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Force sharing and force generation 
by two teams of elastically coupled 
molecular motors
Mehmet Can Uçar   & Reinhard Lipowsky

Many active cellular processes such as long-distance cargo transport, spindle organization, as well as 
flagellar and ciliary beating are driven by molecular motors. These motor proteins act collectively and 
typically work in small teams. One particularly interesting example is two teams of antagonistic motors 
that pull a common cargo into opposite directions, thereby generating mutual interaction forces. 
Important issues regarding such multiple motor systems are whether or not motors from the same 
team share their load equally, and how the collectively generated forces depend on the single motor 
properties. Here we address these questions by introducing a stochastic model for cargo transport 
by an arbitrary number of elastically coupled molecular motors. We determine the state space of 
this motor system and show that this space has a rather complex and nested structure, consisting of 
multiple activity states and a large number of elastic substates, even for the relatively small system of 
two identical motors working against one antagonistic motor. We focus on this latter case because it 
represents the simplest tug-of-war that involves force sharing between motors from the same team. 
We show that the most likely motor configuration is characterized by equal force sharing between 
identical motors and that the most likely separation of these motors corresponds to a single motor 
step. These likelihoods apply to different types of motors and to different elastic force potentials acting 
between the motors. Furthermore, these features are observed both in the steady state and during 
the initial build-up of elastic strains. The latter build-up is non-monotonic and exhibits a maximum 
at intermediate times, a striking consequence of mutual unbinding of the elastically coupled motors. 
Mutual strain-induced unbinding also reduces the magnitude of the collectively generated forces. Our 
computational approach is quite general and can be extended to other motor systems such as motor 
teams working against an optical trap or mixed teams of motors with different single motor properties.

Within the living cell, cytoskeletal motors drive many essential processes such as the organization of the mitotic 
spindle, the powering of flagella and cilia, and the long-distance transport of membrane-bound organelles, neu-
ronal vesicles, or mRNAs. Two ubiquitous motor species found in eukaryotic cells are conventional kinesin (or 
kinesin-1) and cytoplasmic dynein which have opposite polarities, walking preferentially towards the plus and 
minus ends of microtubules, respectively1,2. These motor proteins frequently work in teams of multiple motors3–6, 
which may lead to a tug-of-war between several dyneins and one or a few kinesins3,7–9. As a team, the motors can 
collectively generate large forces8, e.g., to organize mitotic spindles10,11 or to pull nanotubes from cellular mem-
branes12,13. However, both theoretically and experimentally, the underlying mechanism of force generation and 
force sharing by several motors remains controversial14–17.

In this paper, we address these issues, focusing on motors that are elastically coupled to a common cargo. The 
different configurations of such a motor-cargo system are illustrated in Fig. 1 for the case of three motors, two 
dyneins and one kinesin. The relaxed state in which the elastic linkers do not generate any motor-motor forces is 
displayed in Fig. 1a. After one or a few steps of the individual motors, this system will attain motor-cargo config-
urations with unequal force sharing as in Fig. 1b or with equal force sharing as in Fig. 1c.

Force sharing is intimately related to collective force generation. If equal force sharing as in Fig. 1c were the 
typical configuration and if the motors remained bound to the filament, one might expect that a motor team with 
N motors can generate an overall force of approximately NFs, where Fs is the stall force of a single motor, i.e., that 
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the collectively generated force increases additively with the size of the motor team. On the other hand, if unequal 
force sharing as represented in Fig. 1b were the typical situation, the leading motor in a motor team would bear 
most of the load, and a motor team with N motors could only generate forces that are significantly smaller than NFs.

An additive force generation mechanism based on equal force sharing was theoretically predicted in previous 
studies4,5 and is consistent with the force measurements from several experiments7,8,10,18,19, but seems to disagree 
with those from Jamison et al.20 and Furuta et al.21. In the latter studies, the overall force generated by several kine-
sin motors onto a cargo was observed to increase sub-additively with the motor number. This observation was 
taken to provide evidence for unequal force sharing17. Furthermore, several simulation studies of a tug-of-war 
between elastically coupled motors that undergo discrete mechanical steps also emphasized unequal force shar-
ing without an explicit analysis of the underlying motor-cargo configurations22–24. One mechanism proposed in 
the literature8,25,26 for the low cooperativity among kinesin motors is based on the view that the typical motor 
configurations involve one leading motor that mainly carries the load. However, whether these unequal force 
sharing configurations dominate over the configurations with equal force sharing has not been investigated in 
these studies.

Here we introduce a general theoretical framework for elastically coupled motors and show that the elastic 
coupling between individual motors introduces a rather complex structure to the state space of such a system. We 
thus focus on the simplest nontrivial case of two identical motors pulling a common cargo against one antago-
nistic motor as in Fig. 1. We show that the most likely configuration of the steady state is characterized by equal 
force sharing between motors of the same team, regardless of the motor type. In fact, equal force sharing applies 
as well to the time-dependent build-up of strain forces arising from single motor steps. These features are quite 
general: they are also valid for motor teams with different stiffnesses and for motors that are elastically coupled 
by cable-like linkers. Furthermore, we calculate the average elastic forces arising in these systems and find that 
these forces are significantly smaller than those predicted by the non-elastic model5 which is based on equal force 
sharing. We show that this reduction of the collectively generated forces is caused by the unbinding of the motors 
from the filament during elastic strain generation. Our results demonstrate that collective force generation can be 
sub-additive even though motors of the same polarity share the force equally.

Results
Activity states, elastic substates, and elastic strain forces. We consider cargo transport by several 
elastically coupled motors which may bind to and unbind from the filament. In its bound state, each motor is 
described as a stochastic stepper with a certain step size , using the motor parameters as deduced from single 
molecule experiments. The elastic linkers between the motors and the cargo are taken to be identical harmonic 
springs with spring constant κ. The case of two motor teams with different spring constants κ− and κ+ is 

Figure 1. Different force sharing configurations of molecular motors engaged in a tug-of-war: Three elastic 
states of two minus-end directed dyneins (green) and one plus-end directed kinesin (blue) pulling on the same 
cargo (gray). The two dyneins experience the load forces −F1  and −F2 : (a) All elastic linkers are relaxed and the 
two dyneins do not experience any force; (b) The elastic linker of the leftmost dynein is stretched more strongly 
than the linker of the other dynein, leading to different forces, i.e., >− −F F1 2 , and, thus, to unequal sharing of the 
force generated by the kinesin; and (c) The elastic linkers of the two dyneins experience the same stretching, 
corresponding to equal force sharing.
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considered in sections S1 Theoretical description of elastically coupled motors and S3 Motor teams with different 
spring constants in the Supplementary Information (SI). A detailed description of the single motor properties used 
in our study is given in the Model and methods section below.

Activity states. A motor-cargo system consisting of a total number of N− minus- and N+ plus-directed 
motors can attain different activity states (n−, n+) in which n− minus and n+ plus motors are simultaneously 
bound to the filament and pull on the cargo. For two dyneins (N− = 2) in a tug-of-war against a single kinesin 
motor (N+ = 1), for example, as depicted in Fig. 1, one needs to consider the activity state (2, 1) in which all three 
motors are bound to the filament, the state (2, 0) with two active dyneins27, the state (1, 1) with one active dynein 
and one active kinesin28, the states (1, 0) and (0, 1) corresponding to only one active motor, and the diffusive cargo 
state (0,0) with no active motors. We will consider motors from the same team to be distinguishable even if they 
are identical in the sense that they are built up from identical peptide chains. Experimentally, one can label the 
two identical motors separately using, e.g., different fluorescent dyes29 or quantum dots30 for each motor. 
Therefore, in the case of two dyneins against one kinesin, we have to distinguish two different (1, 1) and (1, 0) 
activity states, depending on which dynein is bound to the filament. We will denote these different states by (1, 0)1 
and (1, 0)2, as well as (1, 1)1 and (1, 1)2, where the subscripts 1 and 2 correspond to dynein 1 and dynein 2, respec-
tively. Alternatively, we could label the activity states by 3-tuples (m1,m2|p1) with occupation numbers mi = 0, 1 for 
the two minus motors and p1 = 0,1 for the plus motor. The latter notation is more cumbersome but can be directly 
extended to the general case via (n− + n+)-tuples … | …

− +
m m p p( , , , , )n n1 1  with occupation numbers mi = 0,1 and 

pj = 0,1.
For N− = 2 and N+ = 1, a coarse-grained representation of the state space in terms of the activity states alone is 

depicted in Fig. 2. In this representation, the eight activity states (n−, n+) = (2,1), (2, 0), (1, 1)1, (1, 1)2, (1, 0)1,(1, 0)2, 
(0, 1), and (0, 0) are connected via motor unbinding and rebinding transitions with rates ε±(F) and π ±

0 , respec-
tively, for details see Model and methods below, and the SI. In general, a system consisting of one motor team with 
N− distinguishable minus motors and another motor team with N+ distinguishable plus motors can attain +− +2N N  
different activity states.

Elastic substates. When one of the bound motors performs a forward or backward step, it changes the 
motor-motor separations along the filament and, thus, the elastic forces experienced by the motors. As a conse-
quence, motor configurations with different motor-motor separations define different elastic substates of each 
activity state with more than a single motor attached to the filament, i.e., with n− + n+ ≥ 2, as shown in Fig. 3. In 
each substate, different elastic forces are experienced by the individual motors, and thus different force-dependent 
rates govern the transitions between these substates. As an example, let us consider a cargo that dwells in the 
activity state (n−, n+) = (2, 1) with two minus-end directed and one plus-end directed motor. The forces experi-
enced by the motors and the cargo depend on the two motor-motor separations between the kinesin and each of 
the two dyneins. As a consequence, the elastic substates of the activity state (2, 1) form a two-dimensional lattice 
as shown in the leftmost box of Fig. 3. As long as all three motors remain attached to the filament, single motor 
steps lead to transitions between neighboring sites of this lattice. However, when dynein 1 or dynein 2 unbinds 
from the filament, we leave the activity state (2, 1) towards the activity states (1, 1)2 and (1, 1)1, respectively, see the 
two lower boxes in Fig. 3. Each of these latter activity states consists of a 1-dimensional lattice of elastic substates, 
corresponding to the different possible separations of the bound dynein and the bound kinesin. Likewise, when 
the kinesin motor unbinds from the filament, we leave the activity state (2, 1) and enter the activity state (2, 0), 

Figure 2. Activity states for cargo transport by N− = 2 dynein and N+ = 1 kinesin motors: Network of eight 
different activity states (n−, n+) with n− minus and n+ plus motors simultaneously bound to the filament. The two 
dyneins are distinguished by subscripts 1 and 2: Dynein 1 is bound to the filament in the activity states (1, 1)1 and 
(1, 0)1 while dynein 2 is bound for (1, 1)2 and (1, 0)2. Transitions between different activity states are governed by 
the binding and unbinding rates π ±

0  (broken lines) and ε±(F) (solid lines), respectively.
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which consists of a 1-dimensional lattice of elastic substates, corresponding to the different possible separations 
of the two dyneins, see upper box in Fig. 3.

Force balance. Newton’s third law implies that the sum of all elastic forces acting on the cargo must vanish. 
This force balance condition can be used to express the cargo position in terms of the positions of all active motors. 
As a result, one finds that a single step of an individual motor changes the position of the cargo in the motor’s step-
ping direction by +− + n n/( ), as derived in S1 Theoretical description of elastically coupled motors in the SI. In a 
motor-cargo system with three active motors, for instance, a forward step stretches the elastic linker of the stepping 
motor by − =  /3 2 /3, increasing the elastic force acting on the motor by κ2 /3 as follows from Hooke’s law. 
Because of the cargo shift, the linkers of the remaining motors of the same team will then be compressed by /3 
whereas the linkers of the motors in the opposing team will be stretched by the same amount. For simplicity, we 
will now focus on the activity state (2,1) as illustrated in Fig. 1, and consider the general case in the SI.

Tug-of-war between two dyneins and one kinesin. We label the two dyneins by the indices j = 1, 2 and 
the single kinesin by j = 3. The elastic linker connecting the motor j to the cargo has a certain rest length L , and 
the deviation of the linker length Lj from its rest length defines the elastic displacement ≡ −u L Lj j . For motor 
teams with identical spring constants, any elastic substate of the activity state (2, 1) is then characterized by the 
three-dimensional displacement vector u = (u1, u2, u3) with u1 + u2 = u3 as follows from the force balance condi-
tion. Starting from a relaxed state with u0 = (0, 0, 0) as in Fig. 1a, one can then reach all possible elastic substates 
by successive mechanical steps of the three motors. In general, L  and  are two independent length scales and 

Figure 3. Complete state space for cargo transport by N− = 2 dynein and N+ = 1 kinesin motors: Eight activity 
states (n−, n+) as in Fig. 2 with their elastic substates in curly brackets. The state (1, 0) combines the two activity 
states (1, 0)1 and (1, 0)2, compare Fig. 2. Transitions between elastic substates within a single activity state (n−, n+) 
are depicted by solid lines (black) and governed by the forward and backward stepping rates of the motors. For 
visual clarity, only a few transitions (broken lines, colored) between elastic substates of different activity states are 
shown explicitly. The unbinding rate of each active motor depends on the elastic strain experienced by the motor 
and thus on the elastic substate, see SI for details.
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need not be commensurate. The latter case introduces another parameter that we have eliminated here for the 
sake of clarity. We parametrize the elastic substates by a three-dimensional lattice with sites {s1, s2, s3} and 
integer-valued sj. Positive values of sj represent sj successive forward steps, negative values of sj correspond to |sj| 
successive backward steps. The associated displacement vector u has the form

∑= +
=

s s s su u b{ , , } ,
(1)j

j j1 2 3 0
1

3

with the two basis vectors
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Each vector bj corresponds to a single forward step of the individual motor labeled by j. The relation in equa-
tion (3) reflects the force balance condition and implies that the displacement vectors have the general form

= + + ≡ +r r r r r s su u b b{ , } [ ] , with (4)j j1 2 0 1 1 2 2 3

for j = 1, 2, i.e., all elastic substates are located in a 2-dimensional plane generated by the two basis vectors b1 and 
b2. Furthermore, the elastic forces Fj acting on the three motors in substate {r1, r2} = {s1 + s3, s2 + s3} are given by 
the force vector

κ= =r r F F F r rF u{ , } ( , , ) { , }, (5)1 2 1 2 3 1 2

with F1 + F2 = F3 due to the force balance condition. For a given set of motor parameters, equations (4) and (5) 
fully determine the strain-dependent single motor rates of all motors in each elastic substate {r1, r2}, for details see 
SI. The same description can be used to study the tug-of-war between two kinesins and one dynein by defining 
the motors labelled by j = 1, 2 with kinesin properties and the single opposing motor with dynein properties. In 
this study, we examine two different types of dynein motors; “strong” and “weak” dynein, which correspond to 
yeast and mammalian cells, respectively. In accordance with several experimental findings3,8,31–34, we model yeast 
dynein as a slow motor with a high stall force, and mammalian dynein as a fast motor with a low stall force value, 
see Table 1 for the motor parameters used here.

Steady state for tug-of-war between three motors. We focus on the case of two identical motors 
against a single opposing motor because this choice provides the simplest nontrivial example for which one can 
study force sharing between identical motors in a systematic manner. We represent the complete network of 
activity states by a transition rate matrix and calculate the steady state probability distribution over the complete 
network for different choices of motor parameters, for details see SI.

We distinguish the steady state probabilities Pst(n−, n+) for the activity states (n−, n+) of the cargo from the 
steady state probabilities pst{r1, r2} to find the motor-cargo system in the elastic substates {r1, r2} of the activity state 
(2,1) with the normalization conditions ∑ =p r r P{ , } (2,1)r r,

st
1 2

st
1 2

 and ∑ =− +− +
P n n( , ) 1n n,

st . In addition, we 

Parameter kinesin-1 dyneinS dyneinW

Unbinding rate ε0 [s−1] 0.6650 1* 151

Binding rate π0 [s−1] 513 5* 5*

Stall force Fs [pN] 749 731,52 1.18,33

Detachment force Fd [pN] 2.150 2.943 2.943

Stiffness κ [pN/nm] 0.253 0.2* 0.2*

Step size  [nm] 849,53 832 852

Step ratio q0 80049 432 4*

Velocity v0 [nm/s] 74050 8532 80052

Min. velocity vmin [nm/s] 89† 10† 96†

Max. velocity vmax [nm/s] 829† 95† 896†

Table 1. Single motor parameters used here. The first column for kinesin-1 includes the motor parameters 
that have been recently measured by Andreasson et al.50. The values for “strong” and “weak” dynein (columns 
dyneinS and dyneinW) correspond to yeast and mammalian cells, respectively. An asterisk superscript indicates 
a parameter for which we did not find experimental data in the literature; the corresponding parameter value 
was set equal to the experimentally deduced value of another type of motor. Velocity values depicted by the 
dagger superscript are estimated by vmin ≃ 0.12v0 and vmax ≃ 1.12v0, which represent the limiting values for large 
superstall forces and for large assisting forces, respectively, and provide a convenient parametrization27 of the 
force-velocity relations.
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define the conditional probabilities p̂st{r1,r2}≡pst{r1,r2}/Pst(2,1) to find the system in the elastic substate {r1,r2} 
given that the cargo is in the activity state (2,1). Note that the numbers r1 and r2 determine the separation of the 
first and second motor of the same team from the single opposing motor such that the elastic substate with 
r1 = r2 = 0 represents the relaxed state of the system, whereas all configurations with r1 = r2 correspond to equal 
force sharing.

The conditional probabilities p̂st{r1, r2} are displayed in Fig. 4 for three different cases: (a) two strong (yeast) 
dyneins against one kinesin, (b) two weak (mammalian) dyneins against one kinesin, and (c) one strong dynein 
against two kinesins, see Table 1. All of these probabilities have a single maximum at the diagonal, i.e., the most likely 
configuration is one of equal force sharing in all three cases. The region Ω in the first column of Fig. 4 contains all 
motor configurations for which the absolute separation of the two dyneins or the two kinesins does not exceed a 
single motor step, i.e., |Δr| = |r2 − r1| ≤ 1. The probability to find the system in this region satisfies p̂st(Ω) > 0.5. 
Furthermore, the steady state distributions for the absolute values |Δr| of the motor-motor separations as displayed 
in the third column of Fig. 4 reveal that the most likely separation between the two identical motors corresponds to 
a single motor step.

Reduction of average force by elastic coupling. The conditional probabilities p̂st{r1, r2} for the elastic 
substates {r1, r2} as displayed in the first column of Fig. 4 determine the average elastic force 〈Fj〉 acting on motor 
j via the first moments

∑κ〈 〉 = +

ˆF p r r r b r b{ , }[ ] ,
(6)

j
r r

j j
,

st
1 2 1 1, 2 2,

1 2

where b1,j and b2,j are the j-components of the two basis vectors b1 and b2 as defined in equation (2). Note that each 
pair {r1, r2} of displacement numbers determines the elastic forces F{r1, r2} = (F1, F2, F3) acting on all three motors, 
as described by equation (5). The steady state probabilities plotted in the first column of Fig. 4 can thus be trans-
lated into steady state force distributions. If more than one elastic substate {r1, r2} leads to the same force value ⁎Fj  
acting on the j-th motor, we sum over the corresponding probabilities to obtain the overall probability for this 
force value. The steady state distributions of the elastic forces acting on the individual motors are plotted in Fig. 5. 
For comparison, the predictions of the non-elastic model introduced by Müller, Klumpp, and Lipowsky (MKL)5 
are also included: in Fig. 5a,b the single kinesin is exposed to the average force ≡+F FMKL ca whereas the two 
dyneins experience the same average force given by ≡ =− +F F F/2 /2MKL ca MKL , equally sharing the force Fca experi-
enced by the cargo28. In Fig. 5c, on the other hand, the cargo force is given by the force acting on the single dynein, 
i.e., ≡−F FMKL ca, and the two kinesins share this force equally.

The average elastic forces 〈Fj〉 as given by equation (6) are smaller than the cargo force predicted by the MKL 
model. The deviation of the average elastic forces from the MKL predictions increases for larger forces acting on 
the cargo, e.g., in the tug-of-war between kinesin and strong dynein, see Fig. 5a,c. This reduction in the average 
forces arises from the strain-induced unbinding of the elastically coupled motors before they can generate forces 
close to the cargo force Fca. In fact, in the limit of small unbinding rates, the average elastic forces do approach 
the cargo force Fca as shown in Fig. 6. In contrast to the asymmetric force distributions in Fig. 5, which reflect the 
frequent strain-induced unbinding events in the steady state, the force distributions in Fig. 6b, corresponding to 
rare unbinding events, are essentially symmetric and nearly Gaussian.

Equal force sharing during initial build-up of strain. The distributions in Fig. 4 describe the long-time 
behavior of the elastic motor-cargo configurations, for which strain-induced unbinding events lead to a reduction 
of the average forces generated in the system. In principle, one could envisage that the initial build-up of elastic 
strain generation is dominated by configurations that correspond to unequal force sharing between motors from 
the same team. In order to test such a scenario, we investigate the time evolution of the probability distribution 
p̂ r r{ , }1 2  over the elastic substates {r1, r2}, see SI for details. The time-dependent probability distributions p̂{r1, r2}
(t) are plotted in Figs 7a1–a4 for the case of two kinesin motors in a tug-of-war against a single strong dynein. The 
motor-cargo system is taken to start at the relaxed state {r1 = 0, r2 = 0} at t = 0, and reaches its steady state after 
approximately t = 300 ms, see Fig. 7a4. Inspection of Figs 7a2 and a3 shows that the most likely configuration is 
also characterized by equal force sharing at the intermediate times t = 75 ms and t = 150 ms, i.e., before the system 
reaches its steady state.

The time evolution of the average elastic forces is displayed in Fig. 7b. The average elastic force 〈F−〉(t) acting 
on the single dynein motor is shared by the two kinesins equally, i.e., 〈F+〉(t) = 〈F−〉(t)/2. At approximately 
t 120 ms the forces reach a maximum, and relax to their steady state values 〈F±〉st for t ≥ 300 ms. Recall that the 

MKL model predicts the cargo force = = .−F F 13 6ca MKL  pN acting on the single dynein motor, see Fig. 5c. The 
maximal force that can be achieved during strain generation in the elastically coupled system, on the other hand, 
is only about 〈 〉 .−

F 6 2max  pN because of strain-induced unbinding. Thus, we see once more the importance of 
strain-induced unbinding: Kinesin and dynein motors initially stretch the elastic linkers to a large extent by tak-
ing successive steps, but strain-induced unbinding events eventually cause the motors to attain more relaxed 
linkers. If we suppress strain-induced unbinding by considering the limit of small unbinding rates, the average 
elastic forces 〈F+〉(t) and 〈F−〉(t) no longer exhibit maxima at intermediate times but increase monotonically with 
time as shown in S4 Tug-of-war in the limit of small unbinding rates in the SI. In the latter case, the long-time limit 
of the average forces is provided by the average forces of the non-elastic model.

Two kinesins and one dynein with cable-like linkers. The results presented in Figs 4–7 were obtained 
for a model in which the motor linkers are described as harmonic springs, i.e., the motors respond to both 
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stretching and compression forces. However, in a previous experimental study35, kinesin’s stiffness was observed 
to be an order of magnitude lower for compression than for stretching. It is thus instructive to consider non-
harmonic cable-like motor linkers which behave like harmonic springs when stretched, but do not generate any 
forces when compressed, as assumed in several other studies23,24,36. As in the previous subsection, we will again 
focus on the tug-of-war between two kinesins and one strong dynein.

For cable-like linkers, the elastic force Fj acting on the j-th motor vanishes for | | < | |L Lj , i.e., when the motor 
linker Lj is shorter than its rest length L . The rest length L  therefore becomes an essential parameter that deter-

Figure 4. Force sharing between identical motors engaged in a tug-of-war: (a) One kinesin against two strong 
dyneins; (b) One kinesin against two weak dyneins; and (c) one strong dynein against two kinesins. (a1,b1,c1) 
Conditional steady state probabilities p̂st{r1, r2} for the elastic substates {r1, r2} = {s1 + s3, s2 + s3}. The color code 
provides the normalized probabilities. Because these probability distributions exhibit a single maximum at the 
diagonal, the most likely motor-cargo configurations are characterized by equal force sharing. The regions Ω 
contain all motor configurations for which the separation of the two identical motors does not exceed a single 
motor step, corresponding to |Δr| = |r2 − r1| ≤ 1. These regions are bounded by the two broken lines (white) and 
are visited with probabilities p̂st(Ω) > 0.5 as given in the insets; (a2,b2,c2) Steady state probabilities for the 
separation Δr of the two identical motors; and (a3,b3,c3) Steady state probabilities for the absolute value |Δr| 
which reveal that the most likely motor-motor separation |Δr| always corresponds to a single motor step. The 
separation Δr is given in units of the step size = 8  nm.
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mines the range of elastic substates of the complete state space, see Fig. 3, in which the motors step on the filament 
in a load-free manner. Kinesin’s rest length is primarily determined by its tail domain which leads to 

−L 80 110 nm37,38, and to −� �L / 10 13. The latter ratio determines the fraction of elastic substates for 
which the motors do not experience any force and increases the number of available rebinding states for detached 
motors compared to the motor system with harmonic linkers. In our calculations, we took the rest length L  to be 
80 nm.

The tug-of-war between two kinesins and one dynein, which are elastically coupled by cable-like linkers, leads 
to the time evolution of the conditional probability distribution p̂{r1, r2}(t) as displayed in Fig. 8a1–a4. The steady 
state is reached after approximately t 300  ms and leads to the distribution in Fig. 8a4. Inspection of this latter 
distribution shows that many off-diagonal states with r1 ≠ r2 have non-zero probabilities, indicating that unequal 
force sharing configurations have an increased overall probability compared to harmonic linkers as displayed in 
Fig. 4c1. This feature arises from the increased number of available substates {r1, r2} to which the detached motors 

Figure 5. Steady state distributions for elastic forces generated by three-motor systems: In all cases, the two 
identical motors have the same force distribution and experience the same average force. The non-elastic MKL 
model5 predicts the forces +FMKL (dashed vertical line) and −FMKL (dotted vertical line) acting on the individual 
plus and minus motors, respectively. (a) For strong dyneins, we obtain the average elastic force 〈F+〉 = 4.0 pN 
compared to the cargo force = .+F 7 9MKL  pN; (b) for weak dyneins, 〈F+〉 = 3.8 pN compared to = .+F 5 6MKL  pN; (c) 
for kinesins, 〈F−〉 = 4.7 pN compared to = .−F 13 6MKL  pN. The average elastic forces are lower than the 
predictions of the non-elastic MKL model because the motors typically undergo strain-induced unbinding 
before they can generate large forces. The difference becomes larger if the motors are characterized by larger 
stall forces and larger unbinding rates.

Figure 6. Limit of small unbinding rates for the tug-of-war between two strong dyneins and a single kinesin: 
(a) Steady state probability distribution p̂st{r1,r2} for the elastic substates {r1, r2} of the (2, 1)-activity state in the 
limit of small unbinding rates as described by equation (10) with ε ε= = .+ − 0 01/0 0  s and = =+ −F F 6d d  pN. As in 
Fig. 4, the distribution again exhibits a single maximum on the diagonal; and (b) Steady state distributions of 
the elastic interaction forces obtained from the probability distribution plotted in (a). The solid curve describes 
the elastic forces acting on the single kinesin, as well as on the cargo, whereas the dashed curve corresponds to 
the force distributions for each dynein. Vertical dashed and dotted lines correspond to the forces predicted by 
the non-elastic MKL model. Comparison with Fig. 5a reveals that the average elastic forces approach the 
predictions of the MKL model for small unbinding rates.
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can rebind with a relaxed linker, see the different regions with F1 = 0 and/or F2 = 0 in Fig. 8a4, separated by the 
white dotted lines. However, the most likely configuration for cable-like linkers is again characterized by equal 
force sharing, and the most likely separation between the two kinesins is again given by a single motor step, as 
shown in Fig. 8b1–b2.

As in the case of harmonic linkers, the initial build-up of mutual interaction forces exhibits a maximal force 
of about 6.3 pN and relaxes to the steady-state value for t ≥ 300 ms, see Fig. 8c. Interestingly, cable-like linkers 
generate about the same maximal force as harmonic linkers and need about the same time for force generation 
and force relaxation. The steady state force values are however somewhat smaller for the cable-like linkers than for 
the harmonic linkers, as indicated by the shaded regions in Fig. 8c and corresponding differences Δ〈F±〉,

Because both types of linkers generate roughly the same maximal force for the tug-of-war, the initial stretch-
ing of the motor linkers is hardly influenced by the absence of compression forces. Furthermore, the steady state 
probabilities P st(n+, n−) for the different activity states are quite similar for both types of linkers, see Fig. 8d, 
which implies that the overall cargo transport depends only weakly on the precise form of elastic coupling. For 
both types of linkers, the activity state (n+, n−) = (2, 0) with two actively pulling kinesins has the highest steady 
state probability.

Because the elastically coupled motors generate a higher steady state force for harmonic linkers compared to 
cable-like linkers, the average mechanical work 〈Wout〉 performed by the harmonically coupled motors should 
also be larger. Thus, it is tempting to speculate that cable-like linkers lead to a larger dissipation of chemical free 
energy, as well. However, for an accurate analysis of this free energy transduction, one needs to calculate the over-
all mechanical work done by the whole system, including contributions from all activity states, which is beyond 
the scope of the present study.

Discussion
We introduced a general theory for two antagonistic teams of motors that are coupled elastically to a common 
cargo or bead. Our theory reveals the complex and nested structure of the motors’ state space, consisting of mul-
tiple activity states and a large number of elastic substates, even for the relatively small system of two identical 
motors working against one antagonistic motor, see Figs 2 and 3. We then focussed on this latter system because 
it provides the simplest case with force sharing between identical motors. Our results for force sharing and force 
generation between kinesin and dynein motors are summarized in Figs 4 and 5. In all cases, we find that the most 
likely motor configuration in the steady state is characterized by equal force sharing. In addition, this form of 
equal force sharing applies even to the whole time-dependent evolution of the probability distributions towards 
their steady states as illustrated in Fig. 7. The same behavior is found when the motor linkers are described by 

Figure 7. Initial build-up of elastic strain forces during the tug-of-war between two kinesins and one dynein: 
(a1–a4) Time evolution of the probability distribution p̂{r1, r2}(t) for the elastic states {r1, r2} of the tug-of-war 
between two kinesins and one strong dynein. The distribution reaches its steady state at t 300 ms. During the 
whole time evolution, the most likely configuration is characterized by equal force sharing between the two 
kinesins; and (b) Time evolution of the average elastic forces 〈F±〉(t) experienced by the dynein and kinesin 
motors, exhibiting maximal average forces 〈F±〉max at t 120 ms. The elastic forces converge to their steady state 
values 〈F−〉st (dashed horizontal line) and 〈F+〉st (dotted horizontal line) for t ≥ 300 ms.
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nonharmonic cable-like springs, see Figs 8a and b. We find that the timescales for force generation and force 
relaxation during a tug-of-war are surprisingly similar for the harmonic and nonharmonic linkers, whereas the 
steady state forces are slightly lower for the latter case. The overall cargo transport, on the other hand, remains 
largely unaffected by the different types of linkers, see Fig. 8d. Furthermore, mutual unbinding of the elastically 
coupled motors from the filament leads to a reduction of the average forces compared to the force values pre-
dicted by the non-elastic model developed in previous studies5,39. The difference in the predictions of the elastic 
and non-elastic models becomes quite dramatic for motors with a high stall force value as illustrated in Fig. 5c. On 
the other hand, if teams of weak motors are involved in a tug-of-war, both models predict similar force values as 
in Fig. 5b. In the limit of small unbinding rates, the average elastic forces coincide with the force values predicted 
by the non-elastic model, see Fig. 6.

Another striking consequence of strain-induced unbinding is the non-monotonic build-up of the average elas-
tic forces as displayed in Figs 7 and 8c. Inspection of these figures reveals that the average elastic forces acting on 
the motors exhibit maxima at intermediate times. These maxima disappear in the limit of small unbinding rates 
as shown in the SI, thereby directly demonstrating the intimate relation between the non-monotonic build-up of 
the elastic strain and the mutual strain-induced unbinding of the motors. For the case of nonharmonic cable-like 
motor linkers, the increased number of available rebinding states for the detached motors, see Fig. 8a4, might 
indicate that the mechanical work done by the motors is reduced compared to harmonically coupled motors. 
However, the overall free energy transduction requires a careful analysis of the overall mechanical work produced 
by the system and depends both on the hydrolysis rate and on the reaction free enthalpy of hydrolysis.

Our computational approach can be extended to elucidate other motor systems. One example is provided by 
motor teams that work against the force generated by an optical trap. In the latter context, sub-additive force gen-
eration by several motors has been experimentally observed using teams of up to four kinesin motors20,21. When 
applied to teams of kinesin motors, our theory also leads to sub-additive force generation whereas teams of other 
types of motors can generate force in an additive or even super-additive manner, as will be described elsewhere.

Another aspect that requires further study is the force-dependence of dynein’s unbinding rate. In the pres-
ent study, we assumed a simple exponential force-dependence corresponding to slip bonds. However, both 

Figure 8. Two kinesins and one strong dynein elastically coupled by cable-like linkers: (a1–a4) Time evolution 
of the probability distribution p̂{r1, r2}(t) for the elastic states {r1, r2}. The distribution in (a4) as obtained after 
500 ms is close to the steady state and provides non-zero probabilities for many off-diagonal states with r1 ≠ r2. 
The three regions separated by the white dotted lines in (a4) correspond to states where at least one of the 
kinesins can move in a load-free manner corresponding to F1 = 0 and/or F2 = 0; (b1,b2) Steady state 
probabilities pstˆ {r1, r2} for the motor-motor separation Δr and for its absolute value |Δr|, which demonstrate 
that the most likely configuration is characterized by equal force sharing between the two kinesins, and the most 
likely separation is given by a single motor step; (c) The average elastic forces 〈F±〉(t) display a pronounced 
maximum at t 100  ms, and converge to the steady state values for t ≥ 300 ms. These timescales for maximal 
force generation and force relaxation are similar for both types of linkers, see Fig. 7b. The steady state force 
values, on the other hand, are somewhat smaller for the cable-like linkers than for the harmonic linkers, as 
indicated by the shaded regions and the corresponding differences Δ〈F±〉; and (d) Steady state probabilities 
Pst(n+, n−) for the different activity states indicate that the overall cargo transport is largely unaffected by the 
different types of linkers.
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catch-bond behavior8,18,23 and slip-bond behavior40 have been proposed. Furthermore, it has also been observed 
that when dynein forms a complex with dynactin and the cargo adaptor Bicaudal-D229,41,42, or in the pres-
ence of dynein-interacting protein LIS1 in a motor-cargo complex43, the processivity and force output of these 
complexes are enhanced. These additional properties can be implemented in our framework by adjusting the 
force-dependent parameters of the single motors.

Our model can also be used to study cooperative transport by two teams of motors that have the same polarity 
but move with different velocities44–46 or, more generally, by mixed teams that consist of motors with different sin-
gle motor properties. The theoretical predictions presented here can be scrutinized experimentally by controlling 
the number and types of motors using preparation methods based, e.g., on DNA scaffolds and quantum dots as 
developed recently20,21,30,47,48.

Model and Methods
A detailed description of the model and the computational methods are provided in the sections S1 Theoretical 
description of elastically coupled motors, S2 Complete state space for cargo transport by (2 + 1) motors, and S4 
Non-elastic model for (2 + 1) motors in the SI. Single motor properties and the parameter values used in this study 
are presented below.

Single motor properties. We describe the directed motion of a single motor bound to the filament as a 
one-dimensional random walk with forward and backward stepping rates α and β. The stepping rates determine 
the average motor velocity v via α β− = v/ , where  is the step size of the motor. In the absence of an external 
force F, the motor has the velocity v(F = 0) = v0. A resisting force F > 0 decreases the motor’s velocity v0 until the 
motor stalls at the stall force Fs with v(Fs) = 0. For F > Fs the motor steps backwards and reaches the backward 
velocity −vmin for large positive F-values. For assisting forces F < 0, on the other hand, the velocity reaches its 
maximal value defined by vmax for large negative F-values. The force-velocity relationship v(F) can be para-
metrized in terms of the velocity parameters v0, vmin and vmax as well as the stall force Fs

27,28 for each motor species, 
which has the explicit form
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We use the following sign convention to describe the force-velocity relations of both types of motors: 
v±(F) = ±v(F), where the plus or minus superscript indicates a plus or minus motor. In order o obtain an expres-
sion for the stepping rates of a single motor, we first define the force-dependent forward-to-backward stepping 
ratio q(F) of a single motor. This ratio depends exponentially on the external force and was fitted by27,28,49

= −q F q( ) , (8)
F F

0
1 / s

with the zero-force stepping ratio q0 = 800 for kinesin. For dynein, we use the estimate q0 = 428, in agreement 
with the stepping probabilities of yeast dynein measured by the Vale lab31,32. Note that at the stall force F = Fs the 
stepping ratio becomes q(Fs) = 1, implying equal probabilities for the forward and backward steps of the motor. 
The force-dependent stepping rates of the motor are then defined by27,28

α β≡
−

≡
− 

F v F q F
q F

F v F
q F

( ) ( ) ( )
( ) 1

, and ( ) ( ) 1
( ) 1

,
(9)

for forward and backward steps, respectively, where  is the step size of the motor. Observe that equation (9) 
implies α β− = F F v F( ) ( ) ( )/ .

In the absence of an external force, a bound motor detaches from the filament because of thermal fluctuations 
with a constant zero-force detachment rate ε0. External forces increase this unbinding rate exponentially as

ε ε= | |F F F( ) exp( / ), (10)d0

where Fd is the detachment force determined by the energy barrier between the bound and the unbound state of 
the motor. A detached motor can rebind to the filament with the binding rate π0 which is taken to be independ-
ent of external forces acting on the cargo, i.e., π(F) = π0, because the motor remains in a relaxed state when it is 
detached from the filament4. See Table 1 for the parameter values used in this study.

Data Availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.
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