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S1 Details of the fine-grained model

We briefly derive Eq. (2) of the main text, describe the single-motor properties, and provide a detailed
description of the simulation algorithm.

S1.1 Elastic forces derived from force balance

We consider n active motors pulling a bead in the laser field of a stationary optical trap. The motors
are attached to the bead with elastic linkers that act as harmonic springs with stiffness κm, and the
laser field is likewise represented as a harmonic spring with stiffness κt. The elastic coupling between
the laser field and the linkers of the motors can then be described in the framework of a tug-of-war
between two teams of elastically interacting motors (1), where the optical trap represents a single
immobile and active motor, i.e., it is almost always attached to the track and almost never steps. The
force balance condition between the motors and the laser field of the optical trap is given by (1)

Fn ≡
n∑
j=1

Fj (S1)

where Fn is the overall instantaneous force acting on the optical trap, and

Fj ≡ κmuj , (S2)

defines the elastic forces acting on individual motors. The elastic displacement

uj ≡ Lj − L‖ ≡ xj − xbe − L‖ (S3)

determines the extension of the j−th motor linker from the rest length L‖, where xj and xbe are the
positions of the motor and the bead in a one-dimensional Cartesian coordinate system, respectively.
The force acting on the optical trap can be similarly determined from the elastic displacement of a
harmonic spring as

Fn ≡ κtut , (S4)

where
ut ≡ Lt − L‖ ≡ xbe − xt − L‖ (S5)

is the spring displacement and the position of the trap wall is given by xt. Note that in our description
all motors have positions xj > xbe and the trap wall fulfils xt < xbe. This assumption is reasonable
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for describing processive motors that mainly perform successive forward steps starting from a relaxed
configuration (1). Substituting Eqs. (S2-S5) into Eq. (S1) leads to the position of the bead

xbe = ϕ

κtxt + κm

n∑
j=1

xj + L‖(κt − nκm)

 , (S6)

with the prefactor ϕ ≡ (κt + nκm)−1. Eq. (S6) implies that, when the position of the j−th motor xj
changes by several stepping events such that

xj → x′j = xj + sj ` , (S7)

where sj is an integer and ` is the step size of the motor, the bead position xbe will be shifted by a
factor of κmϕsj ` . We note that positive and negative values of sj correspond to forward and backward
steps of the motor, respectively. Taking into account all possible steps taken by any motor with label
j = 1, . . . , n, the overall shift in the bead position xbe after an arbitrary number of steps is then
determined by

xbe → x′be = xbe + κmϕ
n∑
j=1

sj ` . (S8)

Substituting Eqs. (S7) and (S8) into Eq. (S3), the change in the elastic displacement of the j−th motor
is given by

uj → u′j = x′j − x′be − L‖

= uj + sj ` (1− κmϕ)− κmϕ
n∑
k=1
k 6=j

sk ` .
(S9)

We define a relaxed reference state with uj = 0 for all active motors j, and assume that the minimal
strain state in the system will be described by this relaxed state (1), i.e., all active motors can attain
positions on the track such that their linkers are relaxed. The step numbers sj are then identified
as distances from this relaxed reference state measured in units of the step size `. Starting from this
relaxed state, after any arbitrary number of steps taken in the system, the force acting on the j−th
motor given by Eq. (S2) thus becomes

Fj = 0→ F ′j = κm `

(1− κmϕ) sj − κmϕ
n∑
k=1
k 6=j

sk

 . (S10)

Eq. (S10) thus describes elastic forces acting on each motor in all accessible configurations determined
by the set of step numbers {s1, . . . , sn}, as given by Eq. (2) of the main text. We note that, in the
tug-of-war framework (1), the single motor that represents the optical trap can also take forward and
backward steps. Therefore, there is in general an extra term in Eq. (S10) that corresponds to the
“steps” of the trap. However, we adjust the corresponding trap parameters such that these events are
extremely rare and we can assume st ' 0 at any time step.

S1.2 Single motor description

The description of a single motor is based on a previous work developed in Ref. (2). The motion of the
motor on the track is described as a random walk with forward and backward stepping rates α and
β, respectively. The stepping rates are force-dependent and can be used to define the force-dependent
velocity via the relation α(F )−β(F ) = v(F )/`, where ` is the step size of the motor. In the absence of
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an external force acting on the motor, the motor moves with its zero-force velocity v(F = 0) = v0. The
velocity decreases monotonically with increasing external force until the stall force Fs is reached where
the motor velocity becomes zero, i.e., the motor steps forward and backward with equal probability at
Fs due to α(Fs)− β(Fs) = v(Fs)/` = 0. If the force exceeds the stall force, i.e., for F > Fs, the motor
moves backwards with the average velocity −vmin for large F . For assisting forces, i.e., for F < 0, the
motor reaches its maximal forward velocity vmax for large negative values of F . We use the following
parametrization for the force-velocity relation of a single motor (2, 3)

v(F ) =
vmax

vmin−v0
v0−vmax

+ vmin

(
vmax
vmin

v0−vmin
v0−vmax

)F/Fs

vmin−v0
v0−vmax

+
(
vmax
vmin

v0−vmin
v0−vmax

)F/Fs
. (S11)

The force-dependent stepping rates of the motor are defined by

α(F ) ≡ v(F )

`

q(F )

q(F )− 1
, and β(F ) ≡ v(F )

`

1

q(F )− 1
, (S12)

where q(F ) is the forward-to-backward stepping ratio fitted by (4, 2)

q(F ) = q
1−F/Fs

0 , (S13)

with the zero-force stepping ratio q0.

In the absence of an external force, a processive motor unbinds from the filament due to thermal
fluctuations with a zero-force unbinding rate ε0. This rate can be obtained experimentally using the
relation ε0 = 〈v〉/〈x〉, where 〈v〉 = v0 is the average zero-force velocity and 〈x〉 is the average run
length of the motor. If an external force acts on the motor, the unbinding can be described as an
escape process of a particle in a potential well (5) with the force-dependent unbinding rate given by

ε(F ) = ε0 exp(|F |/Fd) , (S14)

where Fd is the detachment force. The latter force scale is determined by the energy barrier between the
bound and the unbound states of the motor. In most theoretical studies this force value is assumed to be
on the order of Fd ' 3 pN (6), although recent experimental (7) and theoretical studies (8) for kinesin-1
estimated a value of about 6− 7 pN. However, we note that in Ref. (7), the force-dependent unbinding
rate was fitted for force ranges that are much larger than the stall force of kinesin-1. Therefore, we
used their estimate from a fit to the force-dependent run length within the stall force regime, which
implies a value of Fd ' 2.1 pN, see Table S1.

An unbound (inactive) motor can rebind to the filament when it comes in close proximity to it such
that the distance between the motor domain and the filament is comparable to the rest length of the
motor linker. This rebinding event can be assumed to be independent of the forces acting on the bead
because the unbound motor linker relaxes much faster than the movement of the bead. Therefore, we
assign a constant rate π(F ) = π0 for the rebinding of the unbound motor to the filament. In general,
this rate depends on the buffer conditions or on the geometric arrangement of the motor assembly, and
can influence the collective behavior of motor teams. In section S5 below, we investigate the changes
in the collective force generation by adjusting these single motor parameters one at a time.

Note that a full set of parameters for each studied motor type has not been found in the existing
experimental studies, see Table S1. We therefore employ the following strategy for the missing param-
eters: In general, the missing parameters take the values corresponding to those of kinesin-1 because
the latter is the most extensively studied motor type. For the step ratio q0 of weak dynein and the
unbinding rate ε0 of strong dynein, however, we assigned the available values from the other dynein
motor because these two motors are closely related. Another exception is the stiffness κ of the two
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Parameter kinesin-1 dynein (S) dynein (W) kinesin-5 myosin-5a myosin-6 optical trap
Unbinding
rate ε0 [s−1]

0.66 (7) 1∗ 1 (9) 0.66∗ 0.34 (10) 0.25 (10) 0.001

Binding
rate π0 [s−1]

5 (11), 2‡ 5∗ 5∗ 5∗ 5∗ 5∗ 50

Stall force
Fs [pN]

7 (4) 7 (12, 13) 1.1 (14, 15) 1.5 (16, 17) 2.5 (18, 19, 20) 2.2 (21) 20

Detachment
force Fd
[pN]

2.1 (7) 2.9 (22) 2.9 (22) 2.1∗ 2.1∗ 2.1∗ 50

Stiffness κ

[pN/nm]
0.2 (23) 0.05 (24) 0.05 (24) 0.2∗ 0.05∗ 0.05∗ κm

Step size `

[nm]
8 (4, 23) 8 (25) 8 (12) 8 (26) 36 (18, 10) 36∗ `m

Step ratio q0 800 (4) 4 (25) 4∗ 800∗ 800∗ 800∗ 10

Velocity v0
[nm/s]

740 (7) 85 (25) 800 (12) 30 (16) 378 (10) 146 (10) 5

Min. ve-
locity vmin

[nm/s]

89† 10† 96† 3.6† 45† 18† 0.1

Max. ve-
locity vmax

[nm/s]

829† 95† 896† 33.6† 423† 164† 5.1

Table S1: Values of the parameters used for the molecular motors investigated in the main text: The values
for “strong” and “weak” dynein (columns dynein (S) and dynein (W)) correspond to yeast and mammalian cells,
respectively. For kinesin-1 motors that we used to compare our theoretical calculations with the experimental
data in Ref. (27), see Fig. 4 of the main text and section S3 below, we only modified the binding rate π0. The
corresponding value is indicated by the double-dagger superscript. For the stall force of myosin-5a, a range of
values between 2-3 pN were reported in Refs. (18, 19, 20). We therefore used an estimated value of Fs = 2.5pN.
An asterisk superscript indicates a parameter for which we did not find experimental data in the literature; the
corresponding parameter value was set equal to the experimentally determined value of another type of motor.
Velocity values depicted by the dagger superscript are estimated by vmin ' 0.12 v0 and vmax ' 1.12 v0. The
parameters for the optical trap were chosen to resemble a motor which is (almost) immobile and does not detach
from the filament. The stiffness and step size values for the optical trap indicated by κm and `m, respectively,
are identical to the motor type that pulls on it.

myosin motors. For this parameter, choosing kinesin-1’s value (κ = 0.2 pN/nm) combined with the
rather large step size of the myosin motors (` = 36 nm) leads to a force generation of F = κ

2 ` = 3.6pN
after each step for the case of a single bound motor (n = 1). This force scale exceeds the stall force of
both myosin motors and thus the simulation cannot provide reliable statistics to obtain force distribu-
tions. Therefore, we chose the value corresponding to the stiffness of dynein motors (κ = 0.05 pN) for
the two myosin motors.

S1.3 Details of the simulation

For each simulation run, we first fix the number of available motors N in the system, and then start
the simulation in an activity state (n) with n = N , i.e., where all available motors are attached to
the filament. We start from the relaxed state u0 = (u1 = 0, . . . , un = 0) where all motors have relaxed
linkers with step numbers given by {s1 = 0, . . . sn = 0}. The simulation based on Gillespie algorithm
then follows the following steps:
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(i) Elastic forces Fj acting on the active motors given by Eq. (S10) determine all force-dependent
transition rates of each active motor j via Eqs.(S11-S14). We draw a random number rd in
the unit interval [0, 1] and calculate an exponentially distributed dwell time for configuration
u = (u1, u2, . . . , un) (with step numbers {s1 . . . , sn}) by τu ≡ (−1/

∑
u′ ωu→u′) ln(rd), where

ωu→u′ represents the transition rate into a new configuration u′ that can be realized by the
stepping, unbinding and rebinding events of any motor. The dwell time τu is recorded as the
time spent at configuration u.

(ii) Probabilities Πu→u′ for each transition u→ u′ are obtained by dividing the corresponding tran-
sition rate by the sum of rates for all possible transitions, i.e., Πu→u′ ≡ ωu→u′/

∑
u′ ωu→u′ . We

then order the transition probabilities cumulatively as [0,Πu→u′ ,Πu→u′+Πu→u′′ , . . . ,
∑

u′ Πu→u′ ].

(iii) We draw another random number rt that determines the transition into the next configuration.
If the number lies within the interval [Πu→u′ ,Πu→u′ + Πu→u′′ ] the next transition is determined
as a transition into the configuration u′′ with new step numbers {s′′1, . . . , s′′n}. Note that the
unbinding and rebinding events can change the number of active motors n at each time step.

(iv) Return to step (i) to update all elastic forces Fj via the new set of step numbers and the corre-
sponding transition rates.

An important issue concerns the position on the track where a detached motor rebinds to: In general,
one should assume that the motor linker is in a relaxed configuration after rebinding events, such that
the overall instantaneous force remains unchanged, i.e., Fn−1 = Fn where n denotes the number of
active motors after the rebinding event. This force balance argument implies that, see Eq. (S1),

n−1∑
j=1

Fj =
n∑
j=1

Fj , (S15)

where Fj is the elastic force experienced by the j-th active motor. Substituting Eq. (S10) for the left-
and right-hand sides of Eq. (S15), we obtain

κt
κt + (n− 1)κm

n−1∑
j=1

sj =
κt

κt + nκm

n∑
j=1

sj , (S16)

which imposes the following condition on the step number of the k = n-th motor that rebinds to the
track

sk =
κm

κt + (n− 1)κm

n−1∑
j=1

sj . (S17)

For κt = κm, this expression simplifies to

sk =
1

n

n−1∑
j=1

sj , (S18)

which corresponds to the case in our simulations. Note that, however, Eq. (S18) does not always
represent an integer for the step number sk. In such cases, we round the value for sk to the nearest
integer, which induces a change in the overall instantaneous force by at most ∆Fn = ±1

2κm`.

We repeat each simulation run until the overall dwell time of the process reaches T ≡ ∑u τu =

(N + 2) × 100 s, i.e., the simulation runs increase linearly with the number N of available motors in
the system to avoid small sample sizes. For long simulation runs, we then record and sum over the
random dwell times τu for each configuration {s1, . . . , sn}, and estimate its steady state probability
pst{s1, . . . , sn} by the summed dwell times normalized by the total time T of the simulation. We regard
the probabilities pst{s1, . . . , sn} as frequencies for the overall force Fn at that configuration, and thus
obtain force distributions for a fixed number N of available motors in every simulation.
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Figure S1: Elastic states of a single motor in a stationary optical trap. Cartoons depict (a) the relaxed state
{s1 = 0} where the length of the motor linker corresponds to its rest length, and thus the forces acting on
the motor and on the optical trap vanish; and (b) the stretched state {s′1 = m} where the motor is m steps
away from the relaxed state {s1 = 0}. The elastic forces acting on the trap and on the motor, determined by
Eqs. (S1) and (S10), respectively, are given by κeff m` with the effective spring constant κeff ≡ κtκm/(κt + κm).
(c) Complete state space of the single motor system. Elastic states {s1} with the step number s1 = 0, . . . , S

correspond to different extensions of the motor linker. Transitions that stretch the motor linker, i.e., {s′1} →
{s′1 + 1} are governed by the forward stepping rate α(F1{s1}), and transitions that relax the motor linker, i.e.,
{s′1} → {s′1 − 1} are determined by β(F1{s1}). Unbinding of the motor from the track is governed by the
unbinding rate ε(F1{s1}) (broken lines). We assume that, once detached, the motor instantaneously rebinds to
the relaxed state {s1 = 0}.

S2 Details of the coarse-grained model

Here we describe the coarse-grained (CG) model that determines the estimated average forces 〈F∗N 〉
plotted in Figs. 3(a1-a3) and Fig. 6 of the main text. Similar to the fine-grained (FG) model, the
CG model includes activity states (n) with different numbers n = 0, . . . , N of active motors, and
elastic substates u = (u1, . . . , un) that describe the elastic extensions of the motor linkers. In the FG
model, each active motor can take an arbitrary number sj of steps such that the elastic linkers of the
active motors can have different lengths at any time. Because of n independent step numbers, the
complete state space in the FG model consists of 2N activity states (n) that have n-dimensional elastic
substates {s1, . . . , sn}. The different elastic substates are connected by the forward and backward
stepping events, whereas any transition between elastic substates of two different activity states are
governed by unbinding and rebinding events.

The CG model simplifies this FG state space by reducing the n-dimensional elastic subspace of
each activity state (n) into a 1-dimensional state space. This reduction is based on the approximation
that during force generation all active motors share the overall force acting on the trap equally at any
instance. The transitions between different activity states (n) are then governed by effective rebinding
and unbinding rates that depend on the average forces generated in each activity state. In particular,
the CG algorithm is based on the following steps:

(i) Calculate the average force of a single motor: To reduce the fine-grained state space of N available
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motors, we first consider the elastic force generation of a single available motor (N = 1) against
the optical trap. The state space of such a system was developed previously to describe two
elastically coupled identical and antagonistic motors in Refs. (2) and (3), respectively. The single
motor can step along the filament and thus generate elastic forces by extending its motor linker.
These elastic states are represented as {s1} with the step number s1 = 0, 1, . . . , S, where S is
a large integer. In principle, the step number s1 can also take negative values, corresponding
to motor positions that are accessible via backward stepping events starting from the relaxed
reference state {s1 = 0}. However, these configurations are extremely rare and for simplicity
we omit these states in the description. Forward transitions {s1} → {s1 + 1} that stretch the
motor linker are governed by the forward stepping rate α(F1{s1}), and backward transitions
{s1} → {s1 − 1} that relax the motor linker by the backward stepping rate β(F1{s1}). These
transition rates are determined by Eqs. (S12), whereas the force F1{s1} ≡ F1 that depends on
the elastic state {s1} can be calculated from Eq. (S10) for n = 1. We furthermore make the
assumption that once detached, the motor instantaneously rebinds to the relaxed state {s′1 = 0}
such that transitions into the relaxed state are governed by the rate ε(F1{s1}), see Eq. (S14).
The complete state space of the single motor system is depicted in Fig. S1. To obtain the steady
state probabilities pst{s1} for the elastic substates, we numerically solve the master equation
corresponding to this state space and determine the average elastic forces 〈F1〉 as described in
Ref. (3). By Eq. (S1) we then have 〈F∗1 〉 = 〈F1〉, where 〈F∗1 〉 is the average force acting on the
optical trap. We use the asterisk superscript for the forces obtained using the CG algorithm.

(ii) Define coarse-grained elastic substates for each activity state: We now use the average single
motor force 〈F∗1 〉 obtained in (i) to describe the elastic substates of the activity states (n) with
n > 1. First we redefine the single motor stall force as F ′s ≡ 〈F∗1 〉, which indicates that each
active motor will have equal probabilities of forward and backward stepping at the single motor
average force, i.e., α(〈F∗1 〉) = β(〈F∗1 〉). We then impose the condition that active motors share
their overall load equally at any elastic substate. Each motor then experiences the force Fn/n,
where Fn is the instantaneous force acting on the optical trap. Using Eqs. (S1) and (S10), we
obtain the elastic forces acting on individual motors as

F{σn} ≡ Fn/n =
κtκm

κt + nκm
` σn , (S19)

where σn ≡ 1
n

∑n
j=1 sj is the effective step number that corresponds to different extensions of

motor linkers. The elastic substates of any activity state (n) are then described by a single variable
σn = 0, 1n ,

2
n , . . . , S. In this elastic subspace a forward transition {σn} → {σn+ 1

n} is governed by
the effective forward stepping rate nα(F{σn}), whereas a backward transition {σn} → {σn − 1

n}
is governed by nβ(F{σn}). We do not include unbinding or rebinding of the motors such that
the elastic subspace of each activity state (n) forms a one-dimensional state space. The latter
condition enforces detailed balance on the elastic subspace, thus the steady state probabilities
pst{σn} for the different substates {σn} can be obtained recursively from the ratio of products of
forward and backward stepping rates (28). From these probabilities we obtain the average CG-
forces 〈F∗n〉 for each distinct activity state (n) with n > 1. Because of the redefined stall force
F ′s = 〈F∗1 〉 and detailed balance, the CG-forces of each activity state are normally distributed
around the average forces 〈F∗n〉 = n〈F∗1 〉.

(iii) Determine the probabilities of distinct activity states: We now reconnect the distinct activity
states of the CG model by defining the effective unbinding rate ε(n) ≡ nε(〈F∗n〉/n) = nε(〈F∗1 〉)
and rebinding rate π(n) ≡ (N − n)π0. The former rate describes transitions (n) → (n − 1) and
the latter corresponds to transitions (n) → (n + 1). Therefore, the network of activity states is
also one-dimensional and obeys detailed balance such that the steady state probabilities P st(n)
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for the different activity states can be obtained as a ratio of products of the effective rates ε(n)

and π(n).

(iv) Reweight the probabilities of all elastic substates: The steady state probabilities P st(n) for the
activity states are then used to reweight the probabilities pst{σn} for the elastic substates of each
activity state. We finally use the reweighted probabilities

p̂st{σn} ≡ P st(n)pst{σn} (S20)

to obtain the overall coarse-grained average force 〈F∗N 〉 for a fixed number N of available motors.

S2.1 Exemplary state space for N = 2

To illustrate the difference between the FG and the CG model, we consider a system with N = 2

available motors, as depicted in Fig. S2(a) and (b). This system consists of 4 distinct activity states
(0), (1)1, (1)2, and (2) with n = 0, 1 or 2 motors attached to the track. Note that we distinguish each
motor by the subscript j = 1, 2.

Fine-grained forces. The elastic substates {s1} of the activity state (1)1 where the motor 1 is
bound to the track are described by the step number s1 which determine the distance of motor 1 from
the relaxed state {0} in units of the step size `. As the motor performs successive steps, the elastic
force F1 acting it changes by

F1 = κm`(1− κmϕ)s1 =
κtκm
κt + κm

`s1 , (S21)

in activity state (1)1, as follows from Eq. (S10). The elastic forces acting on motor 2 in the activity
state (1)2 are obtained analogously. In the activity state (n = 2), on the other hand, the elastic
substates form a 2-dimensional state space {s1, s2} with the two independent step numbers s1 and s2.
The elastic forces acting on motor 1 and 2 are then expressed by

F1 = ϕκm` ((κt + κm)s1 − κms2) , and (S22)

F2 = ϕκm` ((κt + κm)s2 − κms1) , (S23)

respectively, such that at any elastic substate {s1, s2} the instantaneous force acting on the optical
trap is given by

F2 = F1 + F2 = ϕκtκm`(s1 + s2) , (S24)

with ϕ = (κt +2κm)−1, as follows from Eqs. (S1) and (S10). Note that, in general, the force-dependent
transition rates α(Fj), β(Fj) and ε(Fj) can be different for each motor j in the activity state (2) if
the forces are not equal, i.e., F1 6= F2, see Fig. S2(a). We also emphasize that, in the fine-grained
description, the activity state (2) consists of (S+ 1)2 elastic substates {s1, s2} where sj = 0, . . . , S and
S is a large integer. In any arbitrary elastic substate {s′1, s′2} one of the two motors can unbind from
the filament, leading to a transition into one of the elastic substates of the activity states (1)1 or (1)2.
Therefore, the fine-grained state space has a nested structure with many transitions between elastic
substates of the different activity states.

Coarse-grained state space. In contrast with the fine-grained model, in the coarse-grained model
we first describe the elastic substates of the distinct activity states individually, and subsequently
reconnect the distinct activity states by effective transition rates, see steps (i-iv) above. For the case of
N = 2 available motors, the coarse-grained model includes the two activity states (n = 2) and (n = 1)
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Figure S2: Depiction of the coarse-graining algorithm for a system of N = 2 available motors. (a) The fine-
grained description of a configuration with two active motors with unequal step numbers, i.e., s1 6= s2, as
represented here with s1 = k < s2 = m. The motors have different distances k` and m` from the relaxed state
{0, 0}, thus the elastic forces F1 and F2 acting on the individual motors, see Eq. (S10), take different values. The
overall force acting on the optical trap F2 is given by the sum of the two elastic forces. (b) The coarse-grained
model describes the configuration depicted in (a) by averaging over the step numbers s1 = k and s2 = m into a
single effective step number σ2 = k+m

2 . The motors therefore have the same distance from the relaxed state and
experience the same elastic force F ∗1 = F ∗2 , where the asterisk superscript indicates the coarse-grained forces.
(c) State space of the system with N = 2 available motors in the coarse-grained model. Transitions between
substates {σ2} of the activity state (n = 2) are governed by the forward and backward stepping rates, see inset.
Transitions betweeen the activity states (n = 2) and (n = 1) are determined by the rebinding rate π0 and the
effective unbinding rate 2ε(〈F∗2 〉/2), where 〈F∗2 〉 = 2〈F1〉 is the average force generated in the activity state
(n = 2). The average single motor force 〈F1〉 is determined by the elastic state space corresponding to the
activity state (n = 1), see Fig. S1, which has the same value in the fine-grained and coarse-grained models.

that describe the elastic forces generated by a single or two active motors, respectively. The activity
state (2) consists of elastic substates {σ2}, where σ2 = s1+s2

2 is the effective step number that takes
the values σ2 = 0, 12 , 1, . . . , S. Eq. (S19) determines the elastic forces acting on each motor j in state
{σ2} as

F ∗j ≡ F{σ2} =
κt κm

κt + 2κm
`σ2 , (S25)

where we used the asterisk superscript to indicate the coarse-grained forces acting on single motors.
The instantaneous force acting on the optical trap is then given by F2 = F ∗1 + F ∗2 = 2F{σ2}, i.e.,
each bound motor experiences the same elastic force in each substate {σ2}. Transitions corresponding
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Figure S3: Details of the simulation data for N = 4 available motors in a stationary optical trap corresponding
to Fig. 4 of the main text. Parameter values correspond to kinesin-1, where the only modified parameter is
the binding rate π0, see Table S1. (a) Relative frequencies for the different activity states with n active motors
pulling the bead. The probabilities strongly decrease for large n, which indicate that the collective forces of
N = 4 available kinesin-1 motors are mainly generated by one or two active motors. (b) Relative frequencies
for the maximum separation between the leading and the trailing motor for n = 2, 3, 4 active motors attached
to the track. The distributions indicate that active motors are typically separated by at most 2 steps.

to the stretching of the linkers of both active motors are then governed by the forward stepping
rate 2α(F{σ2}), and transitions for the relaxation of the motor linkers are governed by the backward
stepping rate 2β(F{σ2}), where the prefactor 2 arises because a change in the step number σ2 → σ2± 1

2

can be a result of two independent events in the fine-grained descripition: s1 → s1 ± 1 or s2 → s2 ± 1.
Similarly, the transition from the activity state (n = 2) to (n = 1) is governed by the effective unbinding
rate 2ε(〈F2〉/2) due to the two independent events of motor unbinding. Fig. S2(c) represents the coarse-
grained state space with the corresponding transition rates between activity states as well as their elastic
substates. The coarse-graining algorithm is based on calculating the steady state probabilities for the
activity states and their elastic substates separately, and subsequently reweighting the probabilities of
all substates by the probabilities of the activity states to obtain the average forces 〈F∗N 〉.

S3 Details for kinesin-1 data compared with experiments

Here we provide details for the simulation data from Fig. 4 of the main text, which we used to compare
with experiments on kinesin-1 from Ref. (27). Fig. S3 displays the relative frequencies (a) of the number
of active motors, and (b) of the maximum separation between the leading and the trailing motor in each
activity state (n) measured in units of the step size `. We observe that the probability to find a large
number of active motors decreases strongly with n, see Fig. S3(a). For N = 4 available motors, the
force generation is mainly performed via the action of one or two active kinesin motors. Furthermore,
the distributions in (b) indicate that active motors are typically separated by at most 2 steps.
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Figure S4: Collective force generation by teams of (a1) kinesin-5, (a2) myosin-5a and (a3) myosin-6 motors
consisting of up to N = 7 motors. Force distributions are represented as box plots with mean values given by
triangular and circular markers, and medians by horizontal lines (orange); whiskers indicate 1.5 interquartile
range. The force scale 〈FN 〉1 and the collective stall force 〈FN 〉s are delineated by dotted and dashed lines
in each plot, respectively. The three types of motors have stall forces of Fs ≤ 2.5 pN, see Table S1, and their
average forces are close to the force scale 〈F1〉1. Average forces of kinesin-5 (a1) are somewhat closer to its
collective stall force 〈FN 〉s compared with the average forces of myosin-5a (a2) and myosin-6 (a3). (b) Relative
frequencies of different activity states with n active motors for a total number of N = 7 available motors reveal
that all three types of motors have high probabilities for having a large number of active motors. (c1-c3)
Relative frequencies of the maximum separation between the leading and the trailing motor measured in units
of the step size ` for a total number of N = 4 available motors. The distributions indicate that active motors
are typically separated by at most a single step.

S4 Force distributions of kinesin-5, myosin-V and myosin-VI

In Fig. 5 of the main text we show the rescaled average forces 〈FN 〉/Fs for different teams consisting
of up to N = 7 motors. The distributions from which these average forces are calculated are shown
in Fig. 3 of the main text for kinesin-1, strong dynein and weak dynein. In Fig. S4 we present the
corresponding distributions for the three remaining motor types analyzed in the main text: kinesin-
5, myosin-5a and myosin-6. In all three cases, the average collective forces 〈FN 〉 are very close to
the force scale 〈FN 〉1 ≡ N〈F1〉, see Fig. S4(a1-a3). For N = 7 available motors, the three types of
motors have high probabilities to find a large number n of active motors, as determined by the relative
frequencies displayed in Fig. S4(b). In fact, the most likely activity state for myosin-6 is one where
all available motors are bound to the track. Figs. S4(c1-c3) display the relative frequencies for the
maximum separation between the leading and the trailing motor for different numbers n = 2, 3, 4 of
active motors in a team with N = 4 motors. The distances is measured in units of the step size `. Note
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that for kinesin-5 the step size is ` = 8 nm, whereas the myosin motors have ` = 36 nm, see Table S1.
These distributions show that active motors are typically separated by at most a single step.

S5 Parameter dependence for a test motor

To understand how the collective forces depend on the single motor parameters, we performed simu-
lations for a test motor by changing one parameter value at a time. The reference parameter set for
the test motor is identical with the parameter set of kinesin-1, see Table S1. The changed parameter
values are specified in the inset of Fig. S5.
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Figure S5: Dependence of the collective forces on the single motor parameters for teams consisting of different
numbers N of available motors. The reference parameter set corresponds to that of kinesin-1 (green circles), see
Table S1, and the values for the changed parameters are specified in the inset. The average collective forces 〈FN 〉
for different N are rescaled by the single motor stall force Fs. A low zero-force unbinding rate of ε0 ' 0.01 s−1

(downward-pointing triangles) is sufficient to convert kinesin-1’s sub-additive collective force generation into
additive force generation with 〈FN 〉 ' 〈FN 〉s ≡ NFs. Likewise, reducing the stall force (upward-pointing
triangles), increasing the detachment force Fd (red crosses) or the rebinding rate π0 (stars) leads to better
cooperativity in force generation. The four parameters Fs, Fd, ε0 and π0 have the strongest impact on the
collective force, while this force depends most strongly on the stall force Fs and the detachment force Fd when
these parameters are changed by a similar factor. Reducing the zero-force velocity v0 (squares) leads to a
moderate decrease in the collective average forces, which depend even more weakly on changes in the stiffness
κ and the zero-force stepping ratio q0.

Fig. S5 displays the parameter dependence of the collective force values for motor teams consisting
of N available motors. We observe that the average forces of kinesin-1 can approach its collective stall
force NFs by reducing the zero-force unbinding rate ε0 from 0.66 s−1 to 0.01 s−1. A high detachment
force Fd has a similar effect, however, the zero-force unbinding rate ε0 can be directly modified in
experiments by changing the buffer conditions. We note that a reduction of ε0 by the same factor
as that of the detachment force leads to a more moderate change in the collective forces, see the
data points for ε0 = 0.17 s−1.We furthermore observe that collective force generation of kinesin-1 also
becomes more additive when its stall force Fs is reduced from 7pN to 2 pN, and when the rebinding
rate π0 of a single motor is increased. The absolute values of the collective average forces 〈FN 〉 for
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variations in ε0- and Fd-values are approximately 44 pN and 33 pN for N = 7, respectively. The former
value is quite close to the collective stall force NFs = 49 pN of a team of N = 7 kinesin-1 motors,
which indicates that such high force values could be in principle observed in vitro by changing the ion
concentrations.

Reducing the zero-force velocity v0 of kinesin-1 leads to a small overall decrease in the collective
average forces. The average single motor force for this case is around 〈F1〉 ' 2 pN, whereas the reference
average single motor force is about 3.8 pN; the average forces for N = 7 are 9.2 pN and 11.7 pN for the
reduced velocity and for the reference motor, respectively. Therefore, low v0-values in general lead to
lower average forces, but the collective average forces become closer to the force scale N〈F1〉 because
of the low single motor average force. We observe that changing the stiffness κ or the stepping ratio
q0 has a weak effect on the collective average forces.

We next study the dependence of the collective average force 〈FN 〉 to changes in the force parameters
Fs and Fd more closely to see whether the force ratio f ≡ Fs/Fd can be systematically used to
distinguish between strong and weak motors. We use the coarse-grained model to obtain the average
collective forces 〈F∗N 〉 for N = 3 and rescale these by NFs such that 〈F∗N 〉/NFs varies between 0 and
1. All parameters apart from Fs and Fd take the values corresponding to kinesin-1, see Table S1. In
Fig. S6, we observe that the rescaled force 〈F∗N 〉/NFs depends inversely on the force ratio f : Large
and small values of f in general correspond to small and large values of the rescaled average force,
respectively. Furthermore, for fixed values of the force ratio f and for small Fs, the rescaled forces
〈F∗N 〉/NFs remain approximately constant and slightly increase for large Fs.
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Figure S6: Dependence of collective average forces 〈F∗N 〉 rescaled by NFs for N = 3 on the parameters Fs

and Fd, obtained from the coarse-grained model. The remaining parameters take the values corresponding to
kinesin-1, see Table S1. The data point (cross) denotes the Fs- and Fd-values of kinesin-1. The straight lines
indicate different values of the force ratio f ≡ Fs/Fd. Moving along fixed f -values, one can approximately
maintain a constant value for the rescaled force 〈F∗N 〉/NFs for small Fs.
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S6 Different forms of the force-velocity relation

To clarify the question whether the specific form of the force-velocity relation v(F ) of a single motor
predominantly determines the collective force generation mechanism, we investigate collective forces
of motors with a convex (or concave-upward) and concave (or convex-downward) force-velocity curve
and compare the collective forces with those of kinesin-1 teams. We obtain the convex and concave
force-velocity curves by changing the values of the maximum and minimum velocity paramaters vmax

and vmin. The convex and concave force-velocity relations, as well as that of kinesin-1 are plotted in
Fig. S7.
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Figure S7: Force-velocity relation of kinesin-1, and modified force-velocity relations of kinesin-1 with a convex
and concave form. For the convex case, we used the parameter values vmax = 2v0 = 1480 nm/s and vmin =

−0.01v0 = −7.4 nm/s, whereas for the concave case we used vmax = 1.01v0 = 747.4nm/s and vmin = −0.12v0 =

−88.8nm/s. The remaining parameters take those of kinesin-1, see Table S1, with the stall force given by
Fs = 7pN, (dotted line).

In Fig. S8 we display collective forces generated by the two types of motors with a modified force-
velocity relation compared with the forces of kinesin-1. Figs. S8(a2-a3) indicate that the sub-additive
force generation mechanism of kinesin-1, see Fig. S8(a1), does not change markedly with modifications
in the specific form of the force-velocity relation v(F ). In all three cases, average forces generated for a
team of N = 7 motors are around 〈FN 〉 ' 12 pN. Nevertheless, we observe that the force distributions
are somewhat narrower for motors with a convex force-velocity curve, compared with those of kinesin-
1 and with the concave case. Additionally, relative frequencies of activity states (n), see Fig. S8(b),
show that for motors with a convex v(F ) the average number of active motors are slightly higher
than for kinesin-1 and for the concave case. Finally, for kinesin-1 (c1) and for the concave case (c2),
the maximum separation between the leading and the trailing motor is typically given by at most 2
steps. Motors with a convex v(F ) (c3), on the other hand, are typically separated by at most a single
step, which indicates that these motors share their overall load slightly more equally as compared with
kinesin-1 and with the concave-up case. However, this improvement in the force sharing configurations
does not significantly modify the collective force generation mechanism, as shown in Figs. S8(a1-a3).
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Figure S8: Collective force generation by teams of (a1) kinesin-1 motors, compared with motors with (a2)
convex and (a3) concave force-velocity relations v(F ), see Fig. S7 for the corresponding v(F )-relations. Force
distributions are represented as box plots with mean values given by triangular and circular markers, and
medians by horizontal lines (orange); whiskers indicate 1.5 interquartile range. Collective average forces 〈FN 〉
for all three cases take similar values, whereas the distributions for the convex case are narrower compared with
kinesin-1 and with the concave case. (b) Relative frequencies of the different activity states (n) for N = 7

available motors indicate that the average number of active motors slightly increases for the convex-up case
compared with kinesin-1 and with the concave case. (c1-c3) Distributions for the maximum separation between
the leading and the trailing motor given in units of the step size `. Motors with a convex force-velocity relation
v(F ) share the overall load slightly more equally than teams of kinesin-1 and motors with a concave v(F ),
because the latter have broader distributions for the maximum separation.

References

(1) Uçar MC, Lipowsky R. Force sharing and force generation by two teams of elastically coupled
molecular motors. Sci Rep. 2019;9(1):454.

(2) Berger F, Keller C, Klumpp S, Lipowsky R. Distinct transport regimes for two elastically coupled
molecular motors. Phys Rev Lett. 2012;108(20):208101.

(3) Uçar MC, Lipowsky R. Tug-of-war between two elastically coupled molecular motors: a case
study on force generation and force balance. Soft Matter. 2017;13:328–344.

(4) Carter NJ, Cross R. Mechanics of the kinesin step. Nature. 2005;435(7040):308–312.

(5) Kramers H. Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica. 1940;7:284.

(6) Klumpp S, Keller C, Berger F, Lipowsky R. Molecular motors: Cooperative phenomena of mul-

15



tiple molecular motors. In: Multiscale Modeling in Biomechanics and Mechanobiology. Springer;
2015. p. 27–61.

(7) Andreasson JO, Milic B, Chen GY, Guydosh NR, Hancock WO, Block SM. Examining kinesin
processivity within a general gating framework. eLife. 2015;4.

(8) Berger F, Klumpp S, Lipowsky R. Force-dependent unbinding rate of molecular motors from
stationary optical trap data. Nano Lett. 2019;.

(9) King SJ, Schroer TA. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat
Cell Biol. 2000;2(1):20–24.

(10) Ali MY, Kennedy GG, Safer D, Trybus KM, Sweeney HL, Warshaw DM. Myosin Va and myosin
VI coordinate their steps while engaged in an in vitro tug of war during cargo transport. Proc
Natl Acad Sci U S A. 2011;108(34):E535–E541.

(11) Leduc C, Campas O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, et al. Cooper-
ative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci U S A.
2004;101(49):17096–17101.

(12) Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H. Overlapping hand-
over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U
S A. 2006;103(15):5741–5745.

(13) Gennerich A, Carter AP, Reck-Peterson SL, Vale RD. Force-induced bidirectional stepping of
cytoplasmic dynein. Cell. 2007;131(5):952–965.

(14) Rai AK, Rai A, Ramaiya AJ, Jha R, Mallik R. Molecular adaptations allow dynein to generate
large collective forces inside cells. Cell. 2013;152(1):172–182.

(15) Blehm BH, Schroer TA, Trybus KM, Chemla YR, Selvin PR. In vivo optical trapping indicates
kinesin’s stall force is reduced by dynein during intracellular transport. Proc Natl Acad Sci U S
A. 2013;110(9):3381–3386.

(16) Shimamoto Y, Forth S, Kapoor TM. Measuring pushing and braking forces generated by ensem-
bles of kinesin-5 crosslinking two microtubules. Dev Cell. 2015;34(6):669–681.

(17) Fallesen T, Roostalu J, Duellberg C, Pruessner G, Surrey T. Ensembles of Bidirectional Kinesin
Cin8 Produce Additive Forces in Both Directions of Movement. Biophys J. 2017;113(9):2055–2067.

(18) Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S. Mechanochemical coupling of
two substeps in a single myosin V motor. Nat Struct Mol Biol. 2004;11(9):877.

(19) Gebhardt JCM, Clemen AEM, Jaud J, Rief M. Myosin-V is a mechanical ratchet. Proc Natl
Acad Sci U S A. 2006;103(23):8680–8685.

(20) Watanabe TM, Iwane AH, Tanaka H, Ikebe M, Yanagida T. Mechanical characterization of
one-headed myosin-V using optical tweezers. PLoS One. 2010;5(8):e12224.

(21) Altman D, Sweeney HL, Spudich JA. The mechanism of myosin VI translocation and its load-
induced anchoring. Cell. 2004;116(5):737–749.

(22) McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP. LIS1 and NudE induce a persistent
dynein force-producing state. Cell. 2010;141(2):304–314.

16



(23) Rogers AR, Driver JW, Constantinou PE, Jamison DK, Diehl MR. Negative interference dom-
inates collective transport of kinesin motors in the absence of load. Phys Chem Chem Phys.
2009;11(24):4882–4889.

(24) Oiwa K, Sakakibara H. Recent progress in dynein structure and mechanism. Curr Opin Cell Biol.
2005;17(1):98–103.

(25) Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD. Single-molecule analysis
of dynein processivity and stepping behavior. Cell. 2006;126(2):335–348.

(26) Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM. Individual dimers of the mi-
totic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol.
2006;8(5):470.

(27) Furuta K, Furuta A, Toyoshima YY, Amino M, Oiwa K, Kojima H. Measuring collective transport
by defined numbers of processive and nonprocessive kinesin motors. Proc Natl Acad Sci U S A.
2013;110(2):501–506.

(28) Gillespie DT. Markov processes: An introduction for physical scientists. Elsevier; 1991.

17


	Details of the fine-grained model
	Elastic forces derived from force balance
	Single motor description
	Details of the simulation

	Details of the coarse-grained model
	Exemplary state space for N=2

	Details for kinesin-1 data compared with experiments
	Force distributions of kinesin-5, myosin-V and myosin-VI
	Parameter dependence for a test motor
	Different forms of the force-velocity relation

