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In this supporting information, we derive the equations (2) - (4) of the main text. The
derivation of the mechanical tension in necklace-like tubes is supplemented by Figures S1
and S2.

Spherical and Cylindrical Membrane Segments

Consider a vesicle membrane with bending ridigity κ and spontaneous curvature m. The
membrane is exposed to a certain pressure difference Pin−Pex between the pressures within
the interior and exterior aqueous solutions and experiences the mechanical tension Σ. If
a membrane segment has a shape with constant mean curvature and constant Gaussian
curvature, the theory of curvature elasticity implies a shape equation that is polynomial in
these curvatures. Examples for such shapes are spheres and cylinders. [1, 2] For a spherical
membrane segment with mean curvature Msp, the polynomial shape equation can be written
in the form [2]

Pin − Pex = 2Σ̂Msp − 4κmM2
sp (S1)

with the total membrane tension

Σ̂ ≡ Σ + σ = Σ + 2κm2 (S2)

which consists of the mechanical tension Σ and the spontaneous tension σ. For a cylindrical
tube with mean curvature Mcy, one obtains two shape equations that have the form

Pin − Pex = 2Σ̂Mcy − 4κM3
cy (S3)

and
Pin − Pex = 4Σ̂Mcy − 16κmM2

cy + 8κM3
cy . (S4)

Note that the total membrane tension Σ̂, which includes the spontaneous tension σ = 2κm2,
enters all three shape equations (S1), (S3), and (S4).

Mechanical Tension of Cylindrical Nanotubes

Next, consider a cylindrical nanotube that protrudes from a spherical mother vesicle with
mean curvature Mmv. Mechanical equilibrium between the tube and the mother vesicle
imply the three shape equations (S3), (S4), and (S1) with Msp = Mmv, from which one can
eliminate the pressure difference Pin − Pex and the mechanical tension Σ. As a result, one
obtains the mean curvature

Mcy ≈ m− 1
4Mmv for small Mmv/|m| . (S5)
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When we eliminate the pressure difference by a combination of (S3) and (S4), we can express
the mechanical tension in terms of the mean curvature Mcy. Inserting the expression for
Mcy as given by (S5), we obtain the mechanical tension [2]

Σ ≈ κmMmv =
Mmv

2m
σ ≈ − Rcy

Rmv
σ for small Rcy/Rmv (S6)

with the spontaneous tension σ = 2κm2. Because the radius Rmv = 1/Mmv of the mother
vesicle is much larger than the tube radius Rcy = 1/(2|Mcy|) ≈ 1/(2|m|), the absolute value
of the mechanical tension, |Σ|, is much smaller than the spontaneous tension σ.

Mechanical Tension of Necklace-Like Nanotubes

Giant vesicles also form another type of nanotubes as provided by necklace-like tubes that
consist of small spheres connected by closed membrane necks. [2, 3] The shape equation
for each small sphere is given by (S1) with Msp = Mss while the spherical mother vesicle
satisfies the same equation (S1) with Msp = Mmv. Eliminating the pressure difference from
these two equations, we obtain the mechanical tension

Σ = 2κm(Mss +Mmv)− 2κm2 . (S7)

Particularly interesting shapes are provided by the limit shapes L[N ] that consist of a spher-
ical mother vesicle and necklace-like in-tubes with N small spheres which can form for
negative spontaneous curvature m < 0. [3] Each small sphere of these in-tubes has the
mean curvature Mss = m, which implies that the in-tubes have zero bending energy. The
necks connecting two small spheres then satisfy the neck closure condition Mss +Mss = 2m
and the mechanical tension of the limit shapes L[N ] is equal to

Σ = 2κm(m+Mmv)− 2κm2 =
1

mRmv
σ = − Rss

Rmv
σ (S8)

as follows from the expression (S7) with Mss = m. Because the radius Rmv of the mother
vesicle is again much larger than the radius Rss = 1/|m| of the small spheres, the absolute
value |Σ| of the mechanical tension in (S8) is again much smaller than the spontaneous
tension σ.

For a given membrane area, the limit shapes L[N ] represent the equilibrium shapes of the

tubulated vesicle for certain vesicle volumes or, equivalently, for certain values A
[N ]
nt =

N4π/m2 of the membrane area Ant stored in the tubes. [3] Furthermore, each shape L[N ]

belongs to a whole branch of shapes, as illustrated by the four branches in Fig. S1. This
figure displays the bending energy landscape Ent for a necklace-like tube that grows as we
reduce the volume of a GUV, the size of which is much larger than the width of the nan-
otubes. The deflation process decreases the membrane area Amv of the mother vesicle and
increases the area Ant stored in the tube, for fixed total area A = Amv +Ant. The bending
energy of the tubulated GUV is equal to Emv + Ent where the bending energy Emv of the
mother vesicle is a monotonically decreasing function of Ant. Examples for the morphologies
of the necklace-like tubes along several branches of the energy landscape are displayed in
Fig. S2.

Inspection of the energy landscape in Fig. S1 reveals that the equilibrium shapes with the
lowest bending energy Ent are provided by short segments of the [N ]-branches as obtained
by slight deflation and slight inflation of the limit shapes L[N ]. Slight deflation of L[N ]

reduces the vesicle volume and increases the area Ant of the necklace-like tubes until we
reach the intersection point of the [N ]-branch with the [N + 1]-branch at tube area Ant =
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Figure S1: Energy landscape Ent of a necklace-like nanotube protruding into a GUV as

a function of membrane area Ant stored in the tube. In accordance with the experiments,

the size of the GUV is taken to be much larger than the width of the nanotubes. The

energy landscape is built up from a discrete set of [N ]-branches with N ≥ 1. The different

branches are distinguished by different colors. Each [N ]-branch attains its energy minimum

for the limit shape L[N ] which consists of N small spheres with radius Rss = 1/|m| and area

4π/m2. When we deflate the limit shape L[N ], i.e., when we reduce the vesicle volume for

fixed membrane area, we move towards larger values of the tube area Ant along the dotted

lines which represent necklace-like tubes with N small spheres of radius Rss > 1/|m| and

N − 1 closed necks. When Rss reaches the limiting value Rss = 3/|m|, the small spheres

undergo a sphere-prolate bifurcation (outside of the figure). When we inflate the limit shape

L[N ], we move towards smaller values of Ant along the full lines that represent necklace-like

tubes with N bellies and N − 1 open necks. The dash-dotted lines represent unstable

necklace-like tubes corresponding to transition states [N,N + 1] between the (meta)stable

[N ] and [N+1] states. The red circles mark the nanotube morphologies displayed in Fig. S2.
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Figure S2: Morphologies of necklace-like nanotubes corresponding to the red circles in

Fig. S1. The number at the top of each tube represents the tube area Ant in units of 4π/m2:

(a) Four shapes along the (meta)stable [3]-branch. The shape with Ant = 1.86 represents the

bifurcation point between the [3]-branch and the unstable [2, 3]-branch of transition states.

The shape with Ant = 3 is the limit shape L[3]; (b) Three shapes along the [2, 3]-branch.

The shape with Ant = 2.13 is located at the energy minimum of the [2, 3]-branch, the shape

with Ant = 2.36 separates transition states with three from those with two bellies; and (c)

Metastable shape of the [2]-branch that decays into the limit shape L[3] via the rightmost

transition state in (b) with Ant = 3 (two arrows).
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(N + εN )4π/m2 with a dimensionless coefficient εN that satisfies 0 < εN < 1. We now
increase the tube area by

Ant −Ant(L
[N ]) ≡ δN

4π

m2
with 0 ≤ δN ≤ εN (S9)

which leads to the small sphere curvature

Mss =
m√

1 + δN/N
≈ m

(
1− δN

2N

)
for large N. (S10)

The number N of small spheres is directly related to the length Lnt of the necklace-like
nanotube via Lnt = 2N/|Mss| which implies

Mss ≈ m+
δN
Lnt

for large Lnt � Rss, (S11)

i.e., for a tube length Lnt that is large compared to the radius Rss of the small spheres, with
0 < δN < 1. Using the general expression (S7) for the mechanical tension Σ of necklace-like
tubes, we obtain

Σ ≈ 2κm

(
Mmv +

δN
Lnt

)
=

(
1

mRmv
+

δN
mLnt

)
σ (S12)

Therefore, the absolute value |Σ| of a necklace-like tube is much smaller than the spontaneous
tension σ if both the mother vesicle radius Rmv and the tube length Lnt are much larger
than the small sphere radius Rss ≈ 1/|m|. Both conditions were fulfilled during the initial
aspiration of all tubulated GUVs that were used to obtain the data in Fig. 5 of the main text.
For these GUVs, the mechanical tension Σ can be neglected compared to the spontaneous
tension σ for both cylindrical and necklace-like nanotubes as summarized by equation (2)
of the main text.

Pressure balance during micropipette aspiration

When a GUV is aspirated by a micropipette, the vesicle membrane separates the aqueous
solution into three distinct compartments: the interior solution with pressure Pin, the exte-
rior solution with pressure Pex, and the solution within the micropipette with pressure Ppip.
Aspiration by a micropipette with radius Rpip leads to a membrane tongue with a spherical
end cap that has the mean curvature Mto ≤ 1/Rpip which increases initially from the value
Mto = 1/Rve, the mean curvature of the nonaspirated mother vesicle, up to Mto = 1/Rpip

and then remains constant during further aspiration. Thus, it is useful to distinguish initial
aspiration with 1/Rve < Mto < 1/Rpip from prolonged aspiration with Mto = 1/Rpip.

The mean curvature Mmv = 1/Rmv of the spherical mother vesicle satisfies the shape equa-
tion

Pin − Pex = 2Σ̂Mmv − 4κmM2
mv . (S13)

as in (S1) with Msp = Mmv. Likewise, the spherical end cap of the tongue is described by
the shape equation

Pin − Ppip = 2Σ̂Mto − 4κmM2
to (S14)

as in (S1) with Msp = Mto and the exterior pressure Pex replaced by the pipette pressure

Ppip. Substracting (S13) from (S14) and using the decomposition Σ̂ = Σ + σ of the total
membrane tension as in (S2), we obtain the relationship

Pex − Ppip = [Mto −Mmv] [2Σ + 2σ − 4κm(Mto +Mmv)] ≡ Pel (S15)

between the suction pressure Pex − Ppip and the elastic counter pressure Pel. With Mto =
1/Rto and Mmv = 1/Rmv, the two equalities in (S15) become identical with equations (3)
and (4) in the main text.
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