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S1. Phase separation in binary AB mixture

The binary mixture of liquid-A and liquid-B beads provides a relatively simple model system that
undergoes phase separation into two aqueous phases, the A-rich phase α and the B-rich phase β.
In Figure S1, we describe the simulation geometries used to determine the interfacial tension Σαβ
and the two-phase coexistence region.

Figure S1: Two-phase coexistence and interfacial tension in a binary mixture of A and B water beads:

(a) Two planar αβ interfaces between the A-rich α phase (cyan) and the B-rich β phase (white). This slab

geometry is convenient to measure the interfacial tension Σαβ via the stress profile; (b) The interfacial

tension Σαβ as a function of the force parameter fAB for constant force parameters fAA = fBB = 25; (c)

Small droplet of α phase immersed in the β phase. The stability of such an α droplet provides a simple

criterion for the coexistence of α and β; and (d) Depending on the mole fraction ΦA of the A beads and

on the effective temperature 1/fAB, small droplets of α phase remain stable (solid squares, red) or dissolve

(open circles, blue). The left and right vertical line corresponds to the smaller volume Vα,1 and to the

larger volume Vα,2 = 2Vα,1, respectively.
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S2. Contact area and interfacial area of nanodroplet

During the time-dependent engulfment of the nanodroplet as displayed in Figure 2 and Movie1,
corresponding to the parameter set DPD-1 in Table 1, the contact area Aαγ of the droplet with the
membrane increases and the area Aαβ of the water-water interface decreases. The precise evolution
of these two areas is displayed in Figure S2 as a function of the lateral box size L‖.

Figure S2: Dependence of the contact area Aαγ (red data) and interfacial area Aαβ (blue data) of the

nanodroplet on the lateral size L‖ of the simulation box which is reduced from L‖ = 130 d at time t = 0 to

L‖ = 120 d at time t = 4µs, compare Figure 2 and Movie1, where the bead diameter d is of the order of one

nanometer and provides the basic length scale. During this reduction of L‖, the interfacial area Aαβ goes

to zero because the membrane forms a closed neck that replaces the αβ interface. For comparison, we also

include the combined area Aαγ + Aαβ (green data) which represents the surface area of the droplet and

stays essentially constant for all L‖-values. Therefore, apart from the tight-lipped neck, the nanodroplet

has an essentially spherical shape.
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S3. Numerical results for symmetric bilayers with DPD-1 parameters

Table S1: Mechanical properties of the symmetric bilayers obtained for the parameter DPD-1 in
Table 1 and volume Vα,1 = 6837.6 d3 of the α droplet. Lateral box size L‖, interfacial tension
Σαβ , mechanical tensions Σαγ and Σβγ of the two membrane segments, and line tension λαβγ of
the contact line.

L‖[d] Σαβ [kBT/d
2] Σαγ [kBT/d

2] Σβγ [kBT/d
2] λαβγ [kBT/d]

Vα,1

130 1.861 ± 0.19 1.404 ± 0.18 0.854 ± 0.07 -7.305 ± 5.46
135 1.913 ± 0.19 2.793 ± 0.27 2.193 ± 0.10 -8.430 ± 4.75
140 1.889 ± 0.13 4.771 ± 0.19 4.184 ± 0.05 -10.008 ± 3.89
145 1.852 ± 0.25 6.634 ± 0.20 6.141 ± 0.06 -11.402 ± 3.29
150 1.952 ± 0.16 8.430 ± 0.17 7.842 ± 0.05 -12.203 ± 2.65

Table S2: Mechanical properties of symmetric DPD-1 bilayers for larger α droplet with volume
Vα,2 = 2Vα,1 = 13675.3 d3. Lateral box size L‖, interfacial tension Σαβ , mechanical tensions Σαγ
and Σβγ of the two membrane segments, and line tension λαβγ .

L‖[d] Σαβ [kBT/d
2] Σαγ [kBT/d

2] Σβγ [kBT/d
2] λαβγ [kBT/d]

Vα,2

135 1.959 ± 0.17 2.804 ± 0.21 2.272 ± 0.08 -9.110 ± 4.59
140 1.891 ± 0.17 4.657 ± 0.15 4.229 ± 0.05 -10.122 ± 4.01
145 1.982 ± 0.19 6.559 ± 0.23 6.160 ± 0.06 -11.748 ± 4.46
150 1.928 ± 0.13 8.331 ± 0.23 7.854 ± 0.05 -12.302 ± 4.36

Table S3: Geometric properties of symmetric DPD-1 bilayers for smaller α droplet with volume
Vα,1 = 6837.6 d3. Lateral box size L‖, corresponding segment tension Σβγ in units of kBT/d

2 as
in Table S1, base area A‖ = L2

‖, intrinsic contact angle θ∗α, contact line radius Rco, and cosine of
tilt angle, cosψco, at contact line.

L‖[d] Σβγ A‖[d
2] θ∗α[degree] Rco[d] cosψco

Vα,1

130 0.854 16900 96.984 ± 2.63 13.75 ± 0.09 0.6 ± 0.03
135 2.193 18225 92.988 ± 2.19 14.24 ± 0.06 0.83 ± 0.03
140 4.184 19600 88.184 ± 2.88 14.38 ± 0.19 0.92 ± 0.02
145 6.141 21025 81.058 ± 1.74 14.22 ± 0.03 0.98 ± 0.01
150 7.842 22500 83.100 ± 1.80 14.14 ± 0.06 0.95 ± 0.01

Table S4: Geometric properties of symmetric DPD-1 bilayers for larger α droplet with volume
Vα,2 = 2Vα,1 = 13675.3 d3. Lateral box size L‖, corresponding segment tension Σβγ in units of
kBT/d

2 as in Table S2, base area A‖ = L2
‖, intrinsic contact angle θ∗α, contact line radius Rco, and

cosine of tilt angle, cosψco, at contact line.

L‖[d] Σβγ A‖[d
2] θ∗α[degree] Rco[d] cosψco

Vα,2

135 2.272 18225 93.059 ± 3.55 18.59 ± 0.06 0.87 ± 0.04
140 4.229 19600 87.288 ± 3.13 18.48 ± 0.06 0.93 ± 0.02
145 6.160 21025 83.744 ± 2.73 18.32 ± 0.05 0.96 ± 0.01
150 7.854 22500 85.116 ± 1.72 18.43 ± 0.06 0.96 ± 0.01

3



S4. Different contributions to total free energy

As explained in the Methods section of the main text, see eq 4, the total free energy of the
membrane-droplet system can be decomposed into separate contributions, corresponding to the
interfacial free energy ΣαβAαβ of the αβ interface, the bending energy Ebe of the membrane, and
the line free energy λαβγLαβγ of the contact line. These different free energy contributions are
displayed in Figure S3 for two values of the lateral box size L‖. The data in Figure S3a,b are also
included in Movie2.

Figure S3: (a,b) Positive interfacial free energy (red), positive bending energy (green), and negative
line free energy (blue) as a function of time t for two values of the lateral box size L‖: (a) For
L‖ = 125 d, the membrane-droplet system is axisymmetric with a circular contact line; (b) For
the slightly smaller value L‖ = 122.5 d, the axisymmetry is broken and the contact line has an
elongated, noncircular shape. During the transition from (a) to (b), the interfacial free energy is
strongly reduced, the bending energy is slightly increased, and the line free energy remains almost
constant; and (c) Total free energy E for the axisymmetric morphology with L‖ = 125 d (top) and
for the non-axisymmetric morphology with L‖ = 122.5 d (bottom). Thus, during the morphological
transition from the axisymmetric to the non-axisymmetric shape, the total free energy is reduced
by ∆E = 135.6 kBT .
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S.5 Numerical computation of bending energies

To calculate the bending energies, we use the following numerical protocol. For a given bead
configuration, as obtained from the DPD simulations, we first construct the midsurface of the
bilayer membrane, from the positions of the lipid head beads in the two leaflets, and triangulate
this surface using a Delaunay scheme. For each vertex i of the Delaunay triangulation, we consider
the Ki triangles (or faces) adjacent to vertex i, i.e., those triangles for which vertex i represents
one corner, and label these triangles by ki = 1, . . . ,Ki. Each triangle ki has the area A(ki). The
effective vertex area is then defined by

Ai ≡
1

3

Ki∑
ki=1

A(ki) (S1)

where the sum runs over all triangles adjacent to vertex i. The factor 1/3 takes into account
that three vertices share one triangle and ensures that the total area of the midsurface is given by∑
iAi, i.e., by the sum over the effective vertex areas. The mean curvature Mi associated with

vertex i is computed using the algorithm introduced in Ref. [1]. For a symmetric bilayer with zero
spontaneous curvature and bending rigidity κ, the discretized bending energy is then given by

Edis
be {Ai,Mi} = 2κ

∑
i

AiM
2
i (S2)

where the sum runs over all vertices of the triangulation. For the parameter set DPD-1, the bending
rigidity κ has the value κ ' 12.6 kBT , which was calculated from the area compressibility modulus
as in Refs. [2] and [3].

When we insert the effective vertex areas A
(0)
i and the mean curvatures M

(0)
i of the original

Delaunay triangulation into eq S2, we obtain the bending energy E
(0)
be ≡ Edis

be {A
(0)
i ,M

(0)
i }. We

then start to smoothen the small-scale roughness of the bilayer membrane by applying the mean
face normal filter developed in Ref. [4] to the triangulated midsurface. For this smoothened surface,

we again compute the effective vertex areas A
(1)
i and the vertex-associated mean curvatures M

(1)
i

to obtain the bending energy E
(1)
be = Edis

be {A
(1)
i ,M

(1)
i }. The smoothening and the associated

computation are iterated several times, thereby generating a series of bending energy values E
(n)
be .

The iterative smoothening is stopped when the change in the bending energy falls below 1 kBT ,

i.e., it is stopped at n = N with |E(N)
be − E

(N−1)
be | < kBT .

The numerical procedure just described was used to calculate the bending energies shown in
Figure S3 and Movie2. When we apply the same procedure to the membrane in Figure 2d, which

exhibits a tight-lipped membrane neck, we obtain the bending energy E
(N)
be = 438.5 kBT after

N = 61 smoothening iterations. To compute the excess bending energy of the neck, we substract
the bending energy 8πκ of a spherical αγ membrane segment and take into account that the bending
energy of a planar βγ membrane segment vanishes. For the bending rigidity κ = 12.6 kBT , we
then obtain the bending energy

∆Ebe = E
(N)
be − 8πκ = 438.5 kBT − 316.7 kBT = 121.8 kBT . (S3)

Using the length Lαβγ ' 70 d of the contact line in Figure 2d, we obtain the contribution
∆Ebe/Lαβγ ' 1.74 kBT/d to the effective line tension λeff from the highly curved membrane
segments along the contact line.
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S.6 Affinity contrast and spontaneous curvature

The interactions of the lipid head (H) beads with the A and B water beads are described by the
DPD force parameters fAH and fBH. If fBH > fAH, the H beads prefer to be in contact with the
A beads; if fAH > fBH, the H beads prefer the B beads. The corresponding affinity contrast ∆aff

was defined in Eq 2 of the main text and is given by

∆aff =
fBH − fAH

fBH
. (S4)

As explained in the main text, a nonzero affinity contrast generates a nonzero spontaneous curva-
ture m, which can be positive or negative. In order to uniquely define the sign of this curvature,
we use two conventions. First, we define m to be negative if the bilayer prefers to bend (or bulge)
towards the inner leaflet and the interior aqueous solution. Second, we consider the spectator
phase γ to represent the interior solution. Thus, the spontaneous curvature mαγ is negative if the
αγ bilayer segment prefers to bulge towards the spectator phase γ and positive otherwise.

To determine the spontaneous curvature m arising from a nonzero affinity contrast, we used the
parameter set DPD-3 as given in Table 3 of the main text. Apart from fAH, all force parameters
have the same values as for the parameter set DPD-1. The force parameter fAH between the A
water beads and the lipid head beads was taken to be 22.5 and 27.5 kBT/d in addition to the value
fAH = fBH = 25 kBT/d for a symmetric bilayer. For fixed force parameter fBH = 25 kBT/d, the
three fAH-values 22.5, 25, and 27.5 kBT/d correspond to the affinity contrasts ∆aff = 0.1, 0, and
−0.1.

In order to determine the spontaneous curvature mαγ associated with this bilayer asymmetry,
we used the protocol developed in Ref. [5]. We considered two planar bilayers spanning the simu-
lation box, both exposed to the α and γ phases as in Figure S4, and calculated the stress profile
Sαγ across both bilayers as shown in Figure S5a1-c1. We then divide the stress profile Sαγ up into
two stress profiles, Sz<0 and Sz>0, across the two individual bilayers. The first moments of these
individual stress profiles are related to the spontaneous curvature mαγ via∫ 0

−25d

dz Sz<0(z)z =

∫ 0

25d

dz Sz>0(z)z = −2κmαγ (S5)

from which we can deduce the spontaneous curvature mαγ using the bending rigidity κ = 12.6 kBT .
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Figure S4: Simulation snapshot of the two planar bilayers used to measure the spontaneous cur-
vature mαγ of the αγ membrane segment. Both bilayers are in contact with the A-rich phase α
(yellow) and the liquid phase γ which consists only of B beads (light blue) over the time scale of
our simulations, see Figure S5a2-c2.

Figure S5: (a1 - c1) Stress profiles Sαγ and (a2 - c2) bead density profiles ρ as functions of the
coordinate z perpendicular to the two bilayers in Figure S3. The profiles in (a1) and (a2) correspond
to the affinity contrast ∆aff = 0.1, the profiles in (b1) and (b2) to a symmetric membrane with
∆aff = 0, and those in (c1) and (c2) to ∆aff = −0.1. Using the relation in eq S5 with the bending
rigidity κ = 12.6 kBT , we obtain the spontaneous curvatures m = 0.047/d, 0.003/d, and −0.044/d
for ∆aff = 0.1, 0, and −0.1, respectively.
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Movie Captions

Movie1. Time-dependent engulfment of nanodroplet (dark blue) by lipid bilayer (green chains,
yellow heads), viewed from the bottom and via two orthogonal cross-sections: The membrane
tension is controlled by the lateral size L‖ of the simulation box which is reduced, for fixed number
of lipid molecules, from L‖ = 130 d at t = 0 to L‖ = 120 d at t = 4µs, with the basic length
scale provided by the bead diameter d which is of the order of 1 nm. At t = 0, the droplet
adheres to the bilayer membrane and is partially engulfed by it. As we reduce the box size L‖ and
thus the membrane tension with constant velocity dL‖/dt, the contact area of the droplet with the
membrane increases while the area of the αβ interface decreases, see also Figure S1. The rotational
symmetry of the membrane-droplet morphology is spontaneously broken at L‖ = L∗‖ ' 124 d.
For L‖ < L∗‖, the morphology is characterized by a noncircular contact line and an elongated
membrane neck. This non-axisymmetric morphology persists until the membrane neck closes,
thereby attaining a tight-lipped shape. In Figure 2 of the main text, we display four snapshots of
this movie.

Movie2. Shape and energy fluctuations of the nanodroplet (dark blue) partially engulfed by
the bilayer membrane (green chains, yellow head groups), for two lateral box sizes L‖ close to
the morphological transition at L∗‖ ' 124 d: (Top row) For fixed box size L‖ = 125 d > L∗‖,

the membrane-droplet morphology is, on average, axisymmetric; and (Bottom row) For box size
L‖ = 122.5 d < L∗‖, the morphology is non-axisymmetric. In both cases, the free energy of the αβ

interface (red) and the bending energy of the membrane (green) are positive whereas the free energy
of the contact line (blue) is negative. As we decrease the box size from L‖ = 125 d to L‖ = 122.5 d,
the interfacial free energy decreases strongly, the bending energy increases significantly, and the
line free energy stays almost constant. Summing up all three contributaions, we find that the total
free energy is reduced by 135.6 kBT as the box size is decreased from L‖ = 125 d to L‖ = 122.5 d
and the membrane-droplet system undergoes a morphological transition from an axisymmetric to
a non-axisymmetric shape.
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