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Denken ohne Erfahrung ist leer, Erfahrung ohne Denken ist
blind.
(Thought without experience is empty, experience without
thought is blind.)
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Abstract Biomembranes consist of fluid bilayers built up from many lipid and
protein components. The membrane fluidity has two important consequences. First,
the molecular components can undergo fast lateral transport within the membranes,
a necessary prerequisite for the formation and remodelling of intramembrane
compartments. Second, the fluidity leads to unusual elastic properties of the
membranes that allow them to “escape into the third dimension.” Intramembrane
compartments can be formed by lipid phase separation, now observed for many
ternary lipid mixtures, or by heterogeneous environments that lead to an ambience-
induced segmentation of the membranes. Because of their unusual elastic properties,
the membranes can attain many different shapes and undergo striking shape trans-
formations, which reflect their ability to respond locally to external perturbations
by changes in their curvature. Several molecular mechanisms for local curvature
generation have been identified including membrane-anchored polymers, adsorption
or depletion layers of solutes, and membrane-bound proteins. The local curvature
generation is intimately related to the concept of a preferred or spontaneous
curvature that describes the asymmetry between the two leaflets of the bilayer
membrane. New methods to determine the spontaneous curvature in a reliable
manner have been recently developed, based on spontaneous or force-induced
tubulation of giant vesicles. The spontaneous curvature plays a pivotal role both for
the engulfment of nanoparticles by membranes and for the wetting of membranes
by aqueous droplets, two membrane processes that remain to be further elucidated.
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The spontaneous curvature also determines the exergonic or endergonic nature of
membrane fusion and fission.

Keywords Biomembranes · Curvature · Tubulation · Nanoparticle engulfment ·
Membrane wetting

1 Introduction

Patricia Bassereau and Pierre Sens asked me to write an introductory chapter that
provides a personal account of the “most interesting and surprising developments
in membrane physics” during the last two decades, i.e., since the publication of
the “green book” in 1995 [1]. The latter book on “Structure and Dynamics of
Membranes” was edited by Erich Sackmann and myself, a longsome process that
took several years. During the last decade, we discussed, once in a while, the
possibility of a new edition but I never found the time to think seriously about such a
venture. The present chapter gives me the opportunity to briefly review a few aspects
of membranes and vesicles that I would definitely want to include in a putative new
edition of the “green book.”

The chapter is organized as follows. The following Sects. 2–5 address several
aspects that caught my attention already in the 1990s and underwent important
developments during the last 20 years: Fluid domains or rafts in fluid membranes;
segmentation of membranes by heterogeneous environments; emergence of mem-
brane curvature on nanoscopic scales; as well as local curvature generation and
spontaneous curvature. At the end of Sect. 3, it is argued that intracellular hetero-
geneities close to the membranes act to suppress the separation and coexistence
of lipid phases in vivo. In Sect. 5, membrane-bound proteins are viewed as Janus
particles with strongly nonspherical shapes.

The subsequent Sects. 6–9 deal with four aspects that I found particularly
interesting during the last couple of years: Two distinct mechanisms for the
formation of membrane nanotubes as provided by spontaneous curvature and
locally applied forces; the interplay between these two tubulation mechanisms;
the engulfment of nanoparticles by membranes; and the wetting of membranes by
aqueous two-phase systems. Section 7 describes the interplay of spontaneous and
force-induced tubulation in a quantitative manner. Section 9 emphasizes that all
lipid compositions and aqueous two-phase systems that have been studied so far
undergo complete-to-partial wetting transitions and that the nucleation and growth
of droplets at membranes depends strongly on the spontaneous curvature. Finally,
Sect. 10 explains how this curvature affects the exergonic or endergonic nature of
membrane fusion and fission, the most important topology-transforming membrane
processes. At the end, I give a brief summary and a short outlook on open questions
and future studies. In order to produce a readable piece, I had to focus on a few
aspects of membranes and vesicles and, thus, had to omit other intriguing aspects,
many of which will be covered in later chapters of this book.
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The presentation is intuitive and largely nontechnical but, as a theoretical
physicist, I cannot refrain from displaying some equations. Following the motto
“As simple as possible but not simpler” of Albert Einstein, all displayed equations
are short and provide simple relationships between a small number of parameters.
In addition, all of these parameters can now be measured in experiments and/or
simulations. One such parameter that plays a prominent role in the following
is the spontaneous (or preferred) curvature which describes the local asymmetry
between the two leaflets of bilayer membranes. A much more detailed account of
the underlying theory will be given elsewhere [2].

2 Fluid Domains and Rafts in Fluid Membranes

Biological and biomimetic membranes are fluid, contain several molecular compo-
nents, and represent two-dimensional systems. As a consequence, they should be
able to undergo phase separation into two types of fluid domains, in close analogy
to macroscopic liquid mixtures in three dimensions. This conclusion seems quite
obvious from a theoretical point of view but, at the beginning of the 1990s, it was
rather difficult to find experimental evidence for it. In fact, when I first submitted
my theory on domain-induced budding [3, 4] to Nature, the editors finally rejected
it after an extended review process because they thought that the underlying idea of
fluid-fluid coexistence in bilayer membranes was “too speculative.”

2.1 Intramembrane Domains in Ternary Lipid Mixtures

This situation has now changed completely because many ternary lipid mixtures
have been identified which exhibit two coexisting fluid phases, a liquid-ordered
and a liquid-disordered phase, see Fig. 1. These mixtures consist of a saturated
lipid such as sphingomyelin, an unsaturated phospholipid, and cholesterol. The
intense experimental study of these mixtures was triggered by the proposal [8]
that biological membranes contain intramembrane domains or rafts that are rich in
sphingomyelin and cholesterol. In order to directly visualize the different domains
formed in lipid vesicles, it was also crucial to find appropriate fluorescent probes
that have a preference for one of the two fluid phases [6, 9–11].

Direct evidence for the formation of two types of fluid domains was provided by
single particle tracking that showed that both phases exhibit relatively fast lateral
diffusion [10]. In addition, using giant unilamellar vesicles, several theoretical
predictions [3, 5, 12, 13] could be directly confirmed: the growth and coalescence
of small domains into larger ones [11]; the budding of the more flexible domains
[6, 11]; and the shift of the domain boundary away from the neck of the bud
[14, 15]. So far, this domain boundary shift provides the only method to estimate the
difference between the Gaussian curvature moduli for the two types of membrane
domains.
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Fig. 1 Domain-induced budding of vesicles as theoretically predicted in [3, 5] and observed by
fluorescence microscopy in [6, 7]: (left) cross section through a vesicle that formed two domains
after a decrease in temperature [6]; and (right) three-dimensional confocal scan of a two-domain
vesicle that was formed by electrofusion [7]. In both cases, the vesicle membrane is composed of
DOPC, sphingomyelin, and cholesterol, doped with small concentrations of two fluorescent probes

Phase separation in ternary lipid mixtures has now been observed for a variety
of membrane systems including giant vesicles [6, 10, 11, 15–17], solid-supported
membranes [18–20], hole-spanning (or black lipid) membranes [21], as well as
pore-spanning membranes [22]. The phase diagrams of such three-component
membranes have been determined using spectroscopic methods [23] as well as
fluorescence microscopy of giant vesicles and X-ray diffraction of membrane stacks
[24–27]. Somewhat surprisingly, fluid–fluid coexistence has even been found in
giant plasma membrane vesicles that contain a wide assortment of different lipids
and proteins [28, 29].

2.2 Lipid Phase Domains or Rafts In Vivo

As far as biological membranes are concerned, the existence and size of sphingo-
myelin- and cholesterol-enriched rafts as proposed in [8] is still a matter of ongoing
debate. It is generally accepted that the diameter of these rafts is below the
diffraction limit of conventional optical microscopy, i.e., below 200 nm, see, e.g.,
[30]. However, even superresolution microscopy methods such as STED [31, 32]
could not provide a reliable estimate but only an upper bound for the raft size: the
STED measurements indicated that, for the plasma membranes of mammalian cells,
the raft diameter does not exceed 20 nm [31]. The search for rafts in biological
membranes as pursued with different experimental techniques has been critically
reviewed in [33].
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2.3 Intramembrane Domains Arising from Protein Clusters

In contrast to lipid phase domains, the formation of intramembrane domains via
the clustering of membrane proteins is frequently observed in vivo. One example is
provided by clathrin-dependent endocytosis which is used to internalize membrane-
bound receptors as well as cargo such as receptor-bound ligands or nanoparticles.
During this process, a strongly asymmetric membrane domain is formed with
receptors or receptor–ligand complexes on its outer (exoplasmic) face and a thick
protein coat consisting of adaptor proteins and clathrin triskelions on its inner
(cytoplasmic) face. Therefore, clathrin-dependent endocytosis can be understood as
a domain-induced budding process that is governed by the membrane’s spontaneous
curvature. When the endocytic vesicles contain nanoparticles or other types of
cargo, the uptake of this cargo becomes maximal at a certain, optimal cargo size
[34] as experimentally observed for the uptake of gold nanoparticles by HeLa cells
[35, 36]. The mechanism of domain-induced budding should also be responsible
for membrane budding arising from the clustering of Shiga toxin [37] and from the
sequential adsorption of ESCRT proteins [38].

3 Segmentation of Membranes by Heterogeneous
Environments

As we move along a biological membrane, we typically encounter changes in
the molecular composition of the aqueous environment and, thus, changes in the
local interactions between this environment and the membrane molecules. One
interesting example is provided by the interactions between the plasma membrane of
a eukaryotic cell and its cytoskeletal cortex. Because different membrane molecules
differ in their affinity to the cytoskeletal proteins, the membrane is partitioned into
different segments in which certain lipids and/or membrane proteins are enriched or
depleted.

3.1 Lateral Diffusion in Cell Membranes

This ambience-induced segmentation of the plasma membrane can be revealed
by studying the lateral diffusion of the membrane molecules using single particle
tracking [39–42], see Fig. 2. This figure displays a typical diffusive trajectory of
a single gold nanoparticle with a diameter of 40 nm. The particle was coated
by transferrin and bound to transferrin receptors within the plasma membrane
of a fibroblast [39]. Each color in Fig. 2 represents the confined diffusion of the
nanoparticle within a certain membrane segment until the particle escapes to an
adjacent segment where it again undergoes confined diffusion, etc. In this example,
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Fig. 2 Diffusive motion of a transferrin-coated gold particle bound to transferrin receptors on
the plasma membrane of a fibroblast [39]. The membrane-bound particle undergoes confined
diffusion in separate membrane segments, corresponding to the different colors, until it escapes
to an adjacent segment. The average size of these segments was 280 nm, the average residence
time of the particle in one of these segments was 29 s

the membrane segments had an average radius of 280 nm and the particles remained
within one of these segments for an average residence time of 29 s.

The confined diffusion implies that the complex of nanoparticle and receptor
molecules encounters some obstacles that prevent its free lateral diffusion. In fact,
two types of obstacles have been proposed [40, 42]. First, cytoskeletal proteins that
are immobile over the diffusive time scales may act as “corrals” or “fences” for
diffusing membrane proteins that have an ectodomain protruding into the cytosol.
Second, the cytoskeletal cortex may also directly bind transmembrane proteins and
these transiently bound proteins can then act as “rows of pickets” that impede even
the diffusion of lipid molecules in the outer leaflet of the bilayer membrane. More
recent studies have corroborated the influence of the actin cortex on the lateral
diffusion of membrane-anchored receptors. While the diffusion of some receptors
was confined to the voids of the actin–myosin meshwork [43, 44], other receptors
were observed to undergo quasi-one-dimensional diffusion, reflecting attractive
interactions between the latter receptors and the meshwork [45].

3.2 Ambience-Induced Segmentation of Membranes

The skeleton-induced partitioning of cell membranes represents an important but
relatively complex example for ambience-induced segmentation of membranes.
Much simpler examples are provided by adhering vesicles, hole- or pore-spanning
membranes, and membranes supported by chemically patterned surfaces [46, 47].
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In these latter systems, the membrane molecules are exposed to two different envi-
ronments which generate different molecular fields within the adjacent membrane
segments. Likewise, vesicle–vesicle adhesion combined with vesicle–substrate
adhesion can easily lead to ambience-induced partitioning of a vesicle membrane
into more than two segments [48]. For a one-component membrane, the different
segments will exhibit different molecular densities which are necessarily small
and, thus, difficult to detect experimentally. For a multicomponent membrane, the
different segments will also differ in their molecular composition. It then follows
from general theoretical considerations that phase domains can only form in one of
the membrane segments but not in several segments simultaneously [46, 47].

3.3 Impeded Formation of Intramembrane Domains

The environment of a cell membrane is rather heterogeneous, and the effective
molecular fields acting on the membrane molecules change on nanoscopic scales.
The skeleton-induced membrane segmentation as probed by single particle tracking
(Fig. 2) implies that we can distinguish at least two types of membrane segments,
contact segments that interact with the cytoskeletal proteins and noncontact seg-
ments that do not experience such interactions. However, different contact segments
will, in general, be exposed to cytoskeletal structures that differ in their molecular
composition of actin-binding proteins [49, 50] and noncontact segments involve
additional supramolecular structures such as the protein scaffolds formed during
clathrin-dependent endocytosis that have a lifetime in the range between 20 and
80 s [51, 52]. Thus, cell membranes are expected to be partitioned into many distinct
membrane segments that are exposed to different molecular environments. If lipid
phase domains form in such a cell membrane, this domain formation is necessarily
restricted to one of the membrane segments and, thus, hard to detect [48]. In the
limiting case in which the environmental heterogeneities of the cell membrane act
as long-lived random fields, these heterogeneities would completely destroy domain
formation and phase separation, in analogy to the two-dimensional Ising model with
random fields [53–55].

4 Emergence of Membrane Curvature on Nanoscopic Scales

Because of their fluidity, biomembranes are rather flexible and can easily change
their shape. Indeed, one fascinating aspect of membranes and vesicles is that they
can attain many different nonspherical shapes. When viewed under the optical
microscope, these shapes appear to be rather smooth, see the examples in Fig. 1.
Therefore, on the micrometer scale, membranes can be described as smoothly
curved surfaces and then characterized by their curvature. However, this smoothness
does not persist to molecular scales, i.e., when we resolve the molecular structure of
a bilayer membrane as in Fig. 3.
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Fig. 3 Emergence of membrane curvature in molecular dynamics simulations of a tensionless
membrane [56]. The lipid bilayer has a thickness of about 4 nm, the smallest curvature radius of its
midsurface (red) was observed to be about 6 nm. For comparison, two circles (broken lines) with a
radius of 6 nm are also displayed

4.1 Basic Aspects of Membrane Curvature

Because membranes are immersed in liquid water, each lipid and protein molecule
undergoes thermal motion with displacements both parallel and perpendicular to
the membrane. The perpendicular displacements represent molecular protrusions
that roughen the two interfaces bounding the membrane, see Fig. 3. Therefore, in
order to characterize a lipid/protein bilayer by its curvature, one has to consider
small membrane patches and to average over the molecular conformations within
these patches. The minimal lateral size of these patches can be determined from
the analysis of the bilayer’s shape fluctuations and was found, from molecular
dynamics simulations of a one-component lipid bilayer, to be about 1.5 times the
membrane thickness, see Fig. 3 [56]. For a membrane with a thickness of 4 nm, this
minimal size is about 6 nm. Because such a membrane patch contains 80–100 lipid
molecules, membrane curvature should be regarded as an emergent property arising
from the collective behavior of a large number of lipid molecules.

4.2 Tensionless States of Membranes

The curvature just discussed applies to the midsurface of the bilayer membrane, i.e.,
to the surface between the two leaflets of the bilayer. Furthermore, for a membrane
segment with midsurface area A and bending rigidity κ , curved conformations as
in Fig. 3 are only possible if the membrane is “tensionless” in the sense that the
mechanical membrane tension as obtained from the stress profile across the bilayer
[57] is small compared to κ/A. For the example displayed in Fig. 3, the latter
tension scale is found to be κ/A = 0.08 mN/m. Such tensionless states, which
represent the natural reference states of the membranes, can be used to determine
the bending rigidity from the undulation spectrum [56, 58–60] and the Gaussian
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curvature modulus from the stress profile [61, 62], and the spontaneous curvature
induced by the interactions with small solutes such as ions or monosaccharides
[63, 64]. Attractive interactions between the solutes and the membrane lead to
adsorption layers adjacent to the two leaflets, repulsive interactions to depletion
layers. The spontaneous curvatures generated by depletion and adsorption have
opposite signs [65]. Furthermore, both attractive and repulsive membrane-solute
interactions generate a spontaneous curvature that varies linearly with the solute
concentration difference between the exterior and interior solution [63, 64], in
agreement with our analytical theories.

4.3 Simulations of More Complex Membrane Processes

During the last 20 years, molecular simulations of membranes have become a rather
popular tool. Indeed, up to 1995, about 300 publications had been published on
the molecular dynamics of membranes but, during the last 20 years, the same
topic was addressed in about 25,000 publications. Using such simulations, one
can study molecular remodelling processes such as membrane fusion [66–70] or
membrane adhesion via membrane-anchored receptors and ligands [71–73]. In
addition, simulation snapshots provide useful insights into the typical molecular
conformations of the membrane systems and allow to compare the free energies of
different conformations. One recent example is provided by the adsorption of PEG
molecules onto liquid-ordered and liquid-disordered membranes [74].

5 Local Curvature Generation and Spontaneous Curvature

During the 1990s, I thought about a variety of ways to generate membrane curvature
locally by membrane-bound macromolecules and adhesive nanoparticles. One sim-
ple example is provided by a flexible polymer that is anchored with one of its ends to
the membrane, see Fig. 4a [75, 76]. Such an anchored polymer generates curvature
by entropic forces because it can increase its configurational entropy by curving the
membrane away from it. Another simple example are adhesive nanoparticles that
are partially engulfed by the membrane, see Fig. 4b [34, 65, 77]. Here, the rigid
particle imposes the curvature of its surface directly onto the membrane provided
that the particle size is large compared to the membrane thickness. Curvature can
also be generated by the adsorption of nanoparticles that are small compared to
the membrane thickness, see Fig. 4c [65, 78]. In fact, small adhesive solutes with a
diameter below 1 nm can generate spontaneous curvatures as large as 1/(20 nm) as
recently shown by molecular dynamics simulations [63]. In these simulations, the
adsorbed solutes increased the molecular area per lipid. The opposite effect is also
possible, arising from the condensation of the lipid head groups. The two effects
lead to opposite signs of the spontaneous curvature as proposed for the adsorption
of calcium cations onto negatively charged membranes [80, 81].
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Fig. 4 Different mechanisms for local generation of membrane curvature: (a) Flexible polymer
with one end anchored to the membrane [75] such as biotinylated DNA (red) linked to membrane-
anchored avidin (orange) [76]; (b) spherical nanoparticle (orange) with an adhesive surface
(red) partially engulfed by the membrane [34, 65, 77]. The particle radius is about 2.5 times
the membrane thickness; (c) asymmetric adsorption of solutes that are small compared to the
membrane thickness [63, 65, 78]; (d) N-BAR-domain protein with a curvature radius of about
11 nm [79] bound to the membrane; (e) BAR-mimetic nanoparticle with a large adhesive surface
domain (red) that generates curvature via an induced-fit mechanism; and (f) BAR-mimetic
nanoparticle with relatively small adhesive surface domains (red) which generate curvature via
conformational selection [48]. Note that the sign of the local curvature in (b) is opposite to the sign
of the local curvature in all other panels

5.1 Local Curvature Generated by Membrane-Bound Proteins

At the end of the 1990s, several labs started to use a simple experimental criterion
to assess the curvature-generating capabilities of certain proteins. This criterion
was based on the transformation of liposomes into tubular structures via protein
adsorption and was used to identify, in a qualitative manner, a variety of curvature-
generating proteins: N-BAR proteins such as amphiphysin [79] and endophilin
[82], see Fig. 4d, F-BAR proteins such as pacsin/syndapin [83], and other proteins
involved in endocytosis such as epsin [84]. The discovery of proteins that generate
membrane curvature provides another rather interesting connection between bio-
physics and molecular cell biology.

The membrane-binding proteins are usually quite rigid and can be regarded
as adhesive nanoparticles with two characteristic properties: (i) their shape is
typically nonspherical and often banana-like or convex–concave; and (ii) their
surface contains a more or less complex pattern of adhesive and nonadhesive surface
domains. Thus, the membrane-binding proteins can be regarded as nonspherical
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Janus-like nanoparticles. If the planar membrane can bind to some of the adhesive
surface domains of the protein, this protein generates membrane curvature via an
induced-fit mechanism, see Fig. 4e. In contrast, if the adhesive surface domains can
only be reached by an appropriately curved membrane as in Fig. 4f, the protein
senses and stabilizes membrane curvature via conformational selection [48].

5.2 From Local to Spontaneous Curvature

If the membrane is decorated by many bound solutes or “particles,” it will acquire
a certain spontaneous curvature that depends both on the local particle-induced
curvature and on the particle coverages on the two leaflets of the bilayer membrane
[85, 86]. Thus, if a single particle that is bound to the outer leaflet of the bilayer
induces the local curvature M1 in a membrane patch of area A1, the spontaneous
curvature m is given by

m = A1M1(�ex − �in) (1)

where the coverages �ex and �in are defined by the numbers of particles bound to
the outer and inner leaflets per unit area. The product A1M1 = ∫

dA Msi can be
determined by first calculating the local, position-dependent mean curvature Msi
as generated by a single particle bound to the outer leaflet of an asymptotically
flat membrane [85]. In contrast to other elastic membrane parameters such as the
bending rigidity or the area compressibility modulus, the spontaneous curvature
can vary over more than three orders of magnitude, from the inverse size of giant
vesicles, which is of the order of 1/(50 μm), to half the inverse membrane thickness,
which is of the order of 1/(10 nm).

5.3 Short History of Spontaneous Curvature

The spontaneous (or preferred) curvature m considered here describes the local
bilayer asymmetry arising from the intermolecular interactions. Such a curvature
was first discussed by Bancroft for surfactant monolayers in water–oil emulsions
[87, 88]. It was also included by Frank, as the so-called splay term, in his theory
for the curvature elasticity of liquid crystals [89]. In the context of lipid bilayers,
spontaneous curvature as a local elastic parameter was first considered by Helfrich
[90], in analogy to the liquid crystal case. The corresponding bending energy of the
membrane is now known as the spontaneous curvature model [91].

If the membrane molecules cannot undergo flip-flops between the two leaflets,
the number of molecules is fixed within each leaflet, and the quenched difference
between these two numbers leads to a preferred area difference between the
leaflets. This constraint was originally considered by Evans [92], incorporated
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into the bilayer-coupling model of Svetina and Zeks [91, 93], and generalized in
terms of the area-difference-elasticity model by Wortis and coworkers [94, 95]. As
shown in these latter studies, the stationary shapes of the area-difference-elasticity
model are also stationary shapes of the spontaneous curvature model provided that
one defines an effective spontaneous curvature that includes a nonlocal, shape-
dependent contribution. The latter contribution can be calculated explicitly for limit
shapes that consist of two spherical membrane segments connected by a closed
membrane neck [2]. Furthermore, the constraints on the area difference should
be irrelevant if the bilayer membranes contain molecules such as cholesterol that
can easily undergo flip-flops and, thus, relax local stresses induced by the bending
deformations [96, 97]. In addition, even in the absence of flip-flops, the area-
difference-elasticity term represents a small correction term whenever the (local)
spontaneous curvature m is large compared to the inverse vesicle size. The latter
separation of length scales applies, in particular, to the processes of nanotube
formation and particle engulfment as considered in the following.

5.4 Sign of Spontaneous Curvature

It is important to note that the spontaneous curvature can be positive or negative.
Within the spontaneous curvature model, the energy density of a membrane segment
is proportional to (M − m)2 which depends on the mean curvature M of this
segment. It then follows that the spontaneous curvature is positive (negative) if the
segment prefers to attain a positive (negative) mean curvature M . Furthermore, we
need a convention to distinguish the two possible signs of the mean curvature in
a unique manner. Here and below, I use the convention that the mean curvature
M of a membrane segment is positive if it bulges towards the exterior aqueous
compartment and negative if it bulges towards the interior compartment. Thus, if
the exterior compartment in Fig. 4 is located on top of the membrane segments, the
mean curvature of these segments is positive for panels (a) and (c)–(f) but negative
for panel (b).

6 Two Mechanisms for the Formation of Membrane
Nanotubes

Now, consider a membrane segment with area A and assume that this segment has a
spontaneous curvature m that is large compared to 1/

√
A. The membrane can then

minimize its free energy by forming a long tube with a diameter of the order of
1/|m|. More precisely, it may form a necklace-like tube consisting of small spheres
with radius 1/|m|, connected by closed membrane necks, a cylindrical tube with
radius 1/(2|m|), or unduloids that interpolate between the necklace and the cylinder
[74, 78].
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6.1 Spontaneous Tubulation of Membranes

Recent experimental studies on supported lipid bilayers and giant vesicles have
indeed shown that unilamellar membrane systems can undergo spontaneous tubu-
lation, i.e., can form membrane tubules or nanotubes without the application of
external forces. In the case of supported lipid bilayers, the tube formation was
induced by the adsorption of antimicrobial peptides [98, 99]. In the case of giant
vesicles, spontaneous tubulation was observed for a variety of binary and ternary
lipid mixtures when the two leaflets of the vesicle membrane were exposed to
aqueous polymer solutions that differed in their composition [74, 100].

Depending on the phase behavior of the aqueous polymer solution, the GUV
membranes form different patterns of flexible nanotubes as shown in Fig. 5 for the
liquid-disordered phase of a three-component membrane. All tubes were observed
to be in-tubes protruding into the interior of the vesicles. For the liquid-disordered
membranes, the morphology of the tubes could not be resolved because the tube
diameter was below the optical diffraction limit. However, short and long tubes are
theoretically predicted to be necklace-like and cylindrical, respectively [74].

Fig. 5 Patterns of flexible nanotubes formed by liquid-disordered membranes exposed to aqueous
solutions of PEG and dextran. All tubes are in-tubes in the sense that they protrude into the vesicle
interior: (a) Disordered pattern of in-tubes freely suspended within the PEG-rich droplet enclosed
by the vesicle; and (b) Thin layer of tubes adhering to the interface between the PEG-rich and the
dextran-rich phase, with some short-range orientational order arising from crowding. The diameter
of the tubes is below the diffraction limit but the tubes are theoretically predicted to be necklace-
like and cylindrical in panels (a) and (b), respectively [74]. Scale bars: 2 μm
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6.2 Necklace-to-Cylinder Transformation of Nanotubes

In fact, according to our theory, the tubes undergo a novel shape transformation
from necklace-like to cylindrical tubes at a certain critical tube length, consistent
with experimental observations for liquid-ordered membranes. Using the parameters
of the liquid-disordered membranes, the tubes in Fig. 5a, b are predicted to be
necklace-like and cylindrical, respectively. Furthermore, the spontaneous curvature
of all tubes shown in Fig. 5 is about 1/(125 nm) as deduced via three distinct and
independent methods of image analysis [74].

The presence of a necklace–cylinder transformation at a critical tube length can
be understood as follows. Both the necklace-like tube and the main body of the
cylindrical tube have zero bending energy. The two endcaps of the cylindrical tube
contribute a bending energy of the order of 2πκ . Therefore, the bending energy
of the membrane disfavors the cylindrical tube. On the other hand, the necklace-
like tube has a larger volume compared to the cylindrical one and the osmotic
pressure difference across the membranes acts to compress the tubes when they
protrude into the interior of the vesicles. Therefore, such an in-tube can lower its
energy by reducing its volume which favors the cylindrical tube. The volume work
is proportional to the tube length whereas the bending energy of the endcaps is
independent of this length. It then follows from the competition between these two
energies that short tubes are necklace-like whereas long tubes are cylindrical. Using
superresolution microscopy such as STED, it should be possible to directly resolve
the tube morphologies underlying the tube patterns in Fig. 5.

6.3 Increased Robustness of Tubulated Vesicles

The nanotubes arising from spontaneous tubulation provide the mother vesicle with
a large reservoir of membrane area. Therefore, the mother vesicle can respond
to mechanical perturbations by exchanging area with the tubes and then behaves
much like a liquid droplet with variable surface area. This increased mechanical
robustness of the mother vesicle has been recently demonstrated by micropipette
aspiration [101]. The initial aspiration for small suction pressure directly reveals the
spontaneous tension [78]

σ ≡ 2κm2 (2)

of the vesicle membranes which represents the intrinsic tension scale of a membrane
with bending rigidity κ and spontaneous curvature m. When the suction pressure
reaches a σ -dependent critical value, the tubulated vesicles start to flow into the
micropipette, thereby behaving like liquid droplets with an effective interfacial
tension that is provided by the spontaneous tension σ [101].
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6.4 Force-Induced Tubulation of Membranes

A second, quite different mechanism for the formation of membrane nanotubes is
provided by external forces that are locally applied to the membranes of cells and
giant vesicles. In order to generate such forces, one has to “grab” the cell or vesicle,
e.g., by an adhesive surface or by a micropipette, and then apply some localized
force which often acts onto a membrane-bound bead or nanoparticle. A variety
of such force-generating methods have been used over the years: hydrodynamic
flow applied to adhering cells [102–104], aspirated cells [105, 106], aspirated
vesicles [107, 108], and vesicles attached to the tip of a micro-rod [109]; relative
displacement of two micropipettes, one of which holds a membrane-bound bead
while the other aspirates a cell [105] or GUV [110, 111]; gravity acting on a bead
attached to an aspirated vesicle [112]; laser traps acting on a bead attached to cells
[113–115], aspirated vesicles [80, 116, 117], and adhering vesicles [118]; as well as
magnetic tweezers acting on a bead bound to aspirated vesicles [119] and adhering
cells [120]. In addition, networks of membrane tubules have been generated by
molecular motors moving along microtubules [121–124] as well as by manipulating
adhering vesicles by micropipettes [125, 126]. A particularly instructive set-up
for force-induced tubulation is provided by micropipette aspiration of a GUV
combined with a membrane-bound nanobead to which one can apply a pulling force
f via magnetic tweezers [119] or optical traps [80, 116, 117], as schematically
depicted in Fig. 6. This set-up will now be considered in order to discuss the
interplay between spontaneous and force-induced tubulation in a quantitative
manner.

Rsp
micropipette

GUV

nanotube

bead

optical trap

f

Fig. 6 Pulling a membrane nanotube attached to a bead from a giant unilamellar vesicle (GUV)
by an optical trap: The weakly curved GUV is aspirated by the micropipette; the right end of the
strongly curved nanotube experiences the pulling force f arising from the optical trap. The force
f is taken to be positive for an out-tube as shown here and negative for an in-tube
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7 Interplay Between Spontaneous and Force-Induced
Tubulation

7.1 Tube Width Determined by Composite Curvature

In general, the diameter of a membrane nanotube depends both on the spontaneous
curvature m and on the pulling force f [78]. It will be convenient to take the force
f to be positive and negative if it points towards the exterior and interior aqueous
solution, respectively (this convention is different from the one used in [78], where
f described the absolute value of the pulling force for both pulling directions). To
be specific, let us consider a cylindrical out-tube that protrudes from a GUV with a
large spherical segment of radius Rsp as in Fig. 6. We can then distinguish different
parameter regimes depending on the relative magnitudes of the composite curvature

mcom ≡ m + f

4πκ
and 1/Rsp. (3)

The composite curvature mcom represents the superposition of the spontaneous
curvature m with the rescaled pulling force f/(4πκ) and directly describes the
interplay of the two tubulation mechanisms. Indeed, the composite curvature can
be positive or negative depending on the sign of m and f . As mentioned before, I
use the sign convention that the spontaneous curvature m of a membrane segment is
positive if this segment prefers to bulge towards the exterior compartment.

If the composite curvature is positive and much larger than the inverse vesicle
radius, i.e., if mcom � 1/Rsp, the vesicle membrane can form cylindrical out-tubes
with the mean curvature [78]

Mcy ≈ mcom − 1

4Rsp
= m + f

4πκ
− 1

4Rsp
(4)

for small values of 1/(Rsp mcom) as follows from the Euler–Lagrange equation (or
shape equation) of the spontaneous curvature model and the force balance at the
tube end.1 Here and below, the symbol ≈ stands for “asymptotically equal” in the
limit in which a certain parameter becomes small (or large). The relation (4) also
applies to cylindrical in-tubes which form for negative composite curvatures with

1More precisely, the relation (4) is obtained for the mechanical equilibrium between a spherical
membrane segment with mean curvature Msp = 1/Rsp and a cylindrical segment with mean
curvature Mcy, coexisting on the same vesicle, by combining the two Euler–Lagrange equations
for these membrane segments with the force balance at the tube end, see [78].



Understanding Membranes and Vesicles 19

mcom � −1/Rsp. In both cases, the tube radius is given by

Rcy ≈ 1

2|mcom| = 1
∣
∣
∣2m + f

2πκ

∣
∣
∣

for |mcom| � 1/Rsp. (5)

Thus, in this parameter regime, the tube radius Rcy is directly determined by
the composite curvature mcom, i.e., by the combined action of the two tubulation
mechanisms provided by spontaneous curvature m and pulling force f . If m and
f have the same sign, these two mechanisms act synergistically whereas they
act antagonistically if m and f have opposite sign. In both cases, the radius is
primarily determined by the spontaneous curvature in the parameter regime with
|m| � |f |/(4πκ) and by the pulling force for |f | � 4πκ |m|.

7.2 Composite Curvature and Total Membrane Tension

The mechanical equilibrium between a cylindrical tube and a large spherical mother
vesicle [78] also implies the relation

mcom = m + f

4πκ
≈ ±

(
�̂

2κ

)1/2

− 1

4Rsp
for large Rsp/Rcy (6)

where the plus and minus sign applies to out- and in-tubes, respectively, with the
total membrane tension

�̂ ≡ � + σ = � + 2κm2 (7)

which represents the superposition of the mechanical tension � and the spontaneous
tension σ as defined in (2).

It has been recently shown that it is possible to pull both out- and in-tubes via an
optical trap from the same aspirated GUV [108, 127]. One can then measure the two
forces fex and fin that generate out- and in-tubes for the same aspiration pressure.
Both cases are described by (6) with f replaced by fex for the plus sign and by fin
for the minus sign. The sum of these two relations leads to the simple expression

m ≈ −fex + fin

8πκ
− 1

4Rsp
(8)

for the spontaneous curvature m. In this way, one can determine the spontaneous
curvature m by force-induced tubulation regardless of the membrane tension. For
symmetric bilayers as studied in [108], the spontaneous curvature vanishes and the
relation (8) implies that fin = −fex. For GUVs containing a binary mixture of
POPC and GM1, on the other hand, the out- and in-pulling forces, fex and fin, were
observed to have different magnitudes, i.e., fin �= −fex which implies a nonzero
spontaneous curvature [127].
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7.3 Total Membrane Tension Versus Aspiration Tension

The relationship between the composite curvature and the total membrane tension
as given by (6) involves the total membrane tension �̂ defined in (7). In some
experimental studies, [80, 117] the relation (6) was used with the total membrane
tension replaced by the aspiration tension

�asp ≡ (Pex − Ppip)Rpip

2(1 − Rpip/Rsp)
. (9)

which can be directly obtained from measured values of the suction pressure
Pex − Ppip of the micropipette and the radii Rpip and Rsp of the pipette and the
nonaspirated membrane segment. The expression (9) follows from the Laplace
equation for the spherical endcap of the fully aspirated membrane tongue with
mean curvature Mcap = 1/Rpip, see, e.g., [128]. However, the Laplace equation
represents a truncation of the full Euler–Lagrange (or shape equation) for a spherical
membrane segment. As a consequence, the total membrane tension �̂ in (6) is not
equal to the aspiration tension �asp but satisfies, for Mcap = 1/Rpip, the more
general relation

�̂ = �asp + ��̂ (10)

with the additional tension term

��̂ ≡ 2κm

(
1

Rpip
+ 1

Rsp

)

. (11)

As an example, let us consider a GUV membrane with bending rigidity κ =
10−19 J and spontaneous curvature m = m̃/μm. Let us further assume that the GUV
is aspirated by a micropipette of radius Rpip = 3 μm and that the nonaspirated
membrane segment forms a spherical segment of radius Rsp = 6 μm. The additional
tension term ��̂ then has the magnitude 0.1m̃ μN/m which is equal to 1 μN/m for
m̃ = 10 or m = 1/(100 nm). The magnitude of ��̂ should be compared to the
smallest values of the aspiration tension which are also of the order of 1 μN/m for
the considered geometry, corresponding to the smallest accessible suction pressures
of about 1 Pa. Therefore, we conclude that the additional tension term ��̂ can only
be ignored for suction pressures that are much larger than 1 Pa and for spontaneous
curvatures m that are much smaller than 1/(100 nm).

7.4 Different Parameter Regimes

As emphasized before, both the spontaneous curvature m and the pulling force f can
be positive or negative. Irrespective of the signs of m and f , the expressions (4)–(6)
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are valid as long as
∣
∣
∣m + f

4πκ

∣
∣
∣ � 1/Rsp. The latter inequality is not fulfilled: (i)

if both |m| and |f |/(4πκ) are smaller than or comparable to the inverse vesicle
radius 1/Rsp or (ii) if m and f/(4πκ) have opposite sign and (almost) cancel
each other. In case (i), the vesicle membrane cannot form nanotubes at all. In
case (ii), nanotubes are still possible but only if the curvature ratio |m|/Msp =
|m|Rsp � 103. In the latter case, the mean curvature of the tube behaves as
Mcy ≈ ±(|m|M2

sp/4)1/3 and, thus, depends strongly on the vesicle size as follows
from the theory in [78]. The different regimes for the interplay between spontaneous
and force-induced tubulation can be probed experimentally by first pulling a tube
from a GUV membrane with no spontaneous curvature and subsequently generating
a positive or negative spontaneous curvature in this membrane, e.g., by adsorption
of macromolecules or nanoparticles.

8 Engulfment of Nanoparticles by Membranes

One process for which the spontaneous curvature represents a key parameter is the
engulfment of nanoparticles by membranes [34]. These particles are widely used to
deliver drugs, imaging agents, and toxins to biological cells [129–131]. The cellular
uptake of such a particle requires the adhesion of this particle to the cell membrane
and its subsequent engulfment by this membrane, a process that is governed by the
competition between particle adhesion and membrane bending [34, 65, 77]. The
same process is misused by viruses that enter the host cell by receptor-mediated
endocytosis and by enveloped viruses that exit the host cell by exocytosis.

8.1 Nanoparticles in Contact with Membranes

An adhesive nanoparticle that comes into contact with a membrane can remain in
a free, nonadhering state or can become engulfed by the membrane. In the latter
case, the membrane may cover only part of the particle surface or engulf the particle
completely. These three different states of the nanoparticle are illustrated in Fig. 7. In
order to understand the energetics of these states, it is rather instructive to consider
the stability (i) of the free state against the onset of membrane spreading and
(ii) of the completely engulfed state against the opening of the closed membrane
neck. This stability analysis can be performed in a systematic manner and leads
to two relatively simple stability relations [34] which have a number of interesting
consequences [132–134] as briefly summarized in the following subsections.

The stability of the free, nonadhering state in Fig. 7a depends only on three
parameters: the mean curvature M of the membrane segment that comes into contact
with the particle, see Fig. 7a; the particle size Rpa; and the adhesion length
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Fig. 7 Three possible states of a nanoparticle (orange) in contact with a membrane segment (blue):
(a) free, nonadhering state F in which the membrane does not spread over the particle surface in
spite of the attractive membrane–particle interactions; (b) partially engulfed state P in which the
membrane covers some part of the particle surface; and (c) completely engulfed state C in which
the membrane covers the whole particle surface and forms a closed neck that connects the bound
membrane segment to the unbound membrane of the mother vesicle. The particles originate from
the exterior aqueous solution corresponding to endocytic engulfment. The membrane segment in
(a) has mean curvature M , and the unbound membrane segment in (c) has mean curvature M ′. All
bound membrane segments have the mean curvature −1/Rpa [34]

RW ≡ √
2κ/|W | (12)

which represents a material parameter that is independent of the membrane geome-
try and encodes the competition between the bending rigidity κ of the membrane and
the adhesive strength |W | of the membrane–particle interactions [135]. Depending
on the chemical composition of the membrane and the nanoparticle, the adhesion
length RW can vary from about 10 nm for strong adhesion to a couple of microme-
ters for ultra-weak adhesion [34]. The adhesion length RW provides the basic length
scale for engulfment processes and the most interesting engulfment behavior is
found for nanoparticle sizes of the order of RW .

8.2 (In)stability of Free Particle State and Onset of Adhesion

To be specific, consider the endocytic engulfment of spherical nanoparticles of
radius Rpa dispersed in the exterior aqueous compartment. When such a particle
comes close to a membrane segment with mean curvature M ,2 this segment does
not adhere to the particle, even in the presence of attractive membrane–particle
interactions, if [34, 132]

M ≥ Mfr ≡ − 1

Rpa
+ 1

RW

(no adhesion, endocytic process), (13)

2As explained before, the mean curvature M of a membrane segment is taken to be positive
(negative) if this segment bulges towards the exterior (interior) compartment.
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i.e., if the membrane’s mean curvature M exceeds the threshold value Mfr that
depends on the particle radius and the adhesion length. The stability criterion (13)
implies that the free, nonadhering particle state is stable for all particle sizes if the
membrane curvature M ≥ 1/RW , i.e., a membrane segment with a sufficiently large
positive curvature M does not start to spread onto a particle of any size. Note that the
threshold value Mfr is independent of the spontaneous curvature m of the membrane,
which is somewhat counterintuitive. On the other hand, if the mean curvature is
below this threshold value and within the range [34, 132]

− 1

Rpa
< M < Mfr = − 1

Rpa
+ 1

RW

(onset of adhesion, endocytic process),

(14)

the membrane segment starts to spread over the particle surface. The first inequality
−1/Rpa < M ensures that membrane segment and particle can come into direct
contact without intersecting each other, compare Fig. 8c1. Note that the curvature
range as given by (14) becomes rather small if the adhesion length RW is large
compared to the particle size Rpa. In such a situation, one has to fine-tune the
parameters in order to observe the onset of adhesion experimentally. The stability
relations (13) and (14) are illustrated in Fig. 8a–c.

Fig. 8 Endocytic engulfment of nanoparticles (orange) originating from the exterior solution: (a)–
(c) The top row illustrates the (in)stability of the free, nonadhering particle state for curvature
threshold Mfr = 0, see (13) and (14). The free state is stable in (a) with membrane curvature
M > 0, marginally stable in (b) with M = 0, and unstable in (c1) with M < 0. The instability of
(c1) leads to the onset of adhesion and to the partially engulfed state in (c2). (d)–(f) The bottom
row illustrates the (in)stability of the completely engulfed state with a closed membrane neck for
curvature threshold Mce = 0, see (16) and (15). The latter state is stable in (d) with curvature
M ′ > 0 of the unbound membrane, marginally stable in (e) with curvature M ′ = 0, and unstable
in (f1) with M ′ < 0. The instability of (f1) leads to an opening of the membrane neck and to the
partially engulfed state in (f2)
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8.3 (In)stability of Completely Engulfed Particle State

The stability of the completely engulfed state in Fig. 7c depends on four parameters:
in addition to the three parameters that are also relevant for the onset of adhesion,
the stability of the completely engulfed state depends on the spontaneous curvature
m as well. Now, consider a completely engulfed state with a closed membrane neck
that connects the bound membrane segment in contact with the nanoparticle to the
adjacent segment of the unbound vesicle membrane. The latter membrane segment
has the mean curvature M ′ as in Fig. 7c. The closed membrane neck starts to open
up if M ′ satisfies the inequality [34, 132]

M ′ < Mce ≡ 2m + 1

Rpa
− 1

RW

(neck opening, endocytic process), (15)

i.e., if the mean curvature M ′ is below the threshold value Mce that depends on
the spontaneous curvature, the particle size, and the adhesion length. The instability
criterion (15) implies that the completely engulfed state is unstable for all particle
sizes if the membrane curvature M ′ < 2m − 1/RW which is always fulfilled for a
sufficiently large negative value of M ′. On the other hand, the closed neck is stable
if the curvature M ′ is above the threshold value Mce and within the range [34, 132]

Mce = 2m + 1

Rpa
− 1

RW
≤ M ′ <

1

Rpa
(closed neck, endocytic process). (16)

The last inequality M ′ < 1/Rpa ensures that the vesicle membrane and the particle
do not intersect each other.

In biological cells, many processes that lead to the formation of membrane buds
with closed necks involve proteins that generate constriction forces onto the necks
[133]. In the case of endocytosis, proteins such as dynamin [136] or ESCRTs
[38, 137, 138] are typically involved in neck closure and fission. In phagocytic
engulfment by macrophages, a contractile ring composed of actin and myosin
motors is formed around the neck [139]. Now, if a spherical nanoparticle with
radius Rpa, adhering to the outer leaflet of the vesicle membrane, is fully engulfed
by the membrane, the bound membrane segment forms a spherical bud with mean
curvature Mbud = −1/Rpa. In the presence of a radial constriction force f > 0 that
acts to decrease the neck radius, the closed neck is stable if [133]

f + feng ≥ 0 with feng ≡ 4πκ

(

M ′ + Mbud + 1

RW

− 2m

)

(17)

which generalizes the stability condition (16) and describes the enhanced neck
stability in the presence of constriction forces.
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Table 1 The (in)stabilities of the free state F and the completely engulfed state C as described
by the (in)stability conditions (13)–(16) define four engulfment regimes Fst, Cst, Bst, and Pst

State F Stable Unstable (Meta)stable Unstable

State C Unstable Stable (Meta)stable Unstable

Regime Fst Cst Bst Pst

8.4 Engulfment Regimes of Single Nanoparticles

When we combine the (in)stability conditions for the free particle states F as given
by (13) and (14) with the (in)stability conditions for the completely engulfed particle
states C as described by (15) and (16), we obtain four combinations which define
four different engulfment regimes,Fst, Cst, Bst, and Pst, as summarized in Table 1.

First, the engulfment regime Fst corresponds to a stable free state F and an
unstable completely engulfed state C as described by the combination of (13)
and (15). Second, the complete engulfment regime Cst is defined by an unstable
state F and a stable state C , i.e., by the combination of (14) and (16). Third, if
both the free and the completely engulfed states are stable, one has to combine the
stability relations (13) and (16) which leads to the bistable engulfment regime Bst.
Finally, the partial engulfment regime Pst is obtained by combining the instability
conditions (14) and (15) corresponding to the situation in which both the free and
the completely engulfed states are unstable.

The (in)stability conditions as given by (13)–(16) depend on the local mean
curvatures M and M ′, which characterize the membrane geometry close to the
nanoparticle, see Fig. 7, and on three material parameters, the particle size Rpa, the
adhesion length RW , and the spontaneous curvature m. In fact, close inspection of
these (in)stability conditions reveals that they depend on particle size and adhesion
length only via the contact mean curvature Mco ≡ 1/RW − 1/Rpa. Furthermore, in
the small particle limit, i.e., if the nanoparticles are much smaller than the vesicle
size, one may identify the local mean curvatures M and M ′ [132, 134]. In this
limit, one is left with a three-dimensional parameter space defined by the local mean
curvature M , the contact mean curvature Mco, and the spontaneous curvature m. The
different engulfment regimes can then be visualized by two-dimensional sections
through the three-dimensional parameter space [34, 132, 134, 140].

8.5 Engulfment Regimes and Local Energy Landscapes

The (in)stability relations as given by (13)–(16) are intimately related to the local
energy landscapes for engulfment as a function of an appropriate reaction coor-
dinate. Convenient reaction coordinates are the wrapping angle for axisymmetric
engulfment geometries [34, 77] and the area fraction of the membrane-covered
particle surface for non-axisymmetric geometries [133]. The engulfment regimes
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Fst are characterized by local energy landscapes with a single minimum at the free
state F and a single maximum at the completely engulfed state C . Likewise, the
complete engulfment regime Cst is described by local energy landscapes with a
single minimum at C and a single maximum at F . Within the bistable engulfment
regime Bst, the local energy landscapes exhibit two (meta)stable minima at the
particle states F and C separated by an energy barrier. Finally, within the partial
engulfment regime Pst, the only extrema of the local energy landscapes are
provided by a single minimum corresponding to a partially engulfed state P and by
maxima at the particle states F and C .

In the preceding discussion, we have implicitly assumed that the energy land-
scapes do not exhibit any additional minima or maxima. The latter feature is always
valid in the small particle limit [134]. In general, one may have additional satellite
minima close to the free or completely engulfed states as found by numerical energy
minimization for zero spontaneous curvature [140].

8.6 Exocytic Engulfment of Interior Nanoparticles

The (in)stability relations as given by (13)–(16) and the corresponding engulfment
regimes described in the previous subsection apply to endocytic engulfment of
exterior nanoparticles which are dispersed in the exterior aqueous solution and
adhere to the outer leaflet of the membranes. The corresponding relations for
exocytic engulfment of nanoparticles originating from the vesicle interior and
adhering to the inner membrane leaflet can be obtained by replacing M , M ′, and m

in (13)–(16) by −M , −M ′, and −m, i.e., by changing the sign of all curvatures that
appear in these relations. One then finds, in particular, that a membrane segment
with M < −1/RW does not adhere to any particle and that completely engulfed
states are impossible for an unbound membrane segment with M ′ > 2m + 1/RW ,
irrespective of the size of the particles.

8.7 Engulfment Patterns and Curvature-Induced Forces

The four stability relations (13)–(16) which define the four engulfment regimes
depend on the local mean curvatures M and M ′ of the membrane, with M = M ′
in the small particle limit. Therefore, when a nonspherical vesicle with variable
curvature M is exposed to many nanoparticles, the vesicle membrane can be
decomposed, in general, into several membrane segments that belong to different
engulfment regimes. As a consequence, nonspherical vesicles exhibit distinct
engulfment patterns corresponding to different combinations of the engulfment
regimes. However, not all combinations of the four engulfment regimes can be
present on a single vesicle but only 10 out of 15 such combinations [132].
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When a membrane-bound nanoparticle diffuses within a membrane segment that
belongs to the partial engulfment regime Pst, its binding energy depends on the
local mean curvature M of the membrane. This M-dependence of the binding energy
defines a global energy landscape for the diffusing particle, and the gradient of this
global energy landscape provides a curvature-induced force acting on the particle
[134]. As a consequence, the nanoparticle undergoes biased diffusion towards
membrane segments of lower or higher mean curvature, depending on whether the
particle adheres to the outer or inner membrane leaflet, respectively. The partial
engulfment of nanoparticles with a chemically uniform surface requires fine-tuning
of particle size and adhesiveness with respect to the properties of the membrane.
In contrast, Janus particles with one strongly adhesive and one nonadhesive surface
domain are always partially engulfed. Therefore, the curvature-induced forces that
have been predicted theoretically [134] should be directly accessible to experimental
studies when the vesicles are exposed to such Janus particles.

8.8 Further Aspects of Membrane-Nanoparticle Interactions

In the preceding subsections, spherical nanoparticles interacting with uniform
membranes have been considered. These membrane–particle systems are governed
by the (in)stability conditions (13)–(16) which lead to four engulfment regimes,
ten different engulfment patterns, and curvature-induced forces acting on partially
engulfed nanoparticles. Generalized (in)stability conditions have also been derived
for membranes with two types of intramembrane domains that differ in their
fluid-elastic properties [34]. These generalized conditions provide a quantitative
description for the nonmonotonic size dependence of clathrin-dependent endocy-
tosis as observed experimentally in [35, 36]. The (in)stability conditions can also
be extended to nonspherical particles [133] as studied in [141] by Monte-Carlo
simulations. Furthermore, for vanishing spontaneous curvature, another intriguing
effect has been observed in simulations: when the membrane–particle adhesion was
parametrized in terms of a short-ranged potential well, the nanoparticles were found
to assemble into linear aggregates that are enclosed by membrane in-tubes [142–
144].

9 Wetting of Membranes by Aqueous Droplets

My renewed interest in spontaneous curvature was triggered by the spontaneous
tube formation as observed in aqueous two-phase systems (Fig. 5). I first came
across these systems in 2001 when I gave a talk at Penn State and met Christine
Keating who was studying lipid vesicles in aqueous PEG-dextran solutions [145].
These solutions can undergo aqueous phase separation and then form PEG-rich and
dextran-rich droplets. Such aqueous two-phase systems have been frequently used
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in biochemical analysis and biotechnology to separate and purify biomolecules,
organelles, and membranes [146]. As explained in the present section, they also
provide insight into the wetting behavior of membranes and vesicles, a new research
topic which turns out to be rather interesting.

9.1 Transitions Between Distinct Wetting Morphologies

Two experimental methods have been used to induce aqueous phase separation of
PEG-dextran solutions within GUVs: temperature changes [145, 147] and osmotic
deflation [74, 100, 148, 149]. After the phase separation has been completed, the
vesicle contains two aqueous droplets consisting of the PEG-rich phase α and the
dextran-rich phase β, which are both separated by the membrane from the exterior
phase γ , see insets in Fig. 9. In general, we can distinguish three different wetting
morphologies for a membrane in contact with two aqueous phases α and β: the
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Fig. 9 Phase diagram and membrane wetting behavior of aqueous PEG-dextran solutions as a
function of the weight fractions wp and wd for the two polymers. The critical demixing point
(orange dot) is located at (wd,cr, wp,cr) = (0.0451, 0.0361) [74]. The coexistence region of the
PEG-rich phase α and the dextran-rich phase β consists of two subregions, CW (pink) and PW
(turquois). In the pink CW subregion close to the critical point, the membrane is completely wetted
by the PEG-rich phase α which encloses the dextran-rich phase β, see left inset where γ denotes the
exterior phase, and gravitational effects arising from the mass densities of the different phases have
been ignored. The CW subregion is separated from the one-phase region (white) by the red segment
of the binodal line. In the turquois PW subregion, the membrane is partially wetted by both phases,
see right inset. The PW subregion is separated from the one-phase region by the blue segment of
the binodal line. The boundary between the CW and PW subregions is provided by a certain tie line
(red dashed line), the precise location of which depends on the lipid composition of the membrane.
Along this tie line, the system undergoes a complete-to-partial wetting transition. Furthermore, if
one approaches the red CW segment of the binodal line from the one-phase region, a wetting layer
of the α phase starts to form at the membrane (red dotted line) and becomes mesoscopically thick
as one reaches the red CW segment of the binodal line. No such layer is formed along the blue PW
segment of the binodal
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membrane is wetted (i) completely by the α phase, (ii) completely by the β phase, or
(iii) partially by both phases. For the PEG-dextran solutions, both complete wetting
by the PEG-rich phase α and partial wetting by both phases have been observed.
The corresponding phase diagram is displayed in Fig. 9. As shown in this figure, the
two-phase coexistence region of these systems typically consists of two subregions
corresponding to complete and partial wetting of the membrane by the PEG-rich
phase α. These two subregions are separated by a certain tie line, at which the system
undergoes a complete-to-partial wetting transition. The precise location of this tie
line depends on the lipid composition of the membranes and has been elucidated for
binary lipid mixtures consisting of DOPC and GM1 [100, 148] as well as for ternary
mixtures containing DOPC, DPPC, and cholesterol [74]. In general, the wetting
transition along this tie line can be continuous or discontinuous depending on the
manner in which the contact angle vanishes as we approach the transition from the
partial wetting regime. So far, the experimental data do not allow us to draw firm
conclusions about the continuous or discontinuous nature of the transition.

A particularly interesting class of aqueous droplets is provided by biomolecular
condensates, also known as membraneless organelles, that have been discovered in
vivo and are enriched in intrinsically disordered proteins such as FUS [150]. Quite
recently, we studied GUVs exposed to such droplets and found that these droplets
undergo two distinct wetting transitions: from complete wetting of the membrane by
the FUS-poor phase to partial wetting to complete wetting by the FUS-rich phase
[151].

9.2 Partial Wetting and Apparent Contact Angles

For partial wetting of a vesicle membrane, both the α and the β droplets are
in contact with this membrane (right inset of Fig. 9). As a consequence, the αβ

interface between the two aqueous phases forms a contact line with the membrane
that partitions this membrane into two segments, an αγ and a βγ segment, as shown
in Fig. 10. Because the two membrane segments are exposed to different aqueous
environments, they will in general have different spontaneous curvatures mαγ and
mβγ and different bending rigidities καγ and κβγ . Furthermore, the αβ interface
exerts capillary forces onto the vesicle membrane which are counterbalanced by the
tensions within the two membrane segments.

The membrane deformations arising from these capillary forces depend on the
interfacial tension �αβ , on the mechanical tensions and fluid-elastic properties of
the two membrane segments, as well as on the sizes of the α and β droplets,
which are conveniently defined via (3Vα/4π)1/3 and (3Vβ/4π)1/3. So far, the
experimental studies have explored the regime in which the α and β droplets were
large compared to the length scales (καγ /�αβ)1/2 and (κβγ /�αβ)1/2. In such a
situation, the two membrane segments form two spherical caps which meet the
spherical αβ interface along an apparent contact line as shown in Fig. 10a. This
three-spherical-cap geometry is determined by the curvature radii of the three
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Fig. 10 Vesicle (blue/red) enclosing two aqueous droplets of α and β phase (yellow and white)
immersed in the exterior liquid γ corresponding to partial wetting of the membrane by both α and
β. The latter two phases are separated by the αβ interface (broken orange) with interfacial tension
�αβ . This interface partitioned the vesicle membrane into two segments, the αγ segment (blue)
and the βγ segment (red). Because the two membrane segments are exposed to two different
aqueous environments, they will in general differ in their spontaneous curvatures. (a) Vesicle
shape consisting of three surface segments that have a spherical shape when viewed with optical
resolution. The extrapolation of the spherical membrane segments defines an apparent contact line
(black circles) and three apparent contact angles θα , θβ , and θγ ; [78, 152] (b) for certain parameter
regimes, see main text, the total membrane tensions �̂αγ and �̂βγ balance the interfacial tension
�αβ along the apparent contact line; (c) force balance in (b) redrawn as a triangle; and (d) enlarged
view of the true contact line at which the membrane bends smoothly, and the effective membrane
segments have a common tangent plane (vertical broken line). The angles between this common
tangent plane and the plane tangential to the αβ interface represent the intrinsic contact angles θ∗

α

and θ∗
β with θ∗

α + θ∗
β = π

spherical surface segments and the radius of the apparent contact line [152].3 Along
the contact line, one can measure three apparent contact angles θα, θβ , and θγ ,
see Fig. 10a. Combining the Laplace equation for the αβ interface with the Euler–
Lagrange (or shape) equations for the two membrane segments, one obtains the
general relationship [152]

Mαγ

(
�eff

αγ

�αβ

− sin θβ

sin θγ

)

= Mβγ

(
�eff

βγ

�αβ

− sin θα

sin θγ

)

(18)

3In addition, one also has to specify whether the three cap centers are located above or below the
plane that contains the contact line.
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between the mean curvatures Mαγ and Mβγ of the two membrane segments, the
apparent contact angles θα, θβ, θγ and the effective segment tensions

�eff
jγ ≡ �̂jγ − 2κjγ mjγ Mjγ = �jγ + σjγ − 2κjγ mjγ Mjγ . (19)

with j = α or β. The effective tension �eff
jγ consists of the total segment tension

�̂jγ = �jγ + σjγ and of the curvature-dependent term 2κjγ mjγ Mjγ . The
mechanical segment tensions �jγ can be further decomposed into the overall
mechanical stress experienced by the whole membrane, corresponding to the
Lagrange multiplier conjugate to the total membrane area, and into the adhesion
free energy densities of the two membrane segments [152]. The overall mechanical
stress represents a hidden parameter which cannot be measured directly but depends
on the vesicle geometry. In order to eliminate this parameter, one may apply the
relation (18) to several droplets on the same vesicle.

For certain regions of the parameter space, the force balance along the apparent
contact line can be described in a self-consistent manner and then leads to
curvature-independent relationships between the apparent contact angles and the
total membrane tensions. For each membrane segment jγ , we can define a regime of
small bending energies and a regime of large spontaneous curvatures. Segment jγ

belongs to the regime of small bending energy if the bending energy of this segment
is small compared to the interfacial free energy of the αβ interface. The latter
condition is fulfilled if the spontaneous curvature mjγ is comparable to or smaller
than the mean curvature Mjγ of the membrane segment and if the water–water
interface is large compared to 18πκjγ /�αβ . On the other hand, segment jγ belongs
to the regime of large spontaneous curvature if the spontaneous curvature mjγ

is large compared to the mean curvature Mjγ of this segment. If each membrane
segment belongs to the small bending or to the large spontaneous curvature regime,
one obtains the force balance conditions [152]

�αβ

sin θγ

= �̂αγ

sin θβ

= �̂βγ

sin θα

(20)

along the apparent contact line which relate the total membrane tensions �̂αγ

and �̂βγ of the two membrane segments to the apparent contact angles and the
interfacial tension �αβ . The conditions in (20) are equivalent to the tension ratios

�̂αγ

�αβ

= sin θβ

sin θγ

and
�̂βγ

�αβ

= sin θα

sin θγ

. (21)

as used in [48, 78]. These equations represent the law of sines for a triangle with
the three sides �αβ , �̂αγ , and �̂βγ as displayed in Fig. 10b, c. Therefore, in the
parameter regimes of small bending energies and/or large spontaneous curvatures,
the total membrane tensions can be deduced from the measured values of the
apparent contact angles and of the interfacial tension �αβ .
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If one membrane segment, say the αγ segment, forms nanotubes, the mean
curvature Mαγ of the αγ -segment is much smaller than the mean curvature of the
tubes which is of the order of the spontaneous curvature mαγ . In such a situation,
the mechanical tension �αγ turns out to be much smaller than the spontaneous
tension σαγ [78] and the total membrane tension �̂αγ ≈ σαγ = 2καγ m2

αγ . When
we combine this asymptotic equality with the first relationship in (21), we obtain
the spontaneous curvature

mαγ = −
(

�αβ

2καγ

sin(θβ)

sin(θγ )

)1/2

(22)

where the minus sign reflects the experimental observation that the nanotubes
protrude into the interior compartment of the vesicle as in Fig. 5. The mαγ -
values obtained from (22) have been confirmed in [74] by two other, completely
independent methods to deduce the spontaneous curvature.

9.3 Intrinsic Contact Angles

If the spherical cap geometry shown in Fig. 10a persisted to nanoscopic scales,
the vesicle membrane would have a kink along the true contact line. Such a kink
would lead to an infinite bending energy of the membrane. Therefore, along the
true contact line, the membrane should be smoothly curved and the geometry is
then characterized by intrinsic contact angles [149, 152]. As shown in Fig. 10d, the
common tangent plane to the two membrane segments along the true contact line
defines two intrinsic angles θ∗

α and θ∗
β which are related via θ∗

α + θ∗
β = π .

The total (free) energy of the system consists of the bending energy of the
membrane, the interfacial free energy of the water–water interface, and the line
energy of the three-phase contact line. The latter contribution is proportional to the
line tension λco of the contact line. Minimizing this free energy for axisymmetric
morphologies, one obtains the balance condition [152]

�βγ − �αγ = �αβ cos θ∗
α + λco

cos ψco

Rco
+ ��,co (23)

between the mechanical segment tensions �βγ and �αγ , the interfacial tension �αβ ,
and the line tension λco. The parameter Rco is the radius of the true contact line,
and ψco is the tilt angle between the symmetry axis and the common tangent plane
of the two membrane segment at the true contact line. The additional term ��,co
depends on the local curvatures of the two membrane segments along this contact
line, compare Fig. 10d, and vanishes if the two membrane segments have the same
curvature-elastic properties [152]. In the latter case, the balance condition (23) along
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the true contact line simplifies and becomes

�βγ − �αγ = �̂βγ − �̂αγ = �αβ cos θ∗
α + λco

cos ψco

Rco
. (24)

If both segments belong to the small bending energy regime or to the large
spontaneous curvature regime, we can combine the balance condition (24) with the
tension ratios in (21) which then describes the force balance along the apparent
contact line. As a result, we obtain the simple relation

cos θ∗
α = sin θα − sin θβ

sin θγ

− λco

�αβ

cos ψco

Rco
(25)

between the intrinsic contact angle θ∗
α that is not accessible to conventional

optical microscopy and the apparent contact angles that can be obtained from the
microscopy images.

In [149], the relation (25) was originally derived for the special case of vanishing
spontaneous curvatures for both membrane segments, i.e., mαγ = mβγ = 0, and
was then used to analyze the shapes of vesicles that enclosed one PEG-rich and one
dextran-rich droplet. Even though the apparent contact angles of these vesicles were
quite different, the relation (25) led to a fairly constant value for the intrinsic contact
angle θ∗

α . Later experiments revealed, however, that the spontaneous curvatures
mαγ must be quite large because the αγ membrane segments in contact with the
PEG-rich phase formed nanotubes with a suboptical width as in Fig. 5 [74, 100].
Furthermore, the experimental data as well as molecular dynamics simulations
provided strong evidence that this large spontaneous curvature was generated by
asymmetric adsorption of PEG molecules. Therefore, it is tempting to assume that
the spontaneous curvature mβγ of the βγ membrane segments in contact with the
dextran-rich phase was comparatively small. A small value of mβγ and a large value
of mαγ would justify the use of (21) to describe the force balance along the apparent
contact line but it would not justify the use of (24) to describe the force balance along
the true contact line because (24) is based on the assumption that both membrane
segments have essentially the same spontaneous curvature. On the other hand, if
we assumed that the spontaneous curvature mβγ is large as well and comparable to
mαγ , we could justify the use of both relations (21) and (24).

9.4 Nucleation and Growth of Nanodroplets at Membranes

For complete wetting of the vesicle membrane by the α phase, the intrinsic contact
angle θ∗

α vanishes which implies that the phase separation starts via the formation of
a thin α layer at the vesicle membrane (broken red line in Fig. 9). For partial wetting,
on the other hand, the intrinsic contact angle θ∗

α > 0, and the phase separation starts
with the nucleation of α droplets at the membrane surface as shown in Fig. 11a,
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Fig. 11 Nucleation and growth of an α droplet (yellow) that is formed at a vesicle membrane
(blue/red). As in Fig. 10, the two aqueous phases α and β are in contact with the inner membrane
leaflet, and γ denotes the exterior aqueous phase: (a) The αβ interface (broken orange) between
the α droplet and the other interior phase β has the shape of a spherical cap and forms the intrinsic
contact angle θ∗

α with the adjacent αγ segment (blue) of the membrane. Because the latter segment
is now exposed to an asymmetric environment, it can acquire an appreciable spontaneous curvature
mαγ . Of particular interest is the case for which the curvature mαγ is large compared to the
spontaneous curvature mβγ of the βγ membrane segment (red); (b) for negative values of mαγ , the
αγ membrane segment prefers to form a spherical in-bud that is filled with exterior γ phase; and
(c) for positive values of mαγ , the αγ membrane segment prefers to engulf the α droplet provided
that the volume of the droplet matches the preferred bud size. Complete engulfment leads to a
closed membrane neck that replaces the αβ interface, thereby eliminating the contribution of this
interface to the system’s free energy

corresponding to a critical nucleus with a radius of tens of nanometers. For such a
small droplet, the intrinsic contact angle will be affected by the line tension λco of
the contact line. The line tension can be positive or negative, in contrast to the line
tension λ of domain boundaries which is always positive. In fact, recent molecular
simulations indicate that the contact line tension λco is typically negative [153].

After an α droplet as in Fig. 11a has been formed, the αγ segment of the
membrane, which is in contact with this droplet, is exposed to an asymmetric
environment and can acquire an appreciable spontaneous curvature mαγ . In order
to simplify the following discussion, let us assume that the curvature mαγ is large
compared to the spontaneous curvature mβγ of the βγ segment and that the latter
curvature is small and can be ignored.

If the spontaneous curvature mαγ is negative as in the case of PEG-dextran
solutions that undergo aqueous phase separation within the vesicles, the membrane
prefers to curve towards the inner leaflet and to form a spherical in-bud of radius
Rγ � 1/(2|mαγ |) that is filled with the exterior γ phase as in Fig. 11b. Such an
in-bud represents a limit shape with a closed neck that can be characterized by the
condition [78, 91] Ma + Mb = 2mαγ where Ma = −1/Rγ and Mb are the mean
curvatures of the two membrane segments a and b adjacent to the neck. The in-bud
displaces some volume of α phase and increases the area of the αβ interface which
implies that the α droplet has to reach a volume large compared to 4πR3

γ /3 before
the in-bud becomes energetically favorable. After such an in-bud has formed, the
bud radius increases until the spherical shape becomes unstable and transforms into
a short necklace-like tube [74, 101].

On the other hand, if the droplet-induced curvature mαγ is positive, the αγ mem-
brane segment prefers to curve towards the outer leaflet of the vesicle membrane and
to form a spherical out-bud of radius Rα � 1/mαγ that is filled with α phase as in

rl3
Durchstreichen
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Fig. 11c. Such an out-bud with a closed membrane neck reduces the free energy of
the membrane-droplet system by (i) adapting the mean curvature of the αγ segment
to its spontaneous curvature mαγ and (ii) replacing the αβ interface by a closed
membrane neck which implies a strong reduction of the interfacial free energy.
Spherical buds with closed necks are also formed during domain-induced budding
in the absence of aqueous phase separation [3, 5]. Compared to domain-induced
budding, the closed neck in Fig. 11c is further stabilized by the formation of an αβ

interface during neck opening. For an axisymmetric neck, the area of this interface
depends quadratically on the neck radius Rne which implies a free energy increase
proportional to �αβR2

ne and the same closed neck condition as for domain-induced
buds [152]. However, recent simulations revealed that negative line tensions break
the axisymmetry and lead to tight-lipped membrane necks [153].

Even in the absence of budding, the existence of a complete-to-partial wetting
transition implies some interesting behavior of the aqueous droplets. Thus, consider
again a droplet as in Fig. 11a and assume that we now change the conditions from
partial to complete wetting. The localized droplet will then be transformed into a
delocalized film that covers the whole membrane, and this morphological transfor-
mation can be used to redistribute molecules within the aqueous subcompartment.

10 Topological Transformations of Membranes

In the previous sections, I focused on processes that do not change the topology of
the membranes. Now, let us briefly consider two important topology-transforming
processes, membrane fusion and membrane fission (or scission). During membrane
fusion, two separate membranes are combined into a single one; during fission, a
single membrane is divided up into two separate ones. These processes are ubiq-
uitous in eukaryotic cells: Both the outer cell membrane and the inner membranes
of organelles act (i) as donor membranes that continuously produce vesicles via
budding and fission and (ii) as acceptor membranes that integrate such vesicles
via adhesion and fusion. One example for fission is provided by the closure of
autophagosomes which are double-membrane organelles [154, 155].

10.1 Free Energy Landscapes of Fusion and Fission

It is instructive to consider the free energy landscapes for fusion and fission as
schematically depicted in Fig. 12. Fusion is exergonic, if the free energy G2 of the
2-vesicle state exceeds the free energy G1 of the 1-vesicle state. In the opposite case
with G1 > G2, fission is exergonic. Exergonic fusion or fission processes occur
spontaneously but the kinetics of these processes is governed by the free energy
barriers � between the 1-vesicle and the 2-vesicle state, see Fig. 12. Because these
barriers are typically large compared to kBT , even exergonic fusion and fission
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Fig. 12 Free energy landscapes for membrane fusion and fission (or scission): (a) schematic
landscape for an exergonic fusion process. In this case, the free energy G2 of the 2-vesicle state
exceeds the free energy G1 of the 1-vesicle state; and (b) schematic landscape for an exergonic
fission process. In the latter case, the free energy G1 of the 1-vesicle state is larger than the free
energy G2 of the 2-vesicle state. The cartoons (top row) show a 1-vesicle state on the left and a
2-vesicle state on the right; both states have the same membrane area. The small vesicle of the 2-
vesicle state has the radius Rss which is much smaller than the radius of the large vesicle. The dark
blue membranes in (a) have a spontaneous curvature with magnitude |m| � 1/Rss whereas the
red membranes in (b) have a large spontaneous curvature with m � 1/(2Rss). In both (a) and (b),
the free energy difference G2 − G1 determines the direction in which the processes can proceed
spontaneously (black arrows), while the kinetics of these processes is governed by the free energy
barriers �

processes will be rather slow unless coupled to other molecular processes that
act to reduce these barriers. Indeed, in the living cell, the fusion and fission of
biomembranes is controlled by membrane-bound proteins such as SNAREs and
dynamin as will be discussed in later chapters of this book. It should also be
emphasized that the free energy landscape may involve several barriers as has been
observed in molecular dynamics simulations of tension-induced fusion [67, 69].

The free energy difference G2 − G1 between the 2-vesicle and the 1-vesicle
state can be estimated by the corresponding changes in curvature energy [156].
Because of the topological changes, we need to take the Gaussian curvature and the
associated Gaussian curvature modulus κG into account [90]. Stability arguments
indicate that −2 < κG/κ < 0 [157]. For the following considerations, it will
be sufficient to use the rough estimate κG � −κ which is consistent with both
experimental [158, 159] and simulation [62] studies. A small spherical vesicle that
is cleaved off from a donor membrane then changes the total curvature energy by a
certain amount that can be used to estimate the free energy difference G2 −G1. It is
important to realize, however, that this change in curvature energy depends strongly
on the magnitude of the spontaneous curvature as shown in the next subsections.
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10.2 Exergonic Fusion for Small Spontaneous Curvatures

Let us consider a 1-vesicle state corresponding to a spherical GUV that acts as
the donor membrane and a 2-vesicle state obtained from this GUV by cleaving
off a much smaller spherical vesicle, see top row of Fig. 12. Both states have the
same membrane area. The small vesicle of the 2-vesicle state has the radius Rss
which is taken to be much smaller than the radius of the GUV. We may then ignore
any constraints on the vesicle volumes and assume that the large vesicle of the 2-
vesicle state has a spherical shape as well. If the GUV membrane is uniform, and
the magnitude |m| of its spontaneous curvature is much smaller than the inverse
size, 1/Rss, of the small vesicle, the free energy difference between the 2-vesicle
and 1-vesicle state is positive and has the form

G2 − G1 = 8πκ + 4πκG � +4πκ for |m| � 1/Rss (26)

where the estimate κG � −κ has been used. In this case, the fission process is
endergonic whereas the fusion process is exergonic, see the corresponding free
energy landscape in Fig. 12a. For the typical rigidity value κ � 20 kBT , the
relation (26) leads to the large free energy difference G2 − G1 � +250 kBT !

10.3 Exergonic Fission for Large Spontaneous Curvatures

On the other hand, if the magnitude |m| of the spontaneous curvature is large, the
GUV can form a small spherical bud with radius Rss � 1/(2|m|) as in Fig. 12b as
follows from the closed neck condition for the corresponding limit shape.4 If this
bud is cleaved off, the free energy difference between the resulting 2-vesicle state
and the initial 1-vesicle state is now negative and given by

G2 − G1 = 8πκ(1 − 2Rss|m|) + 4πκG � 4πκG � −4πκ for Rss � 1/(2|m|).
(27)

In the latter case, the fission process is exergonic and the fusion process is
endergonic, corresponding to a free energy landscape as in Fig. 12b. Now, the free
energy difference G2 − G1 � −250 kBT for the typical value κ � 20 kBT of the
bending rigidity.

4For m > 0 and m < 0, this limit shape involves a spherical out- and in-bud, respectively,
corresponding to the shapes Lpear and Lsto in [91].
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10.4 Free Energy Difference for Domain-Induced Fission

Biological membranes often form intramembrane domains with an appreciable
spontaneous curvature mdo. One example for this latter case is provided by clathrin-
dependent endocytosis which leads to membrane domains with a spontaneous
curvature mdo � −1/(40 nm) [34]. Now, consider a GUV with a small membrane
domain with an appreciable spontaneous curvature mdo whereas the spontaneous
curvature of the remaining GUV membrane is again negligible. The membrane
domain can then form a small spherical bud of size Rss = 1/|mdo| as follows
from the closed neck condition for domain-induced budding [5]. If the latter bud
is cleaved off, the free energy difference between the resulting 2-vesicle state and
the initial 1-vesicle state is again negative and now has the form

G2 −G1 = 8πκ(1−2Rss|mdo|)+4πκG−4π
λ

|mdo| � −12πκ−4π
λ

|mdo| (28)

where λ denotes the line tension of the domain boundary. Because this line tension
has to be positive, the fission of a domain-induced bud is an exergonic process that
leads to an even larger free energy gain |G2 − G1| > 12πκ � 750 kBT for bending
rigidity κ � 20 kBT .

11 Summary and Outlook

During the last 20 years, we have seen a fair number of rather interesting
developments related to the biophysics of membranes and vesicles. One important
development was the identification of several lipid mixtures that can separate into
two fluid phases. This development was triggered by the proposal that cellular
membranes contain lipid rafts enriched in sphingomyelin and cholesterol [8]. So far,
we do not have any images of such phase domains in vivo. On the other hand, cell
membranes are expected to be partitioned into many distinct membrane segments
that are exposed to different molecular environments. Long-lived components of
these heterogeneous environments arise from the cytoskeletal cortex as revealed
by single particle tracking of membrane-bound nanoparticles [42]. If lipid phase
domains form in such a cell membrane, the domain formation is necessarily
restricted to one of the membrane segments and, thus, hard to detect [48]. In the
limiting case in which the environmental heterogeneities of the cell membrane
act as long-lived random fields, membrane phase separation would be completely
destroyed.

Another development that had a large impact on the field was the identification
of proteins that generate local membrane curvature. These proteins can be viewed
as Janus particles with strongly nonspherical shapes (Fig. 4). It should be rather
interesting to synthesize such Janus particles and to study their interactions with
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lipid membranes. In the last couple of years, reliable methods have been developed
to determine the spontaneous curvature of membranes from their spontaneous
[74, 100] or force-induced [117] tubulation. Using the relation (1), we can then
deduce the locally generated curvature of single membrane-bound “particles” from
the coverages on the two leaflets of the membranes [85, 86]. Furthermore, because
the nanotubes provide a reservoir for membrane area, the mother vesicles of
tubulated vesicles exhibit an increased robustness against mechanical perturbations
as recently demonstrated by micropipette aspiration [101].

Membrane nanotubes are also formed within eukaryotic cells and provide
ubiquitous structural elements of many membrane-bound organelles such as the
endoplasmic reticulum, the Golgi, the endosomal network, and mitochondria [160–
162]. These intracellular nanotubes are used for molecular sorting, signalling, and
transport. Intercellular (or “tunneling”) nanotubes formed by the plasma membranes
of two or more cells provide long-distance connections for cell–cell communication,
intercellular transport, and virus infections [163–165]. It seems rather plausible to
assume that these tubes are also generated by spontaneous curvature and/or locally
applied forces but the relative importance of these two tubulation mechanisms
remains to be elucidated for cellular membranes.

As far as the engulfment of nanoparticles by membranes is concerned, we now
have a rather detailed theory which leads to the stability conditions (13)–(16) and
predicts several critical particle sizes for the engulfment process [34], complex
engulfment patterns on GUVs [132], and curvature-induced forces leading to biased
diffusion of partially engulfed particles [134]. The theory has been extended to the
engulfment by membrane domains [34] and can then explain the nonmonotonic
size dependence of clathrin-dependent endocytosis as observed for the uptake of
gold particles by HeLa cells [35, 36]. In addition, the stability conditions for closed
membrane necks have been generalized to include constriction forces, see the closed
neck condition (17), and applied to a variety of membrane systems such as giant
plasma membrane vesicles formed by eukaryotic cells and outer membrane vesicles
secreted by bacteria [133]. I am rather curious to see experimental studies that
scrutinize these predictions.

Another fairly interesting topic that has been hardly explored at all is the wetting
behavior of membranes and vesicles in contact with several aqueous phases. So
far, this behavior has only been studied for three lipid compositions exposed to
aqueous solutions of PEG and dextran [74, 100, 148] as well as to aqueous droplets
or membraneless organelles enriched in the intrinsically disordered FUS protein
[151] but, quite unexpectedly, all of these systems were found to exhibit wetting
transitions (Fig. 9). Another aspect of wetting that remains to be elucidated in a
systematic manner, both theoretically and experimentally, is the nucleation and
growth of nanodroplets at membranes (Fig. 11).

In the context of synthetic biology, GUVs have long been discussed as possible
micro-compartments for the bottom-up assembly of artificial protocells. One prac-
tical problem that has impeded research in this direction is the limited robustness
of GUVs against mechanical perturbations. Very recently, this limitation has been
overcome by two different strategies. One strategy is based on the formation of
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GUVs within microfluidic emulsion droplets that support and stabilize the GUVs
[166]. The other strategy uses the special properties of tubulated GUVs which
can respond to external perturbations by exchanging membrane area between the
nanotubes and the mother vesicles [101]. Compared to conventional GUVs, both
droplet-stabilized and tubulated GUVs are much more robust against mechanical
forces and thus provide new modules for the bottom-up assembly of artificial cells.
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