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ABSTRACT: Molecular motors walk along filaments until they detach stochastically with a force-dependent unbinding rate.
Here, we show how this unbinding rate can be obtained from the analysis of experimental data of molecular motors moving in
stationary optical traps. Two complementary methods are presented, based on the analysis of the distribution for the unbinding
forces and of the motor’s force traces. In the first method, analytically derived force distributions for slip bonds, slip-ideal bonds,
and catch bonds are used to fit the cumulative distributions of the unbinding forces. The second method is based on the
statistical analysis of the observed force traces. We validate both methods with stochastic simulations and apply them to
experimental data for kinesin-1.
KEYWORDS: Molecular motor, kinesin, optical trap, unbinding rate, dissociation rate, unbinding force

In mammals, at least 80 genes code for different cytoskeletal
motors that transduce chemical free energy into mechanical

work.1,2 These molecular motors perform nanometer steps
along filaments from which they unbind stochastically after a
finite run length.3 Both their stepping dynamics and their
unbinding behavior are strongly affected by external forces. In
cells, these forces arise, for example, from viscous drag, from
the elastic coupling to other force-producing molecules, or
from their cargo load.4−6 Thus, stepping and unbinding are
characterized by a force−velocity relation and a force-
dependent unbinding rate, respectively. These force-depend-
encies are crucial in order to describe the motor properties in a
quantitative manner.
The motor-filament bond of kinesin behaves as a slip bond,

that is, the unbinding probability increases with increasing load
force. In contrast, the dynein motor may exhibit catch-bond
behavior, that is, it may bind to the filament more strongly
under force.7,8 Furthermore, single dynein heads behave as
slip-ideal bonds, that is, the unbinding rate first increases with
force and then becomes essentially force-independent.9

Developing reliable methods to determine the force-dependent

unbinding behavior of molecular motors is essential to advance
our understanding of their functions.
Force spectroscopy probes the dynamics of single molecular

bonds. To analyze and interpret data from these experiments,
different methods and theories have been developed.10,11

There are two fundamental differences between typical force-
spectroscopic experiments and single-motor experiments; in
force spectroscopy, the pulling speed on the molecular bond is
set by the experimenter and often kept constant. In contrast, a
molecular motor is changing its speed in response to the
external force, thus creating a nontrivial feedback between the
dynamics and the load force. The second difference between
the two experimental setups is the molecular interpretation of
the unbinding rate. In force spectroscopy single molecular
bonds are probed with well-defined reaction coordinates and
the unbinding rate can be considered as a Kramers’ escape rate
problem.10−12 In contrast, molecular motors walk along the
filament. Depending on the nucleotide state, they change the
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bond interaction of their two heads with the filament and the
unbinding rate is defined as an effective rate at which both
heads unbind from the filament. It is not obvious that methods
developed for single bonds can be applied to a coarse-grained
description of molecular motors.
Our understanding of how molecular motors respond to

external forces is primarily based on single-motor experiments
with optical traps.13 Whereas the force−velocity relations have
been studied for a variety of motors,6,14−17 much less attention
has been paid to the force-dependent unbinding rates,6,7,18

reflecting a lack of reliable and simple methods. Using a
sophisticated force-feedback optical trap, the force-dependent
unbinding rate has been determined for kinesin-1 as the
inverse of the average time the motor is attached to the
filament under a constant load force.7 High-precision experi-
ments that resolve single motor steps allow constructing the
force-dependent rates for stepping and for unbinding by
directly counting how often these events happen in time.19,20

However, such experiments are rather challenging and, to
resolve single steps, these experiments are often carried out for
low, nonphysiological nucleotide concentrations.
The force-dependent unbinding kinetics of a molecular

motor is an essential feature of its dynamics and force
generation. In fact, the force-dependent unbinding rate
together with the force−velocity relation determines the
dynamics of a molecular motor in a stationary optical trap.
In this Letter, we present a quantitative framework to analyze
traces of motors in stationary optical traps and to deduce the
force-dependent unbinding rate. In comparison to experiments
with force-feedback systems or single-stepping resolution, a
stationary optical trap represents a much simpler setup: a
single motor pulls a bead against the resisting force generated
by a laser trap.6 While the motor moves away from the center
of the trap, the force on the bead increases until the motor
unbinds from the filament and the bead snaps back to the trap
center, see Figure 1. The force at which the motor unbinds
defines the unbinding force and a distribution of these forces
can be constructed from many such events. How the shape of
the distribution depends on single motor properties and more
importantly on the force-dependent unbinding rate is
unknown.
In the present Letter, we derive analytical expressions for the

probability density of the unbinding forces and relate them to
the single motor properties. Comparing these results to
experimental data allows us to identify the underlying
filament-motor bond behavior. Furthermore, we estimate the
force-dependent unbinding rate with a complementary
approach based on the statistical analysis of force traces.6,18

The latter method uses the information on the whole trace and

does not require prior knowledge of the motor’s elastic
properties or of its force−velocity relation. Furthermore, it
provides an alternative definition of the force-dependent
unbinding rate that is complementary to its commonly used
definition as the ratio of velocity to run length.21 We explicitly
show how both methods are connected and discuss their
limitations. After validating both methods with stochastic
simulations, we apply them to experimental data to determine
the force-dependent unbinding behavior of kinesin-1.

Distribution-Based Method. The first method is based
on the probability density function p(F) of the unbinding
forces as measured experimentally or in simulations. In the
following, we will often abbreviate the mathematically precise
term “probability density function” by the simpler and more
intuitive term “distribution”. To derive analytical expressions
for this distribution, we extend a method previously used to
analyze force−spectroscopic data of single molecules.11,12 This
method transforms the distribution of unbinding forces into
the force-dependent unbinding rate
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in which Ḟt(F) is the force-dependent loading rate, that is, the
rate at which the trapping force Ft changes just before it
reaches the unbinding force Ft = F. From eq 1, we obtain the
probability density function
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for the unbinding force. The latter equation implies that the
distribution p(F) is determined by the ratio of unbinding rate
ϵ(F) to loading rate Ḟt(F). Therefore, from the distributions
for the unbinding force F, we can only estimate the ratio ϵ/Ḟt
as a function of F but not the unbinding rate alone without
knowing the loading rate.
However, we can estimate Ḟt from a theoretical description

of the motor. In the simplest case, the motor has a linear
force−velocity relation v(Ft) ≡ v0(1 − Ft/Fs) in which Fs is the
stall force and v0 the load-free velocity.

22 The force−extension
relation of the motor molecule is assumed to be linear with
spring constant κm. This spring is connected in series with the
spring-like potential of the optical trap described by the spring
constant κt. Using this motor description, we obtain the force-
dependent loading rate Ḟt(F) = κeffv0(1 − F/Fs) at the
unbinding force F with the effective stiffness κeff ≡ κmκt/(κm +
κt). First, we assume that the motor exhibits slip-bond behavior
with the unbinding rate ϵ(Ft) ≡ ϵ0 exp(Ft/Fd), depending on

Figure 1. Molecular motor in a stationary optical trap. (a) As the motor pulls the bead out of the trap center with velocity v(Ft), the trapping force
Ft on the motor increases and slows the motor down until it stochastically unbinds from the filament at the unbinding force F. The bead falls back
to the center of the trap. The stochastic unbinding is governed by the force-dependent unbinding rate ϵ(Ft). (b) A typical force trace, showing the
force as a function of time t, depends on the motor dynamics and on the stiffnesses κt and κm of trap and motor. The unbinding rate ϵ(Ft) is an
independent motor parameter that reflects the molecular interactions between motor and filament. (c) The histogram of unbinding forces depends
on the motor dynamics and on the force-dependent unbinding rate.
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the detachment force Fd and the load-free unbinding rate ϵ0.
For such an unbinding rate, the relation in eq 2 leads to the
probability density function

p F
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of the unbinding forces with
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and the exponential integral function I(x) ≡ ∫ x
∞t−1 exp[−t]dt.

In a similar way, we calculate exact expressions for the
distributions of unbinding forces corresponding to slip-ideal
and catch bonds (Supporting Information). These expressions
can be used to fit empirical cumulative distributions
constructed from data, thereby estimating the unbinding rate
ϵ(F). To validate our distribution-based approach, we use
stochastic simulations to generate data sets of unbinding forces
for different types of motor-filament bonds (Supporting
Information).
To account for the experimental noise in the traces, we add

an appropriate level of noise to the simulated data. In this way,
we generate three different data sets for slip, slip-ideal, and
catch bonds. We choose the parameter values for the three
different bonds such that the resulting unbinding rates have a
comparable numerical range, see Figure 2. We then use the
analytically derived expressions for the probability density
functions p(F) to fit the empirical cumulative distributions of
the simulated data and to deduce the parameters of the
unbinding rates. The three different force-dependent unbind-
ing behaviors lead to distinct distributions of unbinding forces,

see green lines in Figure 2. The estimated parameters are in
good agreement with the parameters used to generate the data
(Supporting Information). Our fitting procedure accounts for
our detection limit of about 0.5 pN for the unbinding forces
(Supporting Information). In contrast, the histogram combines
all unbinding forces below 1 pN into the first bin and therefore
underestimates the distribution, because the data lack forces
smaller than the detection limit. Note that the agreement
between the predicted distributions and the data is necessarily
limited by the assumptions about the underlying microscopic
models and by the associated parameterization for the
unbinding rates and the motor dynamics. Next, we describe
a method that uses the whole ensemble of force traces to
estimate the unbinding rate without assuming any microscopic
model.

Trace-Based Method. To estimate the force-dependent
unbinding rate from experimental data, without any
assumptions about the motor-filament bonds and the force−
velocity relation, it is necessary to estimate both the loading
rate Ḟt and the distribution p(F) of unbinding forces, see eq 1.
The loading rate Ḟt can be estimated from the slope of the
force traces before unbinding and p(F) can be estimated by
normalizing the histogram of the unbinding forces and dividing
this histogram by the bin width.11 The histogram has N bins
with bin width ΔF. The height hi of the ith bin is determined
from the counts Ci per bin as hi = Ci/(NunΔF) with Nun ≡
∑iCi. An estimator for the force-dependent unbinding rate in
eq 1 is then given by11
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This equation involves the force-dependent loading rate

( )F k Ft
1
2

̇ − Δ
ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑ which has to be determined from the slopes

of the force traces. We rewrite eq 5 in such a way that the
unbinding rate can be estimated directly from the data points
of the force traces (Supporting Information). We bin the data
points of all force traces into N force bins with bin width ΔF
and label k. We determine the numbers Ck

un of unbinding
events and the total number Ck

to of data points obtained from
all force traces bound to the filament for a given force, which is
equal to the total number of data points per force bin. The
force-dependent unbinding rate is then given by
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which depends on the time step δt between the recorded
points of the trace. Thus, the product δt Ck

to represents the
total time of all force traces spent in the kth bin. To evaluate
this equation neither a microscopic model nor any kind of
fitting procedure is needed, as previously realized in force
spectroscopy of a single bond.23 Applying this approach to our
simulated data, we determine the underlying force-dependent
unbinding rate solely from the force traces, see Figure 3. Even
though the distributions p(F) of the unbinding forces appear to
be similar for the slip-ideal and the catch bond, see Figure 2,
the trace-based method distinguishes the different unbinding
behaviors remarkably well. For small forces, the unbinding rate
is underestimated for the slip and the catch bond. This
systematic error is a result of the detection limit and the
uncertainty about the exact time at which the motor binds to

Figure 2. Distribution-based estimate of the unbinding rate
(simulation study). From a stochastic simulation of a molecular
motor in an optical trap, we obtain a set of unbinding forces from
which we construct an empirical cumulative distribution function
(Supporting Information). We fit these cumulative distributions by
the cumulative distributions as obtained from the analytically derived
probability density functions p(F) of the unbinding forces. Optimizing
these fits, we obtain the distributions displayed as green lines, which
are in good agreement with the gray normalized histograms divided
by the bin width for (a) slip bonds, (b) slip-ideal bonds, and (c) catch
bonds. The corresponding unbinding rate ϵ(F) are the red lines in the
lower panels. For comparison, we also display the unbinding rates
used to generate the data (blue lines). The error bars of the
histograms are estimated from a bootstrapping procedure and the gray
lines in the lower panels illustrate the variability of the unbinding rate
from bootstrapping (Supporting Information).
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the filament (Supporting Information). In case of the slip-ideal
bond, the unbinding rate is small for small forces and this
systematic error can be ignored.
The Unbinding Rate of Kinesin-1. We apply both

methods to experimental data of kinesin-1 pulling a bead out of
a stationary optical trap. The data were obtained during
control experiments carried out for a previous study.24 The
force-free velocity v0 ≃ 484 nm/s and the trap stiffness κt ≃
0.03 pN/nm.24 We assume a motor stiffness of κm ≃ 0.3 pN/
nm.6 However, this assumption is not crucial because the
effective stiffness κeff is dominated by the much smaller trap
stiffness κt. Using the distribution-based method, we determine
the unbinding rate from a fit of the empirical cumulative
distribution function constructed from 682 unbinding events,
see Figure 4a,b and Supporting Information. Despite our
simplifying assumptions about the force-dependent unbinding
rate and the motor dynamics, the fit is in good agreement with
the data, indicating that kinesin’s unbinding rate is consistent
with a slip-bond behavior. We find the following optimal
parameters with confidence intervals given in brackets: zero-
force unbinding rate ϵ0 ≃ 0.97 [0.80; 1.35] s−1, detachment
force Fd ≃ 2.25 [2.03; 5.18] pN, and stall force Fs ≃ 14.97
[6.26; 15] pN. The latter value for the stall force, as obtained
from the distribution-based method, is about twice as large as
the experimentally measured value,14 reflecting our simplified
parametrization of the force−velocity relationship (Supporting
Information).
Using the trace-based approach, we determine the force-

dependent unbinding rate of kinesin-1 from eq 6 as shown in
Figure 4d. Because of our detection limit and the associated
underestimate of the unbinding rate for the first force bin
(Supporting Information), the estimated unbinding rate is
inaccurate for forces smaller than 1 pN. Furthermore, the data
set includes only six traces with forces exceeding 7 pN and
therefore the data are not sufficient to accurately estimate the
unbinding rate for forces larger than 7 pN. An exponential fit
excluding these boundary points leads to a detachment force of
Fd ≃ 7.4 pN and a force-free unbinding rate of ϵ0 ≃ 1.1 s−1.
Summary and Outlook. We have applied two different

computational methods, the distribution-based and the trace-
based method, to data from a molecular motor moving in a
stationary optical trap. Both methods can be used to estimate
the force-dependent unbinding rate from the data. We
validated this approach by extensive stochastic simulations.
Whereas the distribution-based method gives analytical

expressions for the distribution or probability density function
p(F) for the unbinding forces, the trace-based method reliably
infers the correct unbinding behavior from the simulated data,
see Figures 2 and 3.
Furthermore, we have shown that a simple description of

kinesin-1 is consistent with the experimental distribution of
unbinding forces. Because the trace-based method is more
direct and does not rely on model assumptions, our numerical
investigations suggest that it provides an accurate estimate of
the force-dependent unbinding rate. In contrast, the distribu-
tion-based method relies on certain model assumptions. If
these assumptions are too simple the estimated parameters are
likely to be unreliable (Supporting Information). The trace-
based method, which does not involve any assumptions about
the functional form of the force dependencies, suggests a force-
free unbinding rate of ϵ0 ≃ 1.1 s−1 and a detachment force of
Fd ≃ 7.5 pN. While the unbinding rate is consistent with the
value of ϵ0 ≃ 1.0−1 commonly used for kinesin-1, the
detachment force is 2.5 times larger than the value of Fd ≃ 3
pN used in most theoretical studies.22 However, recent
experimental and modeling studies indicate a higher value of
about 6−7 pN for the detachment force or even a more
complicated force dependence.7,25,26

Force-dependent unbinding has important consequences for
the function of the motors in their cellular environ-
ment.21,27−29 Theoretical descriptions based on single-
molecule dynamics indicate that many emerging phenomena,
such as cooperative transport and macroscopic force
production can only be explained with a suitable force-
dependent unbinding rate for the single motors.30−33

Our approach provides a systematic framework to study the
force-dependent unbinding rate of molecular motors and can

Figure 3. Trace-based estimate of the unbinding rate (simulation
study). Without assuming a microscopic model, we only use the
unbinding forces and the force traces from the stochastic simulations
to estimate the unbinding rate for the three bond behaviors: slip bond
(a), slip-ideal bond (b), and catch bond (c). The estimated unbinding
rates (red lines) are in very good agreement with the exact unbinding
rates used for the simulations (blue lines). The 95% confidence
intervals are obtained from bootstrapping (Supporting Information).

Figure 4. Unbinding rate of kinesin-1 (experimental data). (a,b)
Distribution-based method: We use the analytical expression in eq 3 for
a slip bond to fit the empirical cumulative distribution constructed
from the experimental data (Supporting Information). The numerical
values of the fitted parameters determine the unbinding-force
distribution p(F) (green line in panel a) and the unbinding rate
ϵ(F) (red line in panel b). For comparison, the distribution of the
experimental unbinding forces is estimated by a gray histogram. (c,d)
Trace-based method: We use all 682 force traces, one example trace of
the force as a function of time t is shown in (c), to obtain the
unbinding rate ϵ(F) as the red line in (d) from eq 6. Fitting this trace-
based estimate with an exponential function (blue line), we obtain the
force-free unbinding rate ϵ0 ≃ 1.1 s−1 and the detachment force Fd ≃
7.4 pN. In (a) the error bars are obtained from a bootstrapping
procedure; in (b), the gray lines illustrate the variability of the
unbinding rate from bootstrapping; in (d) the errors are given as 95%
confidence intervals (Supporting Information).
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be extended to describe more complex optical trapping
experiments. To determine the unbinding rate for forces that
exceed the stall force, the stage could be moved relative to the
trap which adds only one extra term to the loading rate.9 Such
a protocol could improve the statistics for a certain force range
and could be used repeatedly to cover a large range of forces.
A first step toward understanding the function of motor

proteins is to determine biophysical quantities that are directly
accessible to experiments.34 While the probability distribution
of unbinding forces depends on the stiffness of the trap and
also on the stiffness of the linker that connects the motor to
the bead, the force-dependent unbinding rate is a characteristic
property of the motor-filament bond. Therefore, our computa-
tional approach provides a systematic framework for future
studies to distinguish different motor-filament bonds such as
dynein’s catch bond from kinesin’s slip bond.
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