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ABSTRACT: In the living cell, we encounter a large variety
of motile processes such as organelle transport and
cytoskeleton remodeling. These processes are driven by
motor proteins that generate force by transducing chemical
free energy into mechanical work. In many cases, the
molecular motors work in teams to collectively generate
larger forces. Recent optical trapping experiments on small
teams of cytoskeletal motors indicated that the collectively
generated force increases with the size of the motor team but
that this increase depends on the motor type and on whether
the motors are studied in vitro or in vivo. Here, we use the
theory of stochastic processes to describe the motion of N
motors in a stationary optical trap and to compute the N-
dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two
myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the
single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior
reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical
results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
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In biological systems, directed motion at the nanoscale is
primarily driven by motor proteins. These biomolecular

machines transduce the chemical free energy released from
nucleotide hydrolysis into mechanical work, which is expended
in diverse processes ranging from intracellular cargo transport1

to microtubule alignment and spindle formation in mitosis.2,3

Superfamilies of kinesin, dynein, and myosin represent
cytoskeletal motors that move on microtubules and actin
filaments and typically cooperate in teams consisting of several
motors.4−6 An improved understanding of the behavior of
motor teams is necessary to elucidate, e.g., cargo transport over
distances ranging from micrometers to a meter such as in
neurons7,8 and becomes increasingly relevant for the
production of re-engineered or de novo motors9 for prospective
nanotechnological applications, such as in sensitive biosensing
and diagnostics beyond microfluidics.10

Properties of single molecules, such as the force generation
or stepping dynamics of a single motor, can be systematically
explored by in vitro optical trapping experiments.11 In addition
to the single-molecule techniques, DNA-based motor
assemblies make it possible to control the number of motors
within a team and to characterize the collective dynamics, e.g.,
via run length and velocity measurements, as well as precise
detection of intermotor distances.12,13 Furthermore, forces
generated collectively by motor teams can be directly

measured using stationary optical traps, both in vivo and in
vitro. From such measurements, both “additive” and “sub-
additive” behavior has been proposed: For kinesin-1 in vitro,
the collectively generated force was found to be much smaller
than the sum of the single-motor forces, corresponding to
“subadditive” behavior.14,15 On the other hand, the measure-
ments on kinesin-1 in vivo,16 kinesin-5,3,17 and cytoplasmic
dynein18−20 indicated that, for these motors, the collectively
generated force is almost equal to the sum of the single-motor
forces.
In this paper, we develop a unifying theoretical description

that explains the diverse collective behavior of the different
motor types in terms of their single-molecule properties. We
first investigate forces generated by a single motor in a
stationary optical trap and show that the average force of a
single motor can deviate strongly from its stall force at which
the motor stops. We then study collective forces generated by
teams of kinesin-1 and of two types of dynein motors and find
subadditive force generation for kinesin-1 and yeast dynein as
well as almost additive force generation for mammalian dynein.
We show that subadditive force generation cannot be explained
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by the force sharing configurations of active motors during
strain generation. We compare our theoretical results with two
sets of experimental data on kinesin-1 and find very good
quantitative agreement. We furthermore study force generation
of three additional motor types, including two types of
myosins, and find that collective forces increase linearly with
the number of motors in a team for all motor types.
Surprisingly, weak motors with a low stall force can generate
forces that are closer to their collective stall force as opposed to
strong motors. Using a coarse-grained model, we finally link
collectively generated forces to properties of single motors and
predict that cooperativity in force generation improves
considerably for teams consisting of motors with a low stall
force and/or detachment rate, i.e., for weak and/or processive
motors, respectively. In contrast, strong and/or slow motors
exhibit impaired cooperativity because they frequently unbind
from the track before reaching their collective stall force.
Single-Motor Properties.We consider a stationary optical

trapping assay with a team consisting of N available motors
pulling on a bead; see Figure 1. Each motor can step forward

and backward with force-dependent rates α(F) and β(F),
respectively. Motors can also unbind from their track with a
force-dependent rate ϵ(F) and rebind to it with a constant rate
π0. As a consequence, at each time point, the number n of
active motors, i.e., motors that are attached to the track, can
change stochastically with 0 ≤ n ≤ N. The unbinding rate
depends exponentially on the force acting on the motor, i.e.,
ϵ(F) ≡ ϵ0 exp(|F|/Fd), where ϵ0 is the zero-force unbinding

rate and Fd is the detachment force of a single motor. Forward
and backward stepping rates are related to the force−velocity
relation of a single motor via α β− =F F v F( ) ( ) ( )/ , where
is the step size of the motor. The velocity v(F) is a
monotonically decreasing function of the force acting on the
motor with the zero-force velocity given by v(F = 0) = v0.
When the force F experienced by the motor reaches the stall
force Fs, its velocity becomes zero, i.e., v(F = Fs) = 0, and the
motor steps forward and backward with equal probabilities due
to α(F) = β(F). In general, one can define “strong” and “weak”
motors using the ratio of stall force Fs to detachment force Fd.
However, because the detachment force Fd varies only between
2 and 3 pN for all motors studied here, whereas the stall force
varies between 1 and 7 pN, we will consider motors with a stall
force Fs < 3 pN as weak and with Fs > 3 pN as strong. For all
parameter values used in this paper, which were obtained from
refs 3, 17, and 20−37, see Table S1 in the Supporting
Information. We note that, so far, a full set of motor
parameters has only been measured for kinesin-1. For the
other motors, we complemented the list of motor parameters
by values that have been measured for different motor types.
The choice of the motor parameters is explained in more detail
in section S1.2 in the Supporting Information.

Forces Generated by a Single Motor. We first
investigate the force generation by a single available motor
(N = 1) in an optical trap, as illustrated in Figure 1a. Single
steps taken by the motor as well as the detachment events lead
to bead displacements that determine the instantaneous force

n measured by the optical trap, where n = 1 and n = 0
correspond to active (attached) and inactive (detached) motor
states, respectively. For n = 1, the force measured by the
optical trap is equal to the elastic force experienced by the
motor, i.e., = F1 1, whereas = 00 for n = 0, because the
motor does not experience any forces when it is detached. The
elastic force F1 acting on the active motor is given by

κ=F s1 eff 1 with the effective spring constant κeff ≡ κtκm/(κt +
κm), where κt is the trap stiffness and κm is the spring constant
of the motor linker.38 The step number s1 corresponds to the
distance of the motor from a relaxed configuration with F1 = 0
in units of the step size
We focus on force generation by kinesin-1 and two different

types of dyneins, strong and weak dynein, corresponding to
yeast and mammalian cells, respectively. The difference
between yeast and mammalian dynein is likely to arise from
a C-terminal “cap” absent in yeast dynein, which regulates
dynein’s force output and processivity.39 Although dynein’s
force generation remains controversial with different in vivo
and in vitro behavior,40 we use yeast and mammalian dynein to
represent generic strong plus slow and weak plus fast types of
motors, respectively;41 see Table S1 in the Supporting
Information for the corresponding parameter values.
Figure 2 displays exemplary trajectories of single motors

pulling a bead in an optical trap as obtained from Monte Carlo
simulations; see section S1.3 in the Supporting Information for
details. The trajectories include regions where the single motor
actively pulls on the bead, which leads to force generation, and
regions with zero bead displacement following the single-
motor detachment events (orange arrows). The average single-
motor force ⟨ ⟩1 is calculated by averaging over all force values
generated during the active pulling of the single motor, i.e.,
excluding contributions from the detached motor states with n
= 0. We observe that the average force ⟨ ⟩1 can be (i)

Figure 1. Force generation by molecular motors in a stationary optical
trap. An arbitrary number N of available motors, here illustrated for
(a) N = 1 and (b) N = 2, can pull on a bead (gray sphere) and take
discrete steps of size on a polarized track (here depicted by a 2d
surface). The spring attached to the wall on the left-hand side
represents the laser field of the optical trap. Each motor with label j
stochastically steps forward and backward with force-dependent rates
α(Fj) and β(Fj), respectively, and unbinds from the track with the
force-dependent unbinding rate ϵ(Fj). Detached (inactive) motors
can rebind to the track with a constant rebinding rate π0. The
unbinding and rebinding events change the number n of attached
(active) motors with 0 ≤ n ≤ N. Elastic forces Fj corresponding to the
extension of the motor linkers are in general different for each active
motor, e.g., F1 ≠ F2 as depicted in panel b, and the optical trap
measures the overall force = ∑ Fn j

n
j at any instant.
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somewhat lower than, (ii) very far from, or (iii) very close to
the stall force Fs of the single motor: Although kinesin-1 and
strong dynein have the same stall force of Fs = 7 pN, the
average force is ⟨ ⟩ ≃ 3.81 pN for kinesin-1 (see Figure 2a),
which is somewhat lower than its stall force, and ⟨ ⟩ ≃ 11 pN
for strong dynein, which largely deviates from its stall force
value (see Figure 2b). On the other hand, weak dynein’s
average force ⟨ ⟩ ≃ 11 pN takes almost the same value as its
stall force Fs = 1.1 pN (see Figure 2c). We note that strong
dynein builds up elastic forces very slowly (see the scale bar in
Figure 2b) and often unbinds from the track at force values
much smaller than its stall force.
Collective Force Generation by N Motors. We now

consider collective force generation by teams consisting of an
arbitrary number N of available motors. The sum of forces
experienced by the active motors of the team is equal to the
overall force acting on the optical trap, i.e.,

∑≡
=

Fn
j

n

j
1 (1)

where Fj is the elastic force acting on the j-th active motor,
determined by the extension of the motor linker. Recall that, at
any instant, the number of active motors fulfils 0 ≤ n ≤ N. We
furthermore define the elastic displacements uj ≡ Lj − L∥,
where Lj is the linker length with the rest length given by L∥. As
a reference configuration, we define a relaxed state of the
system by u = u0 ≡ (u1 = 0, ..., un = 0), where linkers of all
active motors are relaxed, and assume that active motors can
attain this relaxed state by taking discrete steps on the track.
The forces Fj acting on individual motors are then determined
by the force balance with the optical trap as42

∑κ κ κ φ κ φ≡ = − −
=
≠

F u s s(1 )j j j
k
k j

n

km m m m
1

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (2)

where φ ≡ 1/(κt + nκm) is related to the shift in the bead
position by each individual motor step; see section S1.1 in the
Supporting Information for a derivation of eq 2. As mentioned
above, the step numbers sj correspond to the distances of the
individual motors from the relaxed state u0 measured in units
of the step size . The overall instantaneous force n acting on
the optical trap (see eq 1) is thus determined by the set of step
numbers {s1, s2, ..., sn} in each activity state (n) with n active
motors attached to the filament. The rebinding of an unbound
motor to the filament is taken to lead to a bound motor with a
relaxed or minimally stretched linker, depending on the
preceding configuration of all bound motors.42 As a
consequence, the overall force n acting on the trap remains
constant or is minimally changed after each rebinding event.
The average collective force ⟨ ⟩N for a team of N available
motors can then be calculated by weighting the instantaneous
forces n by the dwell time of the system in the corresponding
configuration, normalized by the total dwell time in activity
states with n = 1, ..., N; see section S1.3 in the Supporting
Information for details.
We furthermore introduce a coarse-grained model to

estimate the average forces obtained from the “fine-grained”
simulations: The coarse-graining algorithm is explicitly based
on the assumption that the instantaneous force n acting on
the optical trap is shared equally by all active motors.
Furthermore, in the coarse-grained model, we ignore
transitions between elastic substates of different activity states
(n) and subsequently reconnect these distinct activity states by
ef fective rebinding and unbinding rates. These two assumptions
considerably simplify the state space of the motor system,
which allows a straightforward numerical calculation of coarse-
grained average forces ⟨ *⟩N . A detailed description of the
coarse-grained model is provided in section S2 of the
Supporting Information.
It is instructive to distinguish between two notions of

additivity with respect to collective force generation by motor
teams: First, one can choose the average force ⟨ ⟩1 generated
by a single available motor as the basic force scale and define
additive force generation by the motor team to imply the
collective force ⟨ ⟩ ≡ ⟨ ⟩NN 1 1 . Alternatively, one may choose
the stall force Fs of a single motor as the basic force scale and
take additive force generation to mean that the average force
generated by the motor team is given by ⟨ ⟩ ≡ NFN s s. Recall
that the average single-motor force is in general bounded by

Figure 2. Segments of simulated trajectories of single motors pulling a
bead in a stationary optical trap. Bead displacements and the
instantaneous forces are plotted as a function of time for (a) kinesin-1,
(b) strong (yeast) dynein, and (c) weak (mammalian) dynein. Scale
bars for the time axis are shown in red. The arrows (orange) indicate
exemplary detachment events of the active motors from the track. The
average forces ⟨ ⟩1 generated by the single motors and their stall
forces Fs are given in the insets. (a) For kinesin-1, the average force
⟨ ⟩ ≃ 3.81 pN is somewhat lower than the stall force Fs = 7 pN. (b)
For strong dynein, the average force ⟨ ⟩ ≃ 11 pN is very far from the
stall force Fs = 7 pN. (c) For weak dynein, the average force ⟨ ⟩ ≃ 11
pN and the stall force Fs = 1.1 pN are very close.
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the stall force, i.e., ⟨ ⟩ ≤ F1 s, and can take much smaller values
than Fs depending on the motor type, as shown in Figure 2b
for strong dynein. Therefore, the force scale ⟨ ⟩N 1 will in
general be smaller than the collective stall force ⟨ ⟩N s and hence
provides a weaker condition for the question of cooperativity.
We will thus focus on the collective stall force as a measure of
additive force generation of a motor team.
Collective Force Generation by Kinesin-1 and

Dynein. Figure 3a displays the force distributions of kinesin-
1 and dynein teams for different numbers N of available
motors. We observe that average forces (triangular or circular
markers) generated by kinesin-1 and strong dynein deviate
strongly from their collective stall force values ⟨ ⟩N s (dashed
lines); see Figure 3a1,a2. In contrast, average forces of weak
dynein are closer to its collective stall force ⟨ ⟩N s; see Figure
3a3. Interestingly, average forces of strong dynein are close to
the force scale ⟨ ⟩N 1 (dotted line) (see Figure 3a2); i.e., as a
team, strong dynein can generate multiples of its single-motor
average force ⟨ ⟩ ≃ 11 pN. Nevertheless, the average forces
remain remarkably below the collective stall force because of
strong dynein’s poor performance as a single motor. Likewise,
kinesin’s force generation is also clearly subadditive, but the
average force for a kinesin team of, e.g., N = 3 available motors

is close to the average force of a team of dyneins with N = 7
motors. Estimates for the average forces ⟨ *⟩N obtained from
the coarse-grained (CG) model are represented by crosses in
each box plot and agree well with the fine-grained (FG)
simulation results ⟨ ⟩N for up to N = 5 available motors.
To obtain a mechanistic insight for the different N-

dependence of the collective forces by kinesin-1 and dynein,
we focus on probabilities of different activity states (n) with 1
≤ n ≤ N active motors. These probabilities are estimated from
the relative frequencies of the activity states (n), determined by
the normalized dwell times τn/T, where τn represents the total
time spent in activity state (n) and the overall time is given by
T = ∑n=1

N τn. Figure 3b displays the relative frequencies of the
different activity states (n) for teams of kinesin-1, strong
dynein, and weak dynein consisting of N = 7 available motors.
Both types of dyneins have higher probabilities for having a
large number n of active motors compared with kinesin-1. The
increased number of active motors for dynein teams indicates
that these teams can generate forces more persistently as
opposed to kinesin-1. However, only weak dynein remains
largely unaffected by strain-induced unbinding events both on
the single-molecule level (see Figure 2c) and collectively (see
Figure 3a3).

Figure 3. (a) Force generation by teams of kinesin and dynein motors consisting of up to N = 7 motors in a stationary optical trap. Force
distributions of (a1) kinesin-1, (a2) strong dynein (S), and (a3) weak dynein (W) are represented as box plots. In each box, mean values are given
by triangular or circular markers and medians by horizontal lines (orange); whiskers indicate 1.5 interquartile range. The force scale ⟨ ⟩N 1 and the
collective stall force ⟨ ⟩N s (see insets) are delineated by dotted and dashed lines in each plot, respectively. Average forces generated by kinesin-1
and strong dynein deviate strongly from their collective stall force values. In contrast, average forces of weak dynein are closer to its collective stall
force values. The crosses represent average forces ⟨ *⟩N obtained from the coarse-grained model (see main text), which agree well with the fine-
grained simulation results for up to N = 5 motors. (b) Relative frequencies of different activity states with n active motors pulling on the bead for a
total number of N = 7 available motors. The probabilities for kinesin-1 decrease strongly for large n, in contrast with dynein motors, which have
maximal probabilities around n = 6. (c) Relative frequencies of the maximum separation between the leading and trailing motors for different
numbers n ≤ N = 4 of active motors. The distances are given in units of the step size = 8 nm. For teams of kinesin-1 (c1) and of weak dynein
(c3), the motors are typically separated by at most two and three steps, respectively, whereas, for teams of strong dynein (c2), the maximum
motor−motor separations have a broader distribution, indicating a less uniform sharing of the overall load among the strong dyneins.
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One possible mechanism that might influence collective
force generation concerns force sharing configurations of active
motors during strain generation, as discussed in refs 20 and
42−45. To investigate how the overall load is shared by active
motors during force generation, we display the relative
frequencies of the maximum separation between the leading
and trailing motors for teams consisting of N = 4 available
kinesins and dyneins in Figure 3c. These motor−motor
separations are given in units of the step size = 8 nm. We
observe that, in all activity states with n active motors, kinesin-
1 and weak dynein motors are typically separated by at most
two and three steps, respectively; see Figure 3c1 and c3. In
contrast, distributions for maximum motor separations for
strong dynein span a wide range of values, which indicates that
the overall load is not distributed as uniformly among team
members as in the case of kinesin-1 and weak dynein; see
Figure 3c2. Note that, in Figure 3c, the distributions for
different n are normalized and thus do not reflect the different
frequencies of activity states (n) shown in Figure 3b. In
summary, these results demonstrate that subadditive force
generation of kinesin-1 and strong dynein is related to the
frequent unbinding events of the individual motors during
strain generation and not to force sharing configurations of the
active motors. In fact, when strain-induced unbinding events
are largely suppressed, collective average forces do approach
the collective stall force ⟨ ⟩N s, as we show for kinesin-1 in
section S5 of the Supporting Information.
Comparison with Optical Trapping Experiments.

Forces generated by a controlled number of kinesin-1 motors
were experimentally studied in a stationary optical trapping
assay in Furuta et al.15 using rat kinesin. In this study,
individual kinesin motors were attached to a DNA scaffold
with a separation of either 6 or 22 nm between two
neighboring motors. In both cases, the number N of available
motors was systematically increased up to N = 4, and it was
found that average collective forces increased subadditively
with N; see the experimental data in Figure 4. These average
forces were obtained from histograms of maximal forces
reached before detachment events of single motors. Using
Monte Carlo simulations, we determined these force
distributions by only changing the rebinding rate of kinesin-1
(see Table S1 in the Supporting Information), which is a force-
independent parameter that strongly depends on experimental
buffer conditions. Our simulation results are also included in
Figure 4 and show a very good agreement with the
experimental ones. Mean and median values of the forces
generated by N ≤ 4 kinesins increase with N, but the collective
force generation is clearly subadditive. Similar to Figure 3b, the
probabilities to find n active kinesin motors pulling the bead
simultaneously against the trap decrease strongly as n
increases; see section S3 in the Supporting Information for
details. This result again demonstrates that the collective force
generation by multiple kinesins is strongly impeded by strain-
induced unbinding of the motors from the filament.
Collective Average Forces of Different Motor Types.

To gain further insight into single-molecule properties that
predominantly determine the different collective force
generation mechanisms, we investigate three additional
motor types: kinesin-5, myosin-5a, and myosin-6. Figure 5
displays the rescaled average force ⟨ ⟩ F/N s for the six studied
types of motors for increasing number N of available motors
up to N = 7. For all studied motor types, we obtain the

Figure 4. Comparison between simulation results and experimental
data from Furuta et al.15 on force generation of kinesin-1 for different
numbers N of available motors. In the latter study, two sets of
experiments were performed with motors attached to a DNA scaffold
with a separation of 6 or 22 nm between two neighboring motors.
The distributions correspond to histograms of maximal forces
generated during active pulling events before an attached motor
detaches from the track. Box plots with dashed whisker lines represent
the distributions obtained from the simulations. In each box, mean
values are labeled by square, triangular, or circular markers and
median values by the horizontal lines (orange). The theoretical results
are in good agreement with the experimentally observed force values,
which indicate a subadditive force generation mechanism for kinesin-
1.

Figure 5. Collective force generation by different types of motors in a
stationary optical trap for teams consisting of different numbers N of
available motors. Average collective forces ⟨ ⟩N are rescaled by the
stall force Fs of a single motor. For all motor types, we observe a linear
relationship between the rescaled average forces and the number of
motors (dotted fit lines), i.e., η⟨ ⟩ = +F N c/N s with a constant
offset c and a prefactor η that take values between 0 and 1. The
shaded region represents η < 1, whereas η = 1 (dashed line)
corresponds to average forces that are equal to the collective stall
forces ⟨ ⟩ ≡ NFN s s. Kinesin-1 and strong dynein (S) have a large stall
force of Fs = 7 pN and a prefactor of η < 0.2, indicating a clearly
subadditive force generation. In contrast, weak dynein (W), kinesin-5,
myosin-5a, and myosin-6 have stall force values of Fs ≤ 2.5 pN and
obtain a prefactor of η > 0.5; i.e., they generate average forces that are
closer to their collective stall forces.
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relationship η⟨ ⟩ = +F N c/N s ; i.e., the forces increase
linearly with the number N of available motors. The values
of the prefactor η vary within the interval 0 < η < 1. For the
case η = 1 and c = 0, the average forces would be equal to the
collective stall forces ⟨ ⟩ ≡ NFN s s. Furthermore, the offset c
vanishes for ⟨ ⟩ = ⟨ ⟩NN 1 , i.e., for motors that can generate
force additively with respect to the average single-motor force
⟨ ⟩1 . In fact, for the latter case, the prefactor η is exactly given
by the ratio ⟨ ⟩ F/1 s and is thus determined by the performance
of a single motor. Apart from kinesin-1 and weak dynein, all
studied motors are well described by ⟨ ⟩ ≃ ⟨ ⟩NN 1 (see
Figure 3a and Figure S4a), which implies η ≃ ⟨ ⟩ F/1 s. For all
weak motors (dynein (W), kinesin-5, myosin-5a, and myosin-
6) with stall forces of Fs ≤ 2.5 pN and a ratio of Fs/Fd ≤ 1.2,
the prefactor satisfies η > 0.5 as opposed to the two strong
motors (kinesin-1 and dynein (S), Fs = 7 pN) with Fs/Fd ≥ 2.4
for which the prefactor is η < 0.2. The force distributions of
kinesin-5, myosin-5a, and myosin-6 from which the average
forces are plotted here can be found in section S4 of the
Supporting Information. We finally study a “test” motor by
changing one parameter value at a time and find that, out of
seven single-motor parameters, the collective force generation
is most sensitive to changes in the parameters Fs and Fd,
followed by those in the zero-force unbinding rate ϵ0 and the
rebinding rate π0. Moreover, our coarse-grained model predicts
that the rescaled force ⟨ *⟩ NF/N s remains approximately
constant if one changes Fs and Fd by the same factor, thereby
keeping the force ratio Fs/Fd fixed, as shown in section S5 of
the Supporting Information.
Conditions of Approaching the Collective Stall Force.

We now use our coarse-grained model to explore the
parameter dependence of the coarse-grained average forces
⟨ *⟩N . We set N = 3 because the coarse-grained results agree
well with the fine-grained simulation results for N ≤ 5, as we
show in Figure 3a1−a3 above. Figure 6 displays the rescaled
average force ⟨ *⟩ NF/N s as a function of the stall force Fs, the
zero-force unbinding rate ϵ0, and the zero-force velocity v0.
These three single-motor parameters modify the force-
dependent rates and can be tuned experimentally; see the
Discussion below. The remaining parameters in Figure 6a and
b take the values corresponding to kinesin-1 and dynein,
respectively; see Table S1 in the Supporting Information. We
observe that the coarse-grained average forces ⟨ *⟩N approach
the collective stall force NFs for motors with low stall force, low
zero-force unbinding rate, and high zero-force velocity values.
Variations in the stall force Fs and in the unbinding rate ϵ0 (see
Figure 6a) have a stronger effect on the collective average
forces compared with changes in the motor velocity v0 (see
Figure 6b). Rescaled collective forces ⟨ *⟩ NF/N s for kinesin-1
and dynein motors obtained from the coarse-grained model are
very close to the fine-grained values of ⟨ ⟩ NF/N s for N = 3, as
listed in the caption of Figure 6. These results again
demonstrate that weak motors can generate average forces
that are closer to their collective stall forces, and suppressing
detachment events leads to increased cooperativity in force
generation.
Discussion. Using stochastic modeling, we investigated the

mechanisms of collective force generation by arbitrary types of
molecular motors and suggest a link between the performance
of a single motor and the collective forces generated by small

teams of motors. In particular, we find that, in contrast with
strong motors with a large stall force, weak motors cooperate
better as a team in force generation (see Figure 5) and
increasing the processivity or velocity of a single motor also
leads to average forces that are closer to the collective stall
force NFs of a motor team; see Figure 6.
Existing hypotheses for the subadditive force generation of

kinesin-1 are based on unequal force sharing between motors
and emphasize the velocity decrease of a single motor as the
main underlying mechanism.20,43−45 According to this argu-
ment, if the velocity of a single motor does not drop rapidly
with increasing load, typical motor configurations will involve a
single leading motor that carries the overall load.42 While the

Figure 6. Parameter dependence of the collective average force ⟨ *⟩N
for N = 3 obtained from the coarse-grained model. The color bar
shows the rescaled force ⟨ *⟩ NF/N s. Low values of the stall force Fs
and of the zero-force unbinding rate ϵ0 (see panel a) as well as high
values of the zero-force velocity v0 (see panel b) lead to increased
cooperativity in terms of force generation. Remaining motor
parameters take the values corresponding to (a) kinesin-1 and (b)
dynein; see Table S1 in the Supporting Information. Marked values
(crosses) for ⟨ *⟩ NF/N s with N = 3 obtained from the coarse-grained
(CG) model compared with the results from the fine-grained (FG)
simulation are 0.329 (CG) vs 0.292 (FG) for kinesin-1, 0.12 (CG) vs
0.117 (FG) for strong dynein (S), and 0.718 (CG) vs 0.735 (FG) for
weak dynein (W).
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specific form of the force−velocity relation might affect the
force sharing configurations of multiple motors, as studied for
two motors in ref 43, we claim that this mechanism is not
sufficient to significantly modify the cooperativity in force
generation; see section S6 in the Supporting Information for a
brief discussion. Instead, we suggest that a simpler explanation
for the subadditive force generation of kinesin-1 is provided by
the strain-induced unbinding events regardless of the force
sharing configurations during strain generation, as indicated by
Figure 3, as well as by the comparison with experimental data
(see Figure 4 and section S3 in the Supporting Information).
In contrast with the subadditive force generation of kinesin-1

in vitro, evidence for additive force generation was found for
both kinesin-1 and dynein teams in vivo.16 We note that,
however, the stall force of kinesin-1 in vivo was substantially
lower than its in vitro value (∼2.5 pN in vivo16 vs ∼7 pN in
vitro25). Our model explicitly predicts increased cooperativity
in force generation when the stall force is reduced (see Figure
6) and can thus explain this disparity between in vivo and in
vitro observations. Nevertheless, stall force measurements in
vivo can be difficult to interpret due to effects of molecular
crowding such as the presence of accessory proteins16 or active
opposing motors reducing the effective stall force of the motor
team,36 and therefore, care must be taken before drawing a
direct conclusion. In addition to the quantitative agreement
between our theoretical results and experimental data on
collective force generation by kinesin-1 (see Figure 4), our
results of close to additive force generation for weak
(mammalian) dynein and kinesin-5 (see Figure 5), are also
in qualitative agreement with experimental observations of
these motor types.3,17−20 Stochastic modeling has also been
applied to teams of nonprocessive motors, such as myosin-2.46,47

In the latter case, the collective forces saturated as a function of
motor number, in contrast to the linear increase of the
collective forces for processive motors as studied here; see
Figure 5.
Collective force generation of kinesin and dynein motors

supports a rather balanced in vivo dynamics: although minus-
end directed dyneins cooperate better than plus-end directed
kinesins as a team, the absolute force values of many dyneins
are close to the forces of a few kinesins; see Figure 3a. Such a
force-balanced tug-of-war with a large number of dyneins
against a few kinesins is in accordance with several
experimental observations.4,36,48 Moreover, dynein teams
might exhibit persistent force generation because of the high
number of active motors on average (see Figure 3b), in
contrast with kinesin-1, which might generate forces more
abruptly due to frequent unbinding events. A persistent force
generation mechanism for dynein fits well with its role in
continuous sliding of microtubules along the cortex during,
e.g., spindle positioning.49

In principle, the three single-motor parameters ϵ0, v0, and Fs
that influence force generation by motor teams (see Figure 6)
can be directly modified in experimental studies. Adding
charged residues to the neck linker of kinesin-1,50 for example,
strongly increases the processivity of a single motor, which
determines the unbinding rate ϵ0. Furthermore, addition of
LIS1 and NudE was found to increase both the processivity
and force generation of dynein,34 and the removal of the C-
terminal cap domain allows a switch from a weak to a strong
motor.39 Finally, recent methods in engineering applications of
molecular motors allowed the formation of three- and four-
headed myosins with velocities reaching up to 10 μm/s and

average run lengths in 0.5−3 μm,51 substantially increasing the
native motor velocity and producing the fastest processive
motor observed. Although these single-molecule modification
techniques require further development, currently available
experiments on collective movement and force generation by
motor teams using DNA origami scaffolds allow a direct test
for our predictions.13,15,52 Ideally, an iterative experimental
methodology will enable a systematic analysis of the collective
behavior of motor teams upon locally modifying features of
single molecules.53
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