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S1 Theoretical description of elastically coupled motors

Here we present our general theoretical framework that describes elastic interactions between
an arbitrary number of motors, taking into account all possible mechanical steps performed by
any motor in the system. We first define a one-dimensional Cartesian coordinate x parallel to
the filament. Large positive values of x denote the plus end of the filament, and large negative
values the minus end. We consider the activity state (n−, n+) of the system corresponding to a
cargo that is simultaneously pulled by n− minus and n+ plus motors.

We label the minus motors by i = 1, 2, . . . , n−, and the plus motors by i = n− + 1, n− +

2, . . . , n− + n+. The position of the motor i at the filament is given by x = xi. The motors
are attached to the cargo by linkers that act as elastic springs. The separation between the i-th
motor and the cargo is then defined by

yi ≡ xi − xca . (S1)

Note that the separation yi is negative if the motor i is located between the cargo and the minus
end of the filament and positive otherwise. The elastic linker of the i-th motor has the rest length
L‖ and the spring constant κi. To describe the elastic interaction forces between the motors as
transmitted by the motor-cargo linkers, we will explicitly consider two types of force potentials
corresponding (i) to harmonic springs, and (ii) to nonharmonic cable-like springs.

S1.1 Motors and cargo elastically coupled by harmonic springs

S1.1.1 General aspects of harmonic spring coupling

For harmonic springs, the elastic force Fi,ca that motor i exerts onto the cargo is taken to be

Fi,ca = κi
[
yi − sgn(yi)L‖

]
, (S2)

with the sign function sgn(yi) that takes the values sgn(yi) = +1 for yi > 0 and sgn(yi) = −1

for yi < 0. This piece-wise linear force corresponds to a spring potential V (yi) of the form

V (yi) = 1
2κi(yi − L‖)2 for yi > 0 , (S3)
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and
V (yi) = 1

2κi(yi + L‖)
2 for yi < 0 . (S4)

This piecewise harmonic potential has two minima located at yi = +L‖ and yi = −L‖, which are
separated by a “sharp” barrier. Such a piece-wise harmonic potential may be obtained from a
smooth symmetric double-well potential when we consider the limiting case in which the potential
barrier between the two potential wells develops a kink.

The elastic force given by Eq. (S2) has a discontinuity at yi = 0 corresponding to xi = xca.
Indeed, one has

Fi,ca(yi = 0− ε) ≈ +κiL‖ and Fi,ca(yi = 0 + ε) ≈ −κiL‖ (S5)

for small ε. This discontinuous behavior applies to a real spring between the motor and the cargo
when we assume that the cargo has a fixed perpendicular distance from the filament and when
we focus on the force component parallel to the filament. This spring is compressed for small
negative yi-values with −L‖ < yi < 0 and then pushes the cargo to the right. For small positive
yi-values with 0 < yi < +L‖, the spring is also compressed but now pushes the cargo to the left.
Therefore, such a spring exerts a positive force for small negative yi-values and a negative force
for small positive yi-values which implies that the spring is unstable and “snaps” at yi = 0.

Now, consider a plus motor (kinesin) with label n−+1 ≤ i ≤ n−+n+. If this motor is located
at xi > xca, it would have to perform several backward steps, for fixed cargo position xca, in
order to attain a position with xi < xca. More precisely, if the plus motor started from a position
close to the relaxed position with yi = L‖, it would have to perform about L‖/` backward steps
in order to get to the other side of the cargo. This is not impossible but rather unlikely, at least
for L‖/` � 1. Because the motor stalk is about 80 nm in length and the step size is 8 nm, the
length ratio L‖/` is of the order of 10 and we can then ignore motor states of the plus motors
with xi < xca or yi < 0. For the same reason, we can also ignore motor states of the minus
motors with xi > xca or yi > 0.

In principle, we could also consider initial motor configurations for which a minus motor is
located to the right of the cargo (or a plus motor to the left of the cargo). The minus motor
would then experience an elastic force that pushes it, for fixed cargo position, towards yi = +L‖.
Depending on the height of the barrier of the piecewise harmonic potential, the motor could then
be kinetically trapped in such a state. The latter situation would arise if the elastic force κL‖
that pushes the minus motor in the backward direction (towards the plus end) for small positive
yi-values is large compared to the stall force Fs of the minus motor.

In the following, we will focus on initial motor configurations within the [−ca+] sectors for
which the minus motors are located to the left of the cargo, i.e., between the cargo and the minus
end of the filament while the plus motors are located to the right of the cargo, i.e.,

xi < xca for i = 1, . . . , n− , (S6)
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and
xca < xi for i = n− + 1, . . . , n− + n+ , (S7)

In this way, we will avoid any “snapping” of the elastic linkers as well as any kinetic trapping of
the motors on the side of the cargo opposite to their polarity. As explained in subsection S1.2
below, we can omit the constraints on the ordering of the motor positions as given by Eq. (S6)
and Eq. (S7) if we consider nonharmonic, cable-like linkers.

S1.1.2 Force balance and cargo position

For motor configurations within the [−ca+] sector, the elastic force Fca,i that the cargo exerts
onto the motor i is given by

Fca,i = −Fi,ca . (S8)

It then follows from Eq. (S2) that

Fca,i = −κi(yi + L‖) for the minus motors, (S9)

and
Fca,i = −κi(yi − L‖) for the plus motors. (S10)

We now use the convention that resisting forces acting against the preferred direction of a motor
are taken to be positive, and assisting forces are defined to be negative. In addition, we define
the elastic displacements

ui ≡ −(yi + L‖) for the minus motors, (S11)

and
ui ≡ yi − L‖ for the plus motors. (S12)

As a consequence, the elastic force Fi experienced by the motor i assumes the simple form

Fi = κiui for both plus and minus motors. (S13)

The sign convention implies that Fi = Fca,i for minus motors and Fi = −Fca,i for plus motors.

We now denote the spring constants of the minus and plus motors by κ− and κ+, i.e.,

κi ≡ κ− for i = 1, . . . , n−, (S14)

and
κi ≡ κ+ for i = n− + 1, . . . , n− + n+ . (S15)

The force balance condition as required by Newton’s third law then has the form

n−∑
i=1

κ−ui =

n−+n+∑
i=n−+1

κ+ui (S16)
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When all motors have the same spring constant κ = κ− = κ+, the force balance condition
simplifies and becomes

n−∑
i=1

ui =

n−+n+∑
i=n−+1

ui , (S17)

that is, the sum over all elastic displacements of the minus motors is equal to the sum over all
elastic displacements of the plus motors. The latter relation implies that the elastic state of the
cargo-motor complex can be described by n− + n+ − 1 independent displacement variables ui.

Substituting Eqs. (S1) and (S11-S13) into the force balance condition in Eq. (S16), we obtain
the cargo position

xca = ϕ

κ− n−∑
i=1

xi + κ+

n−+n+∑
i=n−+1

xi + L‖ (n−κ− − n+κ+)

 , (S18)

with the prefactor

ϕ ≡ 1

n−κ− + n+κ+
. (S19)

S1.1.3 Single motor steps and elastic displacements

When one of the motors with label i = j performs a single mechanical step, the motor positions
xi change according to

xj → x′j = xj ± ` ≡ xj + ∆xj (S20)

and
xi → x′i = xi for i 6= j , (S21)

i.e., the positions of the non-stepping motors remain unchanged. In Eq. (S20) the coordinate
change ∆xj = +` corresponds to a forward step of a plus motor or to a backward step of a
minus motor, whereas ∆xj = −` describes a backward step of a plus motor or a forward step of
a minus motor.

Any motor step will affect the cargo position xca. It follows from Eq. (S18) that the cargo
position xca will be shifted according to

xca → x′ca = xca + ∆xca with ∆xca ≡ ∆xj ϕκ+ (S22)

if the stepping motor j is a plus motor, and according to

xca → x′ca = xca + ∆xca with ∆xca ≡ ∆xj ϕκ− (S23)

if the stepping motor j is a minus motor. Thus, a single step of a plus motor shifts the cargo
position by ±` ϕκ+ while a single step of a minus motor shifts this position by ±` ϕκ−, with ϕ
as given by Eq. (S19). The latter expression for ϕ implies that the cargo shift depends on the
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motor numbers n− and n+ as well as on the elastic spring constants κ− and κ+ of the two motor
teams.

The coordinate change ∆xj of the stepping motor together with the cargo shift ∆xca modify
the elastic displacements ui of all motors. If the stepping motor j is a plus motor, its own elastic
displacement is changed according to

uj → u′j = uj + ∆xj (1− ϕκ+) , (S24)

whereas the elastic displacements of the nonstepping motors behave as

ui → u′i = ui −∆xj ϕκ+ for a plus motor with i 6= j , (S25)

and
ui → u′i = ui + ∆xj ϕκ+ for all minus motors. (S26)

Likewise, if the stepping motor j is a minus motor, the elastic displacements are transformed
according to

uj → u′j = uj + ∆xj (1− ϕκ−) for the stepping motor j , (S27)

and according to

ui → u′i = ui −∆xj ϕκ− for a minus motor with i 6= j , (S28)

and
ui → u′i = ui + ∆xj ϕκ− for all plus motors. (S29)

S1.1.4 Elastic substates of the activity state (n−, n+)

We now consider the elastic substates of the activity state (n−, n+), corresponding to all possible
configurations of n− minus and n+ plus motors that are all bound to the discrete binding sites
of the filament. Each of these elastic substates is described by the elastic displacements ui of all
motors. These elastic displacements define the (n− + n+)-dimensional vector

u ≡ (u1, u2, . . . , un−+n+) (S30)

and the relaxed reference state

u0 ≡ (u1 = 0, u2 = 0, . . . , un−+n+ = 0) . (S31)

The vectors u form an (n− + n+)-dimensional vector space with its origin at u = u0.

Note that, in general, the rest length L‖ and the step size ` are two independent length scales.
Therefore, the motor-cargo system will attain a minimal strain substate ums 6= u0 unless the rest
length L‖ and the step size ` are commensurate in the sense that 2L‖ = k∗` with some integer
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k∗. We focus on such a commensurate situation in order to eliminate the rest length L‖ as a
parameter.

Furthermore, we define the (n− + n+)-dimensional unit vectors

êi ≡ (0, 0, . . . , ui = 1, . . . , 0) , (S32)

which can be used to decompose the elastic substates into different components via

u =
∑
i

uiêi . (S33)

Starting from an arbitrary substate u, a single mechanical step of a plus motor with label j
leads to the new elastic substate

u′ = u± `bj (S34)

with the vector

bj = êj + ϕκ+

 n−∑
k=1

êk −
n−+n+∑
k=n−+1

êk

 for j > n− , (S35)

where the plus and minus sign in Eq. (S34) corresponds to a forward and a backward step of the
plus motor j, respectively.

Similarly, a single mechanical step of a minus motor with label j leads to the new substate

u′ = u± `bj (S36)

with the vector

bj = êj + ϕκ−

− n−∑
k=1

êk +

n−+n+∑
k=n−+1

êk

 for j ≤ n− , (S37)

where the plus and minus sign in Eq. (S36) correspond to a forward and a backward step of the
minus motor j, respectively.

Using the vectors bj defined by Eqs. (S35) and (S37), we can now describe all possible elastic
substates of the activity state (n−, n+). Starting from the relaxed state u0 in Eq. (S31), these
substates have the form

u = u0 + `

n−+n+∑
j=1

sj bj = `

n−+n+∑
j=1

sj bj , (S38)

with integer sj , and represent a lattice in u-space. Positive values of sj correspond to sj successive
forward steps of motor j, negative values of sj to |sj | successive backward steps of motor j.
Therefore, we can express each displacement vector u as a superposition of the (n−+n+) vectors
bj .
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Furthermore, because of the force balance condition in Eq. (S16), the elastic displacements
ui satisfy one linear equation and are, thus, not linearly independent. Likewise, the (n− + n+)

vectors bj satisfy the linear relation

n−∑
j=1

bj =

n−+n+∑
j=n−+1

bj (S39)

which implies

bn−+n+ =

n−∑
j=1

bj −
n−+n+−1∑
j=n−+1

bj . (S40)

Therefore, all displacement vectors u can be expressed as linear combinations of the reduced set
of vectors bj with j 6= n−+n+. This reduced set spans a (n−+n+− 1)-dimensional hyperplane
within the (n− + n+)-dimensional vector space with basis vectors êi.

S1.1.5 Elastic substates for two minus motors and one plus motor

For the activity state (n−, n+) = (2, 1) with two minus motors and one plus motor bound to the
filament, the vectors bj defined in Eqs. (S35) and (S37) have the form

b1 =

1− ϕκ−
−ϕκ−
ϕκ−

 , b2 =

 −ϕκ−1− ϕκ−
ϕκ−

 , and b3 =

 ϕκ+
ϕκ+

1− ϕκ+

 (S41)

with ϕ = 1/(n−κ− + n+κ+) as in Eq. (S19) and b1 + b2 = b3. Therefore, the displacement
vectors u are located on a 2-dimensional plane within the 3-dimensional Euclidean space. For
κ− = κ+ ≡ κ, we obtain ϕκ− = ϕκ+ = 1/3 and the vectors bj in Eq. (S41) become identical
with Eqs. (2) and (3) in the main text.

S1.2 Motors and cargo elastically coupled by cable-like springs

We now model the motor linkers as cable-like springs, which behave like harmonic springs when
stretched, but do not generate compressional forces. As before, the minus motors are labeled by
i = 1, 2, . . . , n−, the plus motors by i = n−+ 1, n−+ 2, . . . , n−+n+. Motor i is again located at
x = xi and the cargo at x = xca. The separation between motor i and the cargo is still given by
yi = xi − xca as in Eq. (S1). The force Fca,i that the cargo exerts onto motor i is now given by

Fca,i = −κi(yi + L‖) for yi < −L‖,
= 0 for −L‖ < yi < +L‖, and
= −κi(yi − L‖) for yi > +L‖.

(S42)
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with spring constant κi of the cable-like linker between the cargo and motor i. The associated
force potential has the form

V (yi) = 1
2 κi(yi + L‖)

2 for yi < −L‖,
= 0 for −L‖ < yi < +L‖, and
= 1

2 κi(yi − L‖)2 for yi > +L‖.
(S43)

The latter potential can be obtained from the piece-wise harmonic potential defined by Eqs. (S3)
and (S4) by replacing the compressional part for −L‖ < yi < +L‖ by V (yi) = 0. As a result of
this replacement, we obtain the elastic force Fca,i as given by Eq. (S42), which is now continuous
for all values of yi. Using the Heaviside step function Θ(x) with Θ(x) = 0 for x < 0 and Θ(x) = 1

for x ≤ 0, the elastic force in Eq. (S42) can be rewritten in the more concise form

Fca,i = −κi
[
(yi − L‖)Θ(yi − L‖) + (yi + L‖)Θ(−yi − L‖)

]
. (S44)

When a minus motor with i ≤ n− moves in the force potential V (yi) as given by Eq. (S43),
it will typically be located in the vicinity of yi = −L‖. Indeed, when the motor is closer to the
cargo, it does not experience any force and thus makes forward steps corresponding to its zero-
force velocity until it reaches yi = −L‖. Therefore, we will again define the elastic displacement
ui of a minus motor by ui = −yi − L‖ as in Eq. (S11). Together with our previously mentioned
convention that a resisting force experienced by a motor is positive, we then obtain the single-
motor force

Fi = Fca,i = κi
[
uiΘ(ui) + (2L‖ + ui)Θ(−2L‖ − ui)

]
for i = 1, 2, . . . , n− . (S45)

Likewise, when a plus motor with i > n− moves in the same force potential, it will typically be
located in the vicinity of yi = +L‖. Using the elastic displacement ui = yi − L‖ as in Eq. (S12)
together with our convention about the positive sign for resisting forces, the single-motor force
Fi acting on a plus motor has the form

Fi = −Fca,i = κi
[
uiΘ(ui) + (2L‖ + ui)Θ(−2L‖ − ui)

]
for i = n− + 1, . . . , n− + n+ . (S46)

Thus, when expressed in terms of the elastic displacements ui, the single-motor force acting on
a plus motor has again the same form as for a minus motor.

The force balance condition has the same form as Eq. (S16), i.e.,

n−∑
i=1

Fi =

n−+n+∑
i=n−+1

Fi ,

but with the forces now given by Eqs. (S45) and (S46). If all (n−+n+) motors have non-relaxed
linkers, i.e., for ui > 0 or ui < −2L‖ for all i, one obtains the cargo position xca as given by
Eq. (S18). In general, however, we need to examine for each motor i whether it has a relaxed
linker or not, which leads to a total number of 2n−+n+ cases for the force balance condition.
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One can then determine the cargo position xca and the prefactor ϕ, see Eq. (S19), for these
different cases and calculate the elastic displacements ui for each mechanical step. In contrast to
harmonic springs, the plus and minus motors can now attain any position relative to the cargo
and the ordering of these motors is no longer constrained by Eqs. (S6) and (S7).

S2 Complete state space for cargo transport by (2+1) motors

The dynamics of the (2+1)-motor system is described as a continuous-time Markov process or
master equation on a discrete state space. Such a process has the following basic ingredients: the
activity states of the motor system, the elastic substates, and the possible transitions between
the states and substates. Furthermore, the different transitions are characterized kinetically by
certain transition rates which depend, in general, on forces experienced by the motors.

As mentioned in the main text, the system with N− = 2 minus and N+ = 1 plus motors can
dwell in 8 different activity states with n− ≤ 2 minus and n+ ≤ 1 plus motors simultaneously
pulling the cargo, see Fig. 2 of the main text. When all motors are detached from the filament,
i.e., for n− = n+ = 0, the motor-cargo complex remains in a diffusive state until one of the
available motors rebinds to the filament. In activity states with a single motor pulling on the
cargo, i.e., for (n−, n+) = (1, 0)1, (1, 0)2 or (0, 1), Eqs. (S1) and (S11-S13) with Eq. (S18) imply
that the elastic force acting on the single motor vanishes. Thus, only activity states with n =

n− + n+ ≥ 2 include elastic substates that correspond to single mechanical steps of the bound
motors, compare Fig. 3 in the main text.

The three-motor activity state (n−, n+) = (2, 1) consists of elastic substates {r1, r2}, where
r1 = s1 + s3 and r2 = s1 + s3 are the displacement numbers, corresponding to different motor
configurations. These configurations are connected by transitions arising from single steps of
individual motors, see left box of Fig. 3 in the main text. In the latter box, horizontal and
vertical edges correspond to forward and backward steps of one of the two minus motors, and
the diagonal edges to stepping events of the plus motor. The stepping transitions are governed
by the forward and backward stepping rates α(F ) and β(F ), see Eq. (9) in the main text.
Note that the forces acting on the three motors in the elastic substate {r1, r2} are given by
F{r1, r2} = (F1, F2, F3) = κu{r1, r2}. Therefore, the stepping rates depend on the elastic
substate and can be different for each motor in that substate.

S2.1 Force dependent transition rates

During a single mechanical step, the elastic force acting on the motor changes monotonically
from its initial value before the step to its final value after the step [1], hence the effective force
acting on the motor is given by the arithmetic mean of these values. In the activity state (2,1),
for instance, the effective force acting on the minus motor j = 1 during a forward step is given
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by

F̄>(u1) = 1
2κ`

(
2r1 − r2

3
+

2(r1 + 1)− r2
3

)
=F (u1) + Fκ/3 ,

(S47)

where Fκ ≡ κ` is the elastic strain force corresponding to an extension of a motor linker by `.
Similar calculations for backward steps and for all remaining motors define the effective forces
acting on the j-th motor by

F̄>(uj) ≡ F (uj) + Fκ/3 , during a forward step, and (S48)

F̄<(uj) ≡ F (uj)− Fκ/3 , during a backward step. (S49)

All forward and backward stepping rates in the activity state (2, 1) are then determined by
α(F̄>(uj)) and β(F̄<(uj)), respectively.

Any of the three bound motors can unbind from an elastic substate {r1, r2} of the activity
state (2, 1) with the unbinding rate

ε±(Fj) = ε±0 exp(|Fj |/F±d ) , (S50)

where F±d denotes the detachment force of a single plus or minus motor, and we used F (uj) ≡ Fj
for notational clarity. Starting from the activity state (2,1), the detachment of a minus motor
leads to the activity state (n−, n+) = (1, 1), describing a tug-of-war between a single minus and
a single plus motor. As mentioned before, we distinguish the states (1, 1)1 and (1, 1)2 as well as
the states (1, 0)1 and (1, 0)2 where the subscripts correspond to the minus motor labels j = 1, 2.

Evaluating the displacement vector u as defined by Eq. (S38) for the motors i = 1 and j = 3

in the activity state (1, 1)1, we obtain

u = (u1, u3) = ` r1
(
1
2 ,

1
2

)
, (S51)

such that the displacement number r1 determines all possible elastic forces in this activity state.
The same analysis applies for the tug-of-war between the motors i = 2 and j = 3, where the
displacement number r2 determines the elastic substates of the activity state (1, 1)2.

Starting from the activity state (2, 1), a detachment of the single plus motor leads to the
activity state (n−, n+) = (2, 0). The latter state includes two identical motors bound to the
filament, thus, its strain space is also determined by a single variable representing the steps of
the motors. In this case the displacement vector u is evaluated as

u = (u1, u2) = ` r12
(
1
2 ,−1

2

)
, (S52)

where we introduced the variable r12 ≡ r1 − r2 = s1 − s2 and denote the elastic substates of the
activity state (2, 0) by {r12}.
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As in Eqs. (S48) and (S49), the effective forces acting on the motors during stepping transitions
between different elastic substates of the activity states (1, 1) and (2, 0) are given by

F̄>(uj) ≡ F (uj) + Fκ/2 , during a forward step, and (S53)

F̄<(uj) ≡ F (uj)− Fκ/2 , during a backward step, (S54)

where j = 1, 3 and j = 2, 3 for the two activity states (1, 1)1 and (1, 1)2, respectively, and j = 1, 2

for the state (2, 0).

Further unbinding events from the two-motor bound states (1, 1)1, (1, 1)2 or (2, 0) can lead to
three single motor states: two single minus motor states (1, 0)1 and (1, 0)2, as well as one single
plus motor state (0, 1). When the process dwells in one of the single motor states, we assume
that the single bound motor carries the cargo particle in a load-free manner. The rate at which
it unbinds from the filament is thus determined by the zero-force unbinding rate ε±0 . We also
include the unbound cargo state (0, 0) in the state space, where all motors are detached from
the filament.

Rebinding of a detached motor to the filament occurs with the force-independent binding rate
π±0 . Generally, when an unbound motor rebinds to the filament its linker will be in a relaxed
state. This is the case for rebinding events from single motor states (1, 0)1, (1, 0)2, and (0, 1) to
two-motor states (2, 0), (1, 1)1 and (1, 1)2. However, when a detached motor rebinds from one
of the latter activity states with two bound motors, the elastic substate of the system prior to
rebinding will have an effect on elastic substate at which the system arrives after rebinding.

Suppose, for example, that the system dwells in the elastic substate {r1 = 3} of the activity
state (1, 1)1, with the second minus motor being detached from the filament. It follows from
Eq. (S51) that the elastic force acting on both bound motors is given by F1 = F3 = 3κ`/2. If
the detached minus motor now rebinds to the filament, we would like to obtain a motor config-
uration for which the rebound motor is relaxed and the elastic forces acting on the previously
bound motors remain unchanged. However, none of the elastic substates {r1, r2} of the activity
state (2, 1) generates the elastic force vector F = (32κ`, 0,

3
2κ`). The same situation arises for

rebinding events from elastic substates of the activity states (2, 0), (1, 1)1 and (1, 1)2, whenever
the separation of the bound motors before the rebinding of the third motor is given by (2k+ 1)`

with integer k. In such cases, we allow the detached motor to rebind to the “nearest” possible
state such that its linker is either stretched or compressed by an amount of `/3, depending on the
elastic substate prior to its rebinding. This rule generates a strain energy of κ(`/3)2 ' 1.4 pN nm

per rebinding event, which is about kBT/3 at T = 300K.

S2.2 Markov process on complete state space for (2+1) motors

Starting from the complete state space corresponding to the network in Figs. 2 and 3 of the
main text, we now define a Markov process on this network by a transition rate matrix W with
the matrix elements Wij = ωij for i 6= j, and to Wii = −∑k ωik. For a given choice of motor
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parameters, see Table 1 in the main text, all transition rates ωij of the complete network are
fixed, and the time evolution of the probability pi(t) to find the system in state i at time t is
described by the master equation

∂

∂t
pi(t) =

∑
j

[ωjipj(t)− ωijpi(t)] . (S55)

The steady state probabilities as displayed in Fig. 4 in the main text satisfy ∂
∂tpi(t) = 0 and can

be obtained by calculating the eigenvector of the associated transition rate matrix with eigenvalue
zero. To define the transition rate matrix W, we first make an ordered list of all states in the
complete network as described in the previous section. For each state labelled by i we then
consider all outgoing rates, which determine the diagonal elements Wii = −∑k ωik, and the off-
diagonal elements Wij = ωij for i 6= j. For the substates of the activity state (2,1), for instance,
all outgoing rates are determined by the force-dependent forward and backward stepping rates
α±(F ) and β±(F ), as well as the unbinding rates ε±(F ) of each motor in the system, where the
single-motor forces F are determined by the displacement vector u, see Eq. (S38). Having defined
all entries Wij of the transition rate matrix, we then calculate its eigenvector corresponding to
the eigenvalue zero using built-in functions in Mathematica 9.0 [2].

To obtain the time-evolution of these probabilities as presented in Fig. 7 of the main text, we
integrated the master Eq. (S55), forward in time using the asymptotic equality

pi(t+ ∆t) ≈ pi(t) + ∆tWpi(t) (S56)

for small time intervals ∆t. The latter expressions are evaluated numerically starting from
the initial distribution pi(t = 0) = δij0 corresponding to the relaxed elastic substate j0 = {s1 =

0, s2 = 0, s3 = 0} of the activity state (2, 1). For the calculations in Fig. 7 and 8 of the main text,
we used the time interval ∆t = 10−4 s, and for the calculation in Fig. S1 the value ∆t = 10−3 s.

S3 Motor teams with different spring constants

In the main text, we present our results for two opposing teams of motors with identical spring
constants κ− = κ+ = κ. In general, however, the kinesin and dynein motors have a very different
molecular structure and one might expect that the spring constants κ− and κ+ have different
values. Here we investigate the effects of unequal spring constants for a tug-of-war between two
dyneins against a single kinesin. We choose the values κ− = κ+/4 = 0.05 pN/nm for the dynein
motors, in agreement with estimates from experimental data, see Refs. [3, 4].

For the case κ− 6= κ+, the prefactor ϕ, which determines the cargo shift at each mechanical
step, depends on the κ±-values, see Eq. (S19). In the activity state (n− = 2, n+ = 1), for
instance, it is given by ϕ = 1/(2κ− + κ+) = 2/(3κ+). A single step of the plus-directed kinesin
now displaces the cargo by an amount ϕκ+ ` = 2`/3, as follows from Eq. (S22), whereas a
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single step of one of the dyneins leads to a displacement of ϕκ− ` = `/6. All force-dependent
transitions in the complete state space are governed by the elastic forces F, which determine the
corresponding transition rates and can be evaluated using Eqs. (S13) and (S38) for each activity
state (n−, n+), as described above for the case with κ− = κ+.
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Figure S1: (a1-a4) Time evolution of the conditional probability distribution p̂{r1, r2}(t) for the elastic
substates {r1, r2} of the activity state (2,1) for two weak dyneins against one kinesin. The stiffness
of dynein motors is set to be κ− = 0.05 pN/nm, which is 4-fold lower than kinesin’s spring constant
κ+ = 0.2 pN. The long-time limit of the probability distribution in (a4) displays tails towards high rj-
values, in contrast to the steady state distribution plotted in Fig. 4(b1) of the main text. (b) The time
evolution of the average elastic forces 〈F±〉(t) generated during the tug-of-war exhibits a maximum at
intermediate timescales, which is less pronounced than for κ− = κ+ see Figs. 7(b) and 8(c). The steady
state values 〈F±〉st slightly deviate from the corresponding values for κ− = κ+.

We now focus on the case of two weak dyneins and one kinesin with κ− = κ+/4 = 0.05 pN/nm.
In Figs. S1(a1-a4) we present the time evolution of the conditional probability distribution
p̂{r1, r2} for the elastic substates {r1, r2} of the activity state (2,1). The process converges
to the steady state after approximately t ' 400ms, which exceeds the corresponding timescale
of t ' 300ms for the case of identical linkers (data not shown). We observe that the lower
κ− of the two dynein motors leads to a broadening of the probability distribution around the
diagonal states, as illustrated in Fig. S1(a4). Interestingly, this broadening is different from the
case of cable-like motor linkers, see Fig. 8(a4) of the main text. One might speculate that the
low stiffness of the dynein motors with a large load-free velocity of v0 = 800 nm/s, see Table 1
in the main text, allows them to take a larger amount of successive forward steps as compared
to the identical spring case. In contrast to the cable-like linker model, however, the number of
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available rebinding sites are limited and thus the distribution does not spread towards negative
rj-values.

Furthermore, the time evolution of the average forces plotted in Fig. S1 displays a less pro-
nounced maximum force and slightly lower asymptotic values than for identical spring constants.
The latter feature is also observed for cable-like springs, see Fig. 8(c) in the main text. As in all
other cases studied here, the most likely configuration is characterized by equal force sharing.
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Figure S2: Limit of small unbinding rates for the tug-of-war between two kinesins
and one strong dynein: Time evolution of the average elastic forces 〈F±〉(t) experienced by the
motors for small unbinding rates as described by Eq. (10) of the main text with ε+0 = ε−0 = 0.001 /s and
F+
d = F−

d = 6pN. Both the average elastic force 〈F+〉(t) acting on both kinesins and the average elastic
force 〈F−〉(t) experienced by the dynein increase monotonically with time t and approach the values
predicted by the non-elastic model F±

MKL (dashed and dotted horizontal lines) for large t. In contrast to
the behavior displayed in Fig. 7(b) of the main text, no maxima are observed at intermediate times t
because strain-induced unbinding events are strongly suppressed.

S4 Tug-of-war in the limit of small unbinding rates

In Fig. 6 of the main text we investigate the limiting case of small unbinding rates for all motors,
and observe that the steady state forces approach the values predicted by the non-elastic MKL
model. We now consider the time evolution of the elastic forces in the same limit for the tug-of-
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war of two kinesins and one strong dynein. Inspection of Fig. S2 reveals that the time evolution
of the limit system leads to a monotonous increase in the elastic forces generated during the tug-
of-war. Thus, we conclude that antagonistic motor teams continuously step in their preferred
direction of movement and that occasional backward steps do not lead to a maximum of 〈F±〉(t).
Furthermore, in this limit the timescale for the force relaxation is about t ' 1000ms, which is
much longer than the corresponding timescale of approximately 300ms for the case considered
in the main text, see Fig. 7(b).

S5 Non-elastic model for (2+1) motors

The Müller-Klumpp-Lipowsky (MKL) model [5, 6, 7] provides a description of a tug-of-war
between multiple antagonistic motors without elastic interactions. The model is based on a
coarse-grained description of motor motion that does not include single steps taken by the motors.
According to the MKL model, when two antagonistic motors are simultaneously bound to the
filament they exert opposing forces onto each other through the cargo particle. The value of
this interaction force, the cargo force Fca, is determined by the following assumptions: As a
result of the cargo force, both the plus and the minus motors reduce their velocities and the
whole cargo-motor complex moves with a single velocity, the cargo velocity vca, determined by
an instantaneous velocity matching of both motor teams [7, 1].

v+HFL
v-HFê2L

2Fs-Fs+
F

v0-

v0+
v±HFên±L

(Fca, vca)

Figure S3: Cargo force of the non-elastic MKL model: Rescaled force-velocity relations for
n− = 2 minus and n+ = 1 plus motors with identical stall forces F+

s = F−
s . The cargo force Fca of the

MKL model is determined by the velocity matching condition v+(Fca/n+) = v−(Fca/n−) = vca, where
both motor teams move with the same velocity vca into the direction of the stronger motor team. The
equal force sharing assumption then implies that at the intersection point (Fca, vca) the force acting on
both minus motors is given by F− = Fca/2, whereas the single plus motor is subject to F+ = Fca.
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In the MKL model, the force acting on the motors is assumed to be shared equally by all
motors of the same team [6, 7]. This equal force sharing condition implies that the force-velocity
relation of the plus or minus motor team is given by the rescaled expression v±(F/n±), where
F is the external force acting on the motors, and F/n± is the force acting on a single motor
of the plus or minus motor team. The velocity matching condition of opposing motors can be
visualized by plotting the rescaled force-velocity relations of a single plus and minus motor in
the same (F, v)-diagram [1]. Fig. S3 displays the rescaled force-velocity relations of the motors
for n+ = 1 plus and n− = 2 minus motors simultaneously attached to the filament. The cargo
force Fca(n− = 2, n+ = 1) and the cargo velocity vca(n− = 2, n+ = 1) are then given by the
coordinates at the intersection of both force-velocity relations. At the intersection point (Fca, vca)

the two attached minus motors share the cargo force equally, i.e., F− = Fca/2, while the single
plus motor bears F+ = Fca. Note that the equal force sharing condition of the MKL model
implies an additive force generation of motors by increasing number of motors. Thus the force
value to stall a single motor in a given motor team increases additively with the number of
attached motors in that team, i.e., F = n±F

±
s .
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