Supplementary Information: Decomposition of time-dependent fluorescence signals reveals codon-specific kinetics of protein synthesis

Nadin Haase¹, Wolf Holtkamp², Reinhard Lipowsky¹, Marina Rodnina², and Sophia Rudorf^{1,3}

¹Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
²Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
³corresponding author: sophia.rudorf@mpikg.mpg.de

Kinetic rates

Table S1: Kinetic rates as used in the Markov model description of the translation process [1].

Rates	k-notation	37°C	Units
$\kappa_{ m on}$	k_1	175 ± 25	$\mu M^{-1} s^{-1}$
$\omega_{ ext{off}}$	k_{-1}	700 ± 270	s^{-1}
$\omega_{ m rec}$	k_2	1500 ± 450	s^{-1}
ω_{21}	$k_{-2,co}$	2 ± 0.6	s^{-1}
ω_{23}	k _{3,co}	1500 ± 450	s^{-1}
$\omega_{ m con}$	k_4	450	$ m s^{-1}$
ω_{40}	$k_{7,co}$	1	s^{-1}

Table S2: Fitted *in-vitro* rates of ribosomal transitions. The standard deviation of the fitting parameters was calculated by analyzing the goodness-of-fit parameter χ^2 .

Rates	37°C	Units
$\omega_{ m trans}$	53 ± 4	s^{-1}
ω_{45_1}	109 ± 3	s^{-1}
ω_{45_2}	11 ± 0.5	s^{-1}
ω_{45_3}	43 ± 4	s^{-1}
ω_{45_4}	2 ± 0.1	s^{-1}
ω_{45_5}	20 ± 1	s^{-1}
$\omega_{ m end}$	0.3	s^{-1}

Intrinsic Fluorescence Intensities

Table S3: IFIs obtained from fluorescence signatures of phe1 to phe5 mRNA translation

			Ü	-	-	
#	no	phe1	phe2	phe3	phe4	phe5
	EF-G					
(IFI_1)	(1)	(1)	(1)	(1)	(1)	(1)
$\mathrm{IFI_1}^{\mathrm{pep}}$	1.124	1.146	1.081	1.168	1.183	1.157
${\rm IFI_1}^{\rm trans}$		1.069				
IFI_2			1.019	1.015	0.977	0.980
$\mathrm{IFI_2^{pep}}$			1.149			
IFI_3				1.320	1.390	1.383
$\mathrm{IFI_3^{pep}}$				1.088		
IFI_4					1.068	(1.068)
$\mathrm{IFI_4^{pep}}$					1.182	
IFI_5						0.988
$\mathrm{IFI_5}^{\mathrm{pep}}$						1.261

Table S4: IFIs obtained from fluorescence signatures of phe4 mRNA translation under different ternary complex concentrations

#	$0.15\mu\mathrm{M}$	$0.3\mu\mathrm{M}$	$2\mu\mathrm{M}$	$10\mu\mathrm{M}$
(IFI_1)	(1)	(1)	(1)	(1)
$\mathrm{IFI_1}^{\mathrm{pep}}$	1.235	1.224	1.179	1.174
IFI_2	1.024	1.003	0.975	0.983
IFI_3	1.299	1.342	1.408	1.383
IFI_4	1.073	1.061	1.071	1.117
${\rm IFI_4^{ m pep}}$	1.172	1.176	1.186	1.189

Table S5: Averaged IFIs obtained from fluorescence signatures of phe1 to phe5 mRNA translation (\pm SD)

#	Fluorescence	SD	SD	Relative
	value		[%]	change [%]
(IFI_1)	(1)	-	-	-
$\mathrm{IFI_1}^{\mathrm{pep}}$	1.143	0.031	2.7	14.3
${\rm IFI_1}^{\rm trans}$	1.069	-	_	6.9
IFI_2	0.998	0.017	1.7	0.2
${\rm IFI_2}^{\rm pep}$	1.149	-	-	14.9
IFI_3	1.364	0.027	2.0	36.4
$\mathrm{IFI_3^{pep}}$	1.088	-	_	8.8
IFI_4	1.068	-	_	6.8
$\mathrm{IFI_4}^{\mathrm{pep}}$	1.182	-	-	18.2
IFI_5	0.988	-	_	1.2
$\mathrm{IFI_{5}^{pep}}$	1.261	-	_	26.1

Table S6: Averaged IFIs obtained from fluorescence signatures of phe4 mRNA translation under different ternary complex concentrations (\pm SD)

#	Fluorescence	SD	SD	Relative
	value		[%]	change [%]
(IFI_1)	(1)	-	-	-
$\mathrm{IFI_1}^{\mathrm{pep}}$	1.203	0.028	2.2	20.3
IFI_2	0.996	0.019	1.9	0.4
IFI_3	1.358	0.041	3.1	35.8
IFI_4	1.080	0.022	2.0	8.0
$\mathrm{IFI_4^{pep}}$	1.181	0.007	0.6	18.1

Additional figures: Markov Process Representations

 $\begin{array}{c|c} phe1 \\ & & & & & & & \\ \hline \\ \bullet & & & & & & \\ \hline \\ \bullet & & & & & \\ \hline \\ \bullet & & & & \\ \hline \\ \bullet & &$

Figure S1: Representation of *phe* mRNA translation elongation as a Markov process without EF-G.

Figure S2: Representation of phe1 mRNA translation elongation as a Markov process.

Figure S3: Representation of phe2 mRNA translation elongation as a Markov process.

Figure S4: Representation of phe3 mRNA translation elongation as a Markov process.

Figure S5: Representation of *phe4* mRNA translation elongation as a Markov process.

Figure S6: Representation of phe5 mRNA translation elongation as a Markov process.

The figures S1-S6 represent Markov process descriptions of the *in-vitro* translation elongation cycle for truncated poly(U) mRNAs in the presence of only cognate ternary complexes. Each state of the Markov process corresponds to one sub-step of the elongation cycle. The fluorescent initiation complex consisting of a ribosome with BOF-Met- $tRNA^{fMet}$ in the P site and the first UUU codon in the A site starts in state 0_1 . Initial selection (0_1 - 4_1) is followed by A-site accommodation of the first Phe- $tRNA^{Phe}$. After peptide bond formation (5_1), the ribosome translocates to the second Phe codon (state 0_2). The ribosomes repeat the elongation cycle until they reach the end of the truncated mRNA, thus ending up in an end state (E_n) without mRNA in their A sites. Dots with the same color indicate states that are assigned the same intrinsic fluorescence intensity (IFI).

References

 S. Rudorf, M. Thommen, M.V. Rodnina, and R. Lipowsky. Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro. *PLoS Computa*tional Biology, 10(10), 2014.