F > Fs

, (1)

where v is the force-free velocity and Fs the stall force at which
the velocity vanishes.

For the force-dependence of the unbinding rate, we use the
exponential form,

ε1(F ) = ε exp(|F |/Fd), (2)

which depends on the force-free unbinding rate ε and the
detachment force Fd. Note, that the absolute value of the
force enters in the exponent which implies that we treat both
directions in the same way.

Taken together, at a first step to understanding the interplay
of stepping and unbinding of a motor team, we use a relatively

(C0) (C1) (C2)
π

1 2v1 v2

FIG. 1. Reduced state space of a cargo transported by two motors.
Each cargo state is defined by the number of bound motors that pull
on the cargo; in state (C0) both motors are unbound, in state (C1)
and (C2) one and two motors are bound, respectively. In the latter
two states, the cargo is transported via one-motor and two-motor runs
with velocity v1 and v2, respectively. Transitions between the states
are described by the unbinding rates ε1 and ε2 and by the binding
rate π .

simple force-velocity relation and a simple force-dependence
of the unbinding rate, which nevertheless give insight into the
cooperative transport behavior.

B. Cargo transport by two motors

Because single motors bind and unbind from the filament,
the number of motors pulling simultaneously on a cargo varies
in time. After all motors have detached from the filament, the
cargo diffuses away from the filament, which implies a finite
run length of the cargo. This run length $xca represents the
distance along the filament that the cargo covers because of
active transport by one or two bound motors. We distinguish
these segments as one- and two-motor runs, during which
the cargo is actively pulled by either one or two motors,
respectively. The time during which the cargo is attached
to the filament defines the binding or attachment time $tca.
Since binding and unbinding are stochastic processes, usually
average values of the run length, 〈$xca〉, and the binding time,
〈$tca〉, are reported in experimental studies. To understand
the relation between these quantities and the single motor
parameters, theoretical studies describe the cargo by a discrete
state space. Every state is defined by the number of motors
bound to the filament. For a cargo transported by two motors,
the reduced state space based on the number of motors that link
the cargo to the filament is shown in Fig. 1. Transitions between
the states correspond to binding and unbinding events with
associated transition rates. While the single motor unbinding
rate ε1 as defined in Eq. (2) depends on the force F acting
on this motor, we take the binding rate π to be constant and
independent of the force. The effective unbinding rate ε2 in
Fig. 1 is defined as the inverse of the average run time of a
two-motor run. The numerical values of these rates depend on
the interaction between the motors [10,11,35,36]. Depending
on the number of bound motors, the velocity of the cargo
could, in general, be different. Therefore, we assign different
velocities v1 and v2 to the states (C1) and (C2) that correspond
to one-motor and two-motor runs.

C. Two active elastically coupled molecular motors
under a constant force

The dynamics of the cargo actively pulled by only one
motor is governed by the single motor behavior, therefore
we focus on two-motor runs, during which both motors are
simultaneously bound to the filament. We consider a constant
external load force Fex acting on the cargo. This situation can
be realized in a force feedback trap, which exerts a constant
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FIG. 2. (Color online) Cargo under an external load Fex linked
to the filament by one motor. The projection of the anchor point of
the unbound motor need not match the lattice of the filament. In
such a situation, the unbound, dangling motor cannot rebind into a
“force-free” relaxed state. The mismatch between the projection of
the anchor point and the closest binding site at the right is denoted by
$x0.

load on the cargo. The motors are attached to the cargo via
their elastic stalks, which we describe as linear springs with
spring constant κ . In the following, we will use the intuitive
terminology “motor stiffness” for this elastic parameter.

Initially, one motor is bound that sustains the total load
force Fex. In our one-dimensional description, this leads to a
stretching of the motor by a distance of Fex/κ; see Fig. 2. Next,
we have to implement the binding process of the second motor
to the filament. It is plausible to assume that this motor binds
into a relaxed state and feels no load directly after rebinding.
However, if the deformed spring of the first motor does not
match the discrete lattice of the filament, the second motor
cannot rebind into such a relaxed state. In the worst case this

mismatch would be $x0 = l/2. Then, thermal fluctuations will
push the motor to an adjacent binding site. After rebinding of
the motor, the cargo relaxes to a new equilibrium position
which is shifted by $x0/2. Note, that the factor 1/2 arises
from the fact that the cargo is bound to the filament by two
motors that we consider as linear springs. This shift implies
an extra force acting on the motors. However, for a realistic
motor stiffness of κ < 0.5 pN/nm, the force is smaller 1 pN
and thus smaller than the detachment force Fd % 3 pN and
the stall force Fs % 6 pN for kinesin-1. Therefore, we neglect
this additional effect and assume that the second motor always
rebinds into a force-free state.

To describe this dynamical process, we consider a Markov
process on a discrete state space, in which every state is
associated with the discrete separation of the motors, resulting
in a specific force; see Fig. 3. In the following, we explain this
choice of a discrete force space in more detail. The unbound
motor rebinds into state (0), in which the total load force Fex
acts on the other motor. Next, either the leading or the trailing
motor steps forward, thereby stretching their elastic elements.
We assume that the cargo relaxes fast to a new equilibrium
position, l/2 away from the old position, and thus the forces
on the motors are well defined. By every step the force on the
motor is either increased or decreased by

FK = κl/2 ≡ Kl, (3)

depending on the configuration; see Fig. 3. This equation
defines the elastic coupling parameter K . A transition from
state (j ) to the next higher state (j + 1) corresponds to a
forward step of the leading motor, bearing the load Fex + jFK,
with stepping rate α(Fex + jFK). The transitions from state (j )
to state (j − 1) occur by a forward step of the other motor with
stepping rate α(−jFK). After the unbinding of one motor, the
cargo is transported by a single motor in state (C1). Unbinding
can occur from each state (j ) with the transition rate

ωoff(j ) = ε1(Fex + jFK) + ε1(−jFK). (4)

FIG. 3. (Color online) Network for two elastically coupled motors exposed to an external load force Fex. Every state is associated with a
certain force configuration. During one-motor runs in (C1), the total force is sustained by the single bound motor. During two-motor runs, the
two motors constantly redistribute the load force as a result of their stochastic stepping. Each step acts to stretch or relax the linkers of the
motors resulting in an elastic force FK = κl/2 = Kl [see Eq. (3)] contributing to the total force acting on each motor. In state (j ) one motor is
subjected to the force Fex + jFK and the other motor to −jFK. We implicitly assume that an unbound motor binds in a relaxed configuration
to the filament bearing no load (the corresponding rebinding transition to (0) is not included in this figure). The forces in each state determine
the stepping rates α and the effective unbinding rate ωoff .
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Note, in the description above, the rates for a transition
going out of a state only depend on the force of that state.
Thus, we do not account for the change of the force during a
transition. This simplification is justified for small coupling
parameter K . In this case, the force generated per step
is rather small. For large K , the stretching of the elastic
elements between the motors by a single step could lead to
a motor-motor force which is comparable to the stall force. A
system with κ = 2Fs/l would be so rigid that one step could
stall the motor.

Using the discrete description introduced above, we want
to obtain the binding time and the velocity of two motors
simultaneously transporting a common cargo. The average
time both motors are bound to the filament is the average
time to absorption to state (C1), initially started in state (0);
see Fig. 3. To obtain this average time, we consider a closed
network without the absorbing state and calculate the steady
state probability distribution Pi , as proposed by Hill [37] and
used in other studies [11,38]. Alternatively, the same time can
be calculated by standard methods for Markov processes with
absorption, sometimes called “first step analysis” [39]. The
inverse probability current into the absorbing state gives us the
average binding time

t2 ≡




∑

j

ωoff(j )Pj




−1

. (5)

The velocity of the cargo transported by two motors is related
to the average stepping rate as

v2 ≡ (l/2)
∑

j

[α(Fex + jFK) + α(−jFK)]Pj . (6)

In order to reduce parameters, we compare these two quantities
to the corresponding single motor binding time t ≡ ε−1 and
velocity v. We introduce the scaled binding time t2/t and the
scaled velocity v2/v for two-motor runs.

Note that the definition of the velocity is an averaged
stepping rate. It gives a value even if the motor only performs
one step before unbinding. A situation that one could hardly
observe in experiments would be provided by a load force
that is much larger than the single motor stall force. For such
a scenario, consider state (0) of Fig. 3. The leading motor
is stalled by the large load force, but the trailing motor can
step, which leads to a velocity of lα(0)/2. If the leading
motor unbinds immediately after one step, the two-motor
run is terminated and its velocity would be v2 = lα(0)/2
independent of the external force. We discuss this extreme case
in Sec. II F.

D. Scaled forces and transport regimes

The description of elastically coupled motors is based on
three force scales: the detachment force Fd, which is the force
scale for force-induced unbinding, the stall force Fs, which
is the force scale for force-induced stalling, and the force FK,
which is the elastic strain force induced per motor step. In
addition to these forces, the external load force on the cargo Fex
provides a fourth force scale. The dynamical interplay of these
forces dictates the transport properties. To develop an intuitive

time

weak coupling

strong coupling

reduced velocity

enhanced 
unbinding

no effect

slow-down
and unbinding

slow-down
before unbinding

unbinding 
before slow-down 

FIG. 4. (Color online) A load-free cargo transported by two elas-
tically coupled motors can display four different transport regimes.
These regimes depend on the elastic coupling strength between the
two motors and their single motor parameters. In the weak coupling
regime, no strain force is built up, and there is almost no effect on the
velocity or the binding time. In contrast, for strong elastic coupling,
and for Fd % Fs the force induced by the motors’ stepping influences
both the velocity and the binding time. However, if Fs is smaller
compared to Fd , one motor will stall the other motor before one of the
motors unbinds and the system exhibits the reduced velocity regime.
Finally, if Fd is smaller compared to Fs , one motor will pull the other
motor from the filament before the motors reduce their velocity, a
behavior that characterizes the enhanced unbinding regime.

picture, it is convenient to scale all forces by the elastic
coupling force FK. Doing so, we introduce a rescaled stall
force fs ≡ Fs/FK, a rescaled detachment force fd ≡ Fd/FK,
and a rescaled load force fex ≡ Fex/FK. The calculation of the
scaled quantities t2/t and v2/v now only involves, in addition
to the three force scales, two time scales: the inverse force-free
stepping rate 1/α(0) and the inverse force-free unbinding
rate 1/ε.

Previously, four distinct transport regimes have been
identified theoretically for two cooperating molecular motors
without an external force [11]: (i) the weak coupling regime
with almost no effect on the binding time and the velocity,
(ii) the strong coupling regime with a reduction of both,
the binding time and the velocity, (iii) the reduced velocity
regime with a reduced velocity but no effect on the binding
time, and (iv) the enhanced unbinding regime with a reduced
binding time but almost no effect on the velocity; see Fig. 4.
As explained above, we are able to calculate the scaled
velocity and scaled binding time as a function of the rescaled
detachment and stall force fd and fs for different rescaled load
forces fex; see Fig. 5. Each corner of the plots correspond
to a specific transport regime: in the upper part, for large fd,
there is almost no effect on the binding time, whereas in the
lower part the binding time is reduced. On the left side of
the plots, for small fs, the velocity is reduced, while on the
right side the velocity is comparable to the noninteracting case.
As we increase the load force, the weak coupling regime (in
the upper right corner) shrinks and the reduction in the binding
time and/or the velocity increases. To describe the dependence
of the regimes on the parameters, we estimate the crossover
lines from the comparison of three different time scales.
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FIG. 5. (Color) (a–d) Binding time t2 of two-motor runs in units of the single motor force-free binding time t . (e–h) Velocity v2 of two-motor
runs in units of the single motor force-free velocity v. Both quantities are displayed as a function of the scaled detachment force fd = Fd/FK

and the scaled stall force fs = Fs/FK for different scaled load forces fex = Fex/FK; (a, e) fex = 0, (b, f) fex = 3, (c, g) fex = 6, (d, h) fex = 9.
The solid black and blue lines are crossover lines between different transport regimes. The straight line corresponds to a pair of kinesin motors
with a stall to detachment force ratio Fs/Fd % 2. Along the latter line, the coupling parameter K and the force Fex are changed in such a way
that fex = Fex/lK remains constant. The different colored segments indicate the different transport regimes (from left to right): strong coupling
(red), enhanced unbinding (green), and weak coupling (blue).

E. Different time scales

1. Time scale for spontaneous unbinding tu

For two noninteracting motors that share the load equally,
the time until one motor unbinds is given by

tu ≡ [2ε exp(fex/2fd)]−1. (7)

We call this time the time scale for spontaneous unbinding
during equal load sharing.

2. Time scale for induced unbinding tFd

As the motors step asynchronously along the filament, they
redistribute the load force and additionally build up a strain
force by stretching the elastic elements between them. If the
total force on a motor is comparable to the detachment force,
it is very likely that the motor unbinds. To estimate the time
scale tFd for such induced unbinding, we calculate the mean

first passage time until one of the motors reaches a force that
is comparable to the detachment force [11]. For this estimate,
we neglect unbinding and use the modified network shown in
Fig. 6. We promote the state (Np), where Np = &fd − fex' and
(Nm), where Nm = −&fd' to absorbing states. Here, &x' is the
ceiling function that returns the smallest integer ≥x.

3. Time scale for reduced stepping tFs

In the case that the total force on a motor is comparable
to the stall force, motor stepping is substantially slowed
down. To estimate the time scale tFs for reduced stepping, we
determine the mean first passage time until one of the motors
reaches stall force. Again, we neglect unbinding and use the
modified network shown in Fig. 6, but with the absorbing
states corresponding to the stall force, Np = &fs − fex' and
Nm = −&fs'.

FIG. 6. Network to estimate two different time scales: (i) the time scale for induced unbinding, with Np = &fd − fex' and Nm = −&fd'
and (ii) the time scale for reduced stepping with Np = &fs − fex' and Nm = −&fs'.
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4. Crossover lines

With these three time scales at hand, we are able to
estimate the crossover lines between the four different trans-
port regimes. Intuitively, if the time scale for spontaneous
unbinding is the smallest, i.e., tu < tFd and tu < tFs , the motors
operate in the weak coupling regime. The motors unbind
before developing a substantial strain force between them. The
strong coupling regime, in which stepping and unbinding are
influenced by the strain force, is characterized by a small time
scale for induced unbinding and a small time scale for reduced
stepping, i.e., tFd % tFs < tu. In case the time scale for reduced
stepping is the only small time scale, i.e., tFs < tu and tFs < tFd ,
the strain force between the motors slow down stepping and the
system is in the reduced velocity regime. The motors operate in
the enhanced unbinding regime, if the time scale for induced
unbinding is the smallest, i.e., tFd < tu and tFd < tFs . In this
case force induced unbinding is the dominant process.

To compare the time scales obtained from the discrete state
space shown in Fig. 6, we use the following simple definitions:
(i) The crossover line between the stepping regimes is given
by the smallest integer values of fs and fd for which tFs ≥
tu. (ii) The crossover line between the unbinding regimes is
given by the smallest integer values of fs and fd for which
tFd ≥ tu. These definitions determine well defined crossover
lines indicated by the blue and the black line in Fig. 5, and it
avoids difficulties that arise by considering the variable fs and
fd continuously [11].

Increasing the scaled load force on the motors enhances
the unbinding and reduces the velocity. This effect is captured
by the shift of the crossover lines to higher rescaled stall and
detachment forces; see Fig. 5.

5. Transport regimes for different motor species

For the binding time and the velocity shown in Fig. 5, we
used the numerical values of the force-free stepping rate and
the force-free unbinding rate of kinesin-1. In addition, fixing
the stall force and detachment force to the kinesin-1 values
of 6 pN and 3 pN respectively, the system is described by a
straight line with the coupling parameter and the external load
force as the only free parameters. Such lines are displayed in
Fig. 5. The different colored segments indicate the different
transport regimes: strong coupling (red), enhanced unbinding
(green), and weak coupling (blue). Along the line, the coupling
parameter K and the force Fex are changed such that fex =
Fex/lK is constant.

Some single motor parameters are also measured or
estimated for motor species other than kinesin-1; see Table I.
For each set of parameters, we calculate the binding time and

the velocity as a function of the scaled stall and detachment
forces together with the crossover lines between the transport
regimes. Then, we fix the stall and detachment force and
determine the intersection points between the straight line
describing the system and the crossover lines. From this
procedure we obtain for each motor pair a line which is
subdivided in different segments corresponding to the different
transport regimes; see colored segments in Fig. 7. Each point
on the line represents a motor pair with a specific coupling
parameter subjected to a certain load force. Inspection of such
lines for different motor species and different scaled load
forces reveal that all motors can operate in the strong and
weak coupling regime. In addition to that, pairs of kinesin and
of dyneins can access the enhanced unbinding regime, whereas
myosin motors can work in the reduced velocity regime; see
Fig. 7. As the scaled load force is increase on the motor pairs,
the strong coupling regime is enlarged and the other regimes
are shifted to higher scaled stall and detachment forces.

F. Transport by a pair of kinesin motors

We use the parameters given in the first column of Table I
to describe transport by a pair of elastically coupled kinesin
motors. In particular, we focus on the dynamics of two-motor
runs. The scaled velocity v2/v of two-motor runs as a function
of external force is shown in Fig. 8(a) for different values of the
motor stiffness κ . Increasing the elastic coupling between the
motors slightly decreases the velocity for small external forces.
In the limit of large external forces, the velocity reaches half
of the force-free single motor velocity. In this case the most
probable pathway is the following: one motor experiences
the total load force and is stalled, the other motor binds in
a force-free state performs one step with the rate α(0) and the
cargo is displaced by l/2. Then, one of the motors unbinds from
the filament and the two-motor run is terminated, resulting in a
velocity of lα(0)/2. These short trajectories are characterized
by a small average scaled duration t2/t and a small average
displacement 〈$x2〉 as shown in Fig. 8(b) and Fig. 8(c) for
large Fex. Interestingly, the velocity displays a minimum as a
function of the external force; see Fig. 8(a). The appearance
of the minimum can be understood according to the argument
given above. If the second motor is able to catch up with the
load bearing motor, both motors are slowed down. However,
if the second motor unbinds before assisting the load-bearing
motor, only fast steps of the second motor contribute to the
overall velocity. As explained above, in the extreme case the
latter motor only performs one step before unbinding again
leading to half the single motor velocity.

The average duration t2 of two-motor runs as a function
of external force Fex exhibits a maximum at Fex = FK; see

TABLE I. Values of the single motor parameters used to study the motor-motor interference of different pairs of elastically coupled motors.
Kinesin-1Bl and kinesin-1Di indicate a set of parameters measured in different labs.

Parameter Kinesin-1Bl Kinesin-1Di Strong dynein Weak dynein Myosin V Myosin VI

Stall force Fs (pN) 6 [40,41] 7 [24,42] 7 [43] 1.1 [44] 2 [45] 2 [45]
Detachment force Fd (pN) 3 [41] 3 [41] 0.75 [9] 0.75 [9] 4 [45] 2.6 [45]
Velocity v (µm/s) 1 [41,42] 0.5 [22] 0.65 [9] 0.65 [9] 0.38 [45] 0.15 [45]
Unbinding rate ε (s−1) 1 [41] 0.61 [22] 0.27 [9] 0.27 [9] 0.3 [45] 0.25 [45]
Step size l (nm) 8 [42] 8 [22] 8 [43] 8 [43] 36 [45] 36 [45]
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FIG. 7. (Color) Transport regimes for two elastically coupled motors simultaneously pulling on a cargo that is exposed to different load
forces: (a) fex = 0, (b) fex = 3, (c) fex = 6, and (d) fex = 9. The lines correspond to different pairs of motors with single motor parameters
given in Table I. The color-coded line segments represent the weak coupling (blue), the strong coupling (red), the reduced velocity (black), and
the enhanced unbinding regimes (green).

Fig. 8(b). Inspection of the sum given in Eq. (5) reveals that the
state j = −1 makes a dominant contribution and for j = −1
the rate given in Eq. (4) exhibits a maximum at Fex = FK.

III. OVERALL CARGO TRANSPORT BY
MULTIPLE MOTORS

1. Back-shifts

Applying the theoretical framework presented above, we
are able to determine v2 and ε2 in terms of the single motor
parameters and the elastic coupling. Using these quantities, the

network shown in Fig. 1 completely describes cargo transport
by two motors [35].

For noninteracting motors, a displacement of the cargo is
only caused by steps of the motors [10]. In contrast, when
the motor stalks act as elastic springs, unbinding of a single
motor leads to a new equilibrium position of the cargo and thus
to a displacement; see Fig. 9 [46]. In the load-free case with
Fex = 0, these displacements cancel out on average, because
the leading and the trailing motor then unbind with equal
probability as follows from the symmetry relation ε1(−F ) =
ε1(F ) for the unbinding rate ε1 given by Eq. (2). For Fex )= 0,
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FIG. 8. (Color online) (a) Average velocity v2 of two-motor runs in units of the single motor force-free velocity v, (b) Average duration t2
of two-motor runs in units of the single motor binding time t and (c) average displacement 〈$x2〉 of two-motor runs. All quantities are given
as a function of the external load force Fex for different values of the motor stiffness κ . As explained in the text, the two-motor runs consist
of single steps for large values of Fex. To describe the single motors, we used the kinesin parameters, Fs = 6 pN, Fd = 3 pN, v = 1 µm/s,
ε = 1 s−1, l = 8 nm; see Table I.
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FIG. 9. (Color online) If the leading motor unbinds, the cargo
relaxes to a new equilibrium position shifted by 〈$xbs〉. Such a back-
shift contributes to the overall displacement of the cargo. A similar
situation occurs when the trailing motor unbinds.

on the other hand, this symmetry is broken, since the force acts
in a certain direction. To account for the resulting back-shifts,
we explicitly consider the displacement of the cargo to a new
equilibrium position after one of the motors has detached from
the filament. This new position depends on the force and on the
elasticity of the motor linkers. To determine the back-shifts,
we proceed in three steps: (i) For each force state (j ) of Fig. 3,
we calculate the two displacements

$xle(j ) ≡ − lfex

2
− j

l

2
(8)

and

$xtr(j ) ≡ j
l

2
(9)

corresponding to the relaxation of the cargo after the unbinding
of the leading or trailing motor, respectively. (ii) We determine
the average number of unbinding events per two-motor run for
the leading and for the trailing motor from each state (j ) of the
network shown in Fig. 3. This average number is connected
to the ratio of probability currents for the corresponding
events [47], leading to the average number

〈Nle〉(j ) ≡ Pjε exp(|fex + j |/fd)∑
j Pjωoff(j )

(10)

of unbinding events for the leading motor from state (j ).
Likewise, for the trailing motor, we find the average number

〈Ntr〉(j ) ≡ Pjε exp(|j |/fd)∑
j Pjωoff(j )

(11)

of unbinding events from the same state. (iii) In a final step,
we calculate for an overall cargo run, the average number 〈N2〉
of two-motor runs which is given by

〈N2〉 ≡ π

ε1
= π

ε exp[|fex/fd|]
(12)

as follows from the network shown in Fig. 1, because each
cargo run starts in cargo state (C1) [35].

Combining these results, we obtain the average displace-
ment caused by back-shifts,

〈$xbs〉 ≡ 〈N2〉
∑

j

[〈Nle〉(j )$xle(j ) + 〈Ntr〉(j )$xtr(j )].

(13)

We then add this term as a correction to the overall cargo run
length resulting in

〈$xca〉 ≡ πv2 + ε2v1

ε2ε exp[|fex/fd|]
+ 〈$xbs〉. (14)

The overall cargo binding time is obtained from the network
shown in Fig. 1 as

〈$tca〉 ≡ π + ε2

ε2ε exp[|fex/fd|]
(15)

and the cargo velocity as

vca ≡ 〈$xca〉
〈$tca〉

. (16)

In order to investigate whether the distinct transport regimes
for two simultaneously pulling motors can be identified from
the overall transport of the cargo, we plot the overall cargo
binding time and the velocity; see Figs. 10(a)–10(d) and
Figs. 10(e)–10(h), respectively. Indeed, we can associate the
previously introduced transport regimes with each corner of the
plots. Because of the back-shifts of the cargo, the velocity can
be negative, even though our description neglects backward
stepping of single motors. Another important quantity is the
overall cargo run length which is plotted in Figs. 10(i)–10(l).
For higher scaled load forces the run length decreases. It
is interesting to notice that for example at a load force
of fex % 3, the maximum run length is around fd ≈ fs.
In Fig. 10, the colored line represents a pair of kinesin
motors. The colored line segments indicate the different
transport regimes: strong coupling (red), enhanced unbinding
(green), and weak coupling (blue). The three different stars
correspond to three systems with different motor stiffness
κ % 0.075, 0.15, 0.5 pN/nm. For these systems, the overall
velocity, run time and run length of the cargo are shown in
Fig. 11 as a function of load force. For large external forces,
increasing the elastic coupling increases the cargo velocity.
The binding time and the run length decrease when the elastic
coupling is increased for small forces. Taken together, the
elastic coupling that governs the strain forces between the
motors has a different influence on the velocity, run length,
and binding time.

Note that we do not use any arbitrary criteria to select
trajectories. In contrast, only trajectories with a minimal length
are often considered in experimental studies. Furthermore, the
degree of cooperation depends on the rebinding rate π for
which we took the literature value of %5/s [14]. This parameter
will depend on the geometry and flexibility of the underlying
molecular architecture.

IV. TIME SCALE FOR LOAD SHARING

The comparison of the different time scales in Sec. II E
provides a conceptual framework to gain insight into the
different transport regimes from an intuitive point of view. In
order to develop an intuitive understanding of the cooperativity
of motors under an external load, we now introduce a fourth
time scale tsl for load sharing. The time for load sharing is the
time that is needed for two motors to share the external load,
after the second motor has bound into the force-free state (0).
This definition is motivated by the fact that load-sharing states
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FIG. 10. (Color) (a–d) Overall binding time 〈$tca〉, (e–h) overall average velocity vca, and (i–l) overall run length 〈$xca〉 of a cargo
transported by two motors as a function of the scaled detachment force fd and stall force fs for four different load forces fex. The straight lines
correspond to a pair of kinesin motors with a stall to detachment force ratio Fs/Fd % 2. Along the line, both K and Fex are changed so that
fex remains constant. The colored line segments indicate the different transport regimes (from left to right): strong coupling (red), enhanced
unbinding (green), and weak coupling (blue). The three stars represent three different systems with fixed coupling strength and fixed external
load force; see Fig. 11. When a motor unbinds, the cargo relaxes to a new position. For strong coupling and large loads, these back-shifts result
in an effective backward displacement; see (k) and (l).
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FIG. 12. (Color online) Steady state probability distribution of
the network shown in Fig. 3 with ωoff (j ) = 0 for all j . The peaks
of the distributions correspond to states in which the force is shared
almost equally between the motors. This example corresponds to two
elastically coupled kinesins with parameters Fs = 6 pN, Fs = 3 pN,
κ = 0.2 pN/nm, l = 8 nm, v = 1 µm/s, π = 5 s−1, and ε = 1 s−1.
The states are labeled as in Fig. 3.

are the most probable states of the steady state distribution for
the network shown in Fig. 3 without unbinding. In Fig. 12 the
steady state distributions for different external loads display
maximums at states with negative indices which correspond to
load-sharing states according to the network shown in Fig. 3. In
mean field approaches, the load-sharing state has been used as
the only state to describe motors under external forces [9,10].

We define the time scale for load sharing by the time that
the system needs to relax to the steady state distribution shown
in Fig. 12. We consider the network shown in Fig. 3 and set
all unbinding rates ωoff equal to zero. The master equation for
such a system can be written in the form

∂tp = M · p, (17)

where p is the vector containing the state probabilities and M
is the transition rate matrix. The general solution for the initial
state p0 is given by

p(t) = exp[Mt]p0, (18)

with the steady state pst = p(∞). We define the time tsl as the
solution of the overlap criterion

p(tsl) · pst ≡
∑

i

pi(tsl)pi(∞) = 0.9. (19)

This implicit equation can be easily solved numerically. By
comparing this time scale to the spontaneous unbinding time
ε−1

1 (Fex) of a single motor bearing the total load, we predict
whether motors are able to cooperate by sharing the load. Note
that we now consider the spontaneous unbinding of a single
motor, i.e., the motor that bears the total load initially [48]. If
the the time ε−1

1 (Fex) is large compared to the time for load
sharing, the motors have enough time to distribute the load
between them.

As an example, we calculate the time for load sharing by two
coupled kinesin motors with motor stiffness κ = 0.2 pN/nm
as a function of the external load and compare it to the
spontaneous unbinding time of a single motor for two different
force-free unbinding rates ε; see Fig. 13(a). The time tsl for
load sharing is independent of the single motor unbinding rate,
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FIG. 13. (Color online) (a) Load-sharing time tsl (black line)
and unbinding time ε−1

1 (Fex) (blue and red lines) for two coupled
kinesins with parameters Fs = 6 pN, Fs = 3 pN, κ = 0.2 pN/nm, l =
8 nm, v = 1 µm/s, π = 5 s−1, and ε = 1 s−1. For smaller force-free
unbinding rates, the motors have more time to share the load and thus
cooperate at higher load forces. This increased cooperativity leads to
higher velocities for large forces; see (b). (b) Force velocity relation
for a cargo transported by two kinesin motors with two different
unbinding rates: ε = 1 s−1 (red), ε = 0.3 s−1 (blue).

because tsl was calculated for ωoff = 0. For load forces Fex with
tsl < ε−1

1 (Fex), motors are able to share the load. Motors with
smaller unbinding rate ε % 0.3 /s cover a large force range, up
to 11 pN, in which they are able to share the load. The higher
degree of cooperation for a smaller unbinding rate is also
reflected in a higher velocity under large forces; see Fig. 13(b).
Therefore, the higher the processivity of the motors, the higher
their ability to share the load. Similarly, equal sharing of a
viscous force has been reported in a theoretical study, only
when the processivity of the motors is increased [49].

V. DISCUSSION

We presented a stochastic description of two elastically
coupled molecular motors under a constant external load force.
The stochastic stepping of the motors induces a fluctuating
force that affects their transport behavior. However, the precise
influence of the external force on the transport depends on the
single motor parameters and on the elastic coupling. To dis-
tinguish between the four transport regimes of weak coupling,
enhanced unbinding, reduced velocity, and strong coupling, we
compared three different time scales; see Sec. II E. Increasing
the load force on the cargo decreases the weak coupling regime
and enhances the regimes in which the motors interfere with
each other. Furthermore, we introduced a fourth time scale for
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the time to share the load, which describes how effectively
motors cooperate and provides additional insight into their
cooperative behavior from an intuitive point of view.

In order to obtain a small number of parameters, we used
relatively simple expressions for the force-velocity relation,
for the force-dependent unbinding rate, and for the elastic
coupling. In the following, we will discuss possible extensions
of these simplifications.

Our simple force-velocity relation captures the essential
behavior of molecular motors. Indeed, it has been shown in
experiments that the velocity is almost constant under assisting
forces for different molecular motors such as kinesin [42],
dynein [50], and myosin V [51]. As a further simplification,
we neglected backward steps of the motors. For small forces,
backward stepping is relatively rare for kinesin [42] and
myosin V [52], but more frequent for dyneins [50,53,54].
Therefore, for dynein, there might be additional effects arising
from back-stepping under large forces that we do not take into
account for now.

The unbinding rate that we used in Eq. (2) is independent
of the direction of the force. In general, the affinity of a
motor to the filament may depend on the loading direction.
An asymmetric unbinding behavior of the single heads could
act to enhance the head-head coordination if the trailing head
is more likely to unbind under a forward force than the leading
head under a backward load. One study reported an asym-
metric unbinding behavior for kinesin-1, in its nucleotide-free
state [55]. In the case of dynein, there is also evidence for a
catch bond behavior [56]. These more complicated functional
dependencies for the unbinding rate can be easily included in
our description via Eq. (4).

We described the elastic coupling between the motors as
a linear spring. A linear spring behavior should usually apply
for small forces, but nonlinear force extension relations could
be possible and have been studied theoretically for the load
free case in [36]. We considered a type of coupling between
the motors in which the anchor points are fixed. Such a
system could be realized with an DNA-origami [23,27] or
with an antibody coupling exactly two motors to a single
bead [57]. However, in the cell, when motors are attached
to a membrane the coupling between them could be different,
since the anchors are embedded in a fluid membrane. The

force generation of multiple motors that pull a tube out of
a membrane has been studied both experimentally [58,59]
and theoretically [60]. Other types of coupling such as
hydrodynamical coupling or coupling via a rigid backbone
are discussed in Ref. [61].

In Ref. [17], it has been argued that detailed balance
requires a force dependence of the binding rate. In contrast,
our study is based on the view that all elastic elements of the
motor relax, as soon as a motor under force unbinds from the
filament. This relaxation deforms the free-energy landscape of
the motor-filament bond, and rebinding is unlikely to follow
the same reaction coordinate as unbinding. Therefore, we
take the binding rate to be force-independent. Note that the
overall binding process is rather complicated and depends
on the molecular geometry [31], electrostatic interactions and
other unknown factors. Different, more complicated binding
behaviors could be studied using the time scale arguments
introduced above. In particular, the time to share the load
depends on the initial condition; see Eq. (19) and Eq. (18).

We based our study on an interaction between the motors
that is mediated via their elastic linkers. Such a system
could be studied experimentally using DNA-origami with
optical or magnetic tweezers. If the transport is regulated
by other proteins the basic mechanical interaction between
the motors will still influence the dynamics. On the other
hand, adapter proteins or other cofactors could in principle
change the single motor parameters which will then alter the
cooperative behavior. Such regulation might be a possibility
for the cell to fine tune intracellular transport. Recently, it
has been shown that decreasing the single motor velocity
up-regulates the multikinesin run length [57,62]. As an
example of regulation, in our study, we increased the ability
to share a common cargo by increasing the processivity of
the motors. The processivity factor dynactin is known to
increase the run length of dynein [63]. Experiments with
these components could provide a systematic way to study
the regulation of cooperative transport and even construct an
optimal system that maximizes certain transport properties.
From this perspective, our framework elucidates how the single
motor parameters influence the cooperative behavior and thus
identifies the relevant components that provide promising
candidates for regulation.
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