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their surroundings. Second, the membrane 
compartments can change their topology 
via fusion and fission (or scission) pro-
cesses. One aspect of these remodeling 
processes is the heavy trafficking of vesicles 
between different organelles as displayed in 
Figure 1. This trafficking involves both the 
production of new vesicles via budding and 
fission from a donor membrane as well 
as the uptake of these vesicles by acceptor 
membranes via adhesion and fusion.

In Figure  1, budding processes are 
emphasized by using different colors for the 
membrane buds that are formed by different 
organelles. During such a budding process, 
the membrane of the organelle forms two 
interior subcompartments that are con-
nected by a membrane neck. The neck 
resembles a fluid “worm hole” by which 
the two subcompartments can exchange 
both membrane area and liquid volume. To 
transform the bud into a separate vesicle, 
the neck must be cleaved which leads to the 
fission of the organelle and to two separate 
membrane compartments. In Figure  1, the 
fusion processes correspond to the various 
arrowheads. In the cell, both fission and 

fusion involve a complex assortment of membrane-bound proteins 
that are believed to steer the different steps of these processes. The 
different proteins act in a concerted manner which makes it quite 
difficult to understand their individual roles even during a single 
fission or fusion event. This complexity is further increased by the 
multitude of such events that occur simultaneously in a single cell.

The schematic figure in Figure 1 has been drawn more than 
a decade ago.[1] In the meantime, the membrane architecture 
of some organelles has been found to be much more complex. 
One striking example is the endoplasmic reticulum (ER) which 
is shown in Figure 1 as a localized stack of membrane sheets. 
High resolution fluorescence microscopy has revealed, how-
ever, that the ER includes a network of membrane nanotubes 
that spans the whole cell and forms contact sites with all other 
organelles.[2,3] On the other hand, reconstitution experiments 
have also shown that the reticular network can be formed even 
in the absence of cytoskeletal filaments.[4,5]

New insight into the remodeling of biomembranes can 
be obtained from the study of synthetic membrane systems 
which are built up from a relatively small number of molecular 
components and can be studied in a systematic and quantita-
tive manner. In biochemistry and cell biology, these systems 
are conventionally called “in vitro” or “reconstituted systems.” 
Recently, a new motivation for the study of such model systems 

Cellular membranes exhibit a fascinating variety of different morphologies, 
which are continuously remodeled by transformations of membrane shape 
and topology. This remodeling is essential for important biological processes 
(cell division, intracellular vesicle trafficking, endocytosis) and can be eluci-
dated in a systematic and quantitative manner using synthetic membrane 
systems. Here, recent insights obtained from such synthetic systems are 
reviewed, integrating experimental observations and molecular dynamics 
simulations with the theory of membrane elasticity. The study starts from 
the polymorphism of biomembranes as observed for giant vesicles by optical 
microscopy and small nanovesicles in simulations. This polymorphism reflects 
the unusual elasticity of fluid membranes and includes the formation of 
membrane necks or fluid ‘worm holes’. The proliferation of membrane necks 
generates stable multi-spherical shapes, which can form tubules and tubular 
junctions. Membrane necks are also essential for the remodeling of membrane 
topology via membrane fission and fusion. Neck fission can be induced by 
fine-tuning of membrane curvature, which leads to the controlled division of 
giant vesicles, and by adhesion-induced membrane tension as observed for 
small nanovesicles. Challenges for future research include the interplay of 
curvature elasticity and membrane tension during membrane fusion and the 
localization of fission and fusion processes within intramembrane domains.
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1. Introduction

Our body contains a large amount of biomembranes that enclose 
our cells and many intracellular organelles. These membranes 
are fluid and create a flexible architecture that partitions each 
cell into many separate liquid compartments This membrane 
architecture is continuously remodeled by two different kinds 
of processes. First, the flexibility of these membranes allows 
them to easily adapt their shape to different interactions with 
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has been provided by the emerging bottom-up approach to syn-
thetic biology because biomembranes represent an important 
module for this approach. The present paper reviews some con-
tributions to this latter research activity.

Two synthetic model systems will be discussed as provided 
by giant vesicles and small nanovesicles. The methodology 
will be based on the integration of experimental observations 
of giant vesicles by optical microscopy, molecular dynamics 
simulations of small nanovesicles, and the theory of mem-
brane elasticity, which involves both curvature elasticity and 
membrane tension. The remodeling of giant vesicles, which 
have a typical size of many micrometers, has been studied 
for a long time.[6–9] Using optical microscopy, one can both 
image the vesicle morphology and monitor the transfor-
mations between these morphologies. The morphology of 
small nanovesicles, on the other hand, cannot be resolved by 
optical microscopy. Therefore, small nanovesicles have been 
traditionally imaged by different variants of electron micro
scopy.[10–15] The latter methods are, however, restricted to a 
single snapshot of each nanovesicle and, thus, cannot mon-
itor how the shape of such a vesicle changes with time. These 
shape transformations of nanovesicles are, however, acces-
sible to molecular dynamics simulations as has been recently 
demonstrated.[16,17]

This paper is organized as follows. Section 2 provides a show-
case for the shapes of both giant vesicles and small nanovesi-
cles, focusing on shapes that involve membrane necks. These 
necks lead to intriguing remodeling processes of membrane 
shape and are also essential for the remodeling of membrane 
topology. Section 3 summarizes the theory for membrane elas-
ticity, which deals with two types of elastic deformations, mem-
brane stretching (or compression) and membrane bending. In 
addition, Section 3 contains subsections on the local generation 
of spontaneous curvature, on the spontaneous tension which 
is intimately related to the spontaneous curvature, and on the 
composite nature of membrane tension. Two important aspects 
of tension are that the tension of a bilayer can be decomposed 
into a mechanical and a spontaneous tension and that the 
mechanical bilayer tension can be further divided up into two 
leaflet tensions.

In Section  4, the local properties of membrane necks are 
discussed which include the local stability of closed necks and 

the curvature-induced constriction forces that act to squeeze the 
necks. Section 5 is devoted to two-sphere vesicles which provide 
the simplest example for multispherical shapes and should be 
considered to provide a case study. The results of this section 
are generalized in Section 6 to multispherical shapes that con-
sist of an arbitrary number of large and small spheres. Finally, 
in Section  7, the remodeling of membrane topology, which is 
based on fission and fusion events, will be addressed.

2. Remodeling of Membrane Shape

Biomembranes are fluid and can easily adapt their shape to 
changing cues in their environment. In this section, we will 
provide several examples for the morphological responses 
of biomembranes and vesicles that do not involve topological 
transformations via membrane fusion or membrane fission. 
However, even in the absence of such processes, the shape 
remodeling of a biomembrane can generate several subcom-
partments via the formation of membrane necks.

2.1. Membrane Compartments In Vivo and In Vitro

Cellular membranes form a large variety of different compart-
ments. Each cell is enclosed by a plasma membrane which 
provides the boundary between the cell and its surroundings. 
In addition, the eukaryotic cells of animals and plants contain a 
large number of intracellular membranes that enclose different 
organelles as in Figure 1. The cellular membranes differ greatly 
in their lateral extensions, from many tens of micrometers for 
plasma membranes to small nanovesicles such as synaptic vesi-
cles with a diameter that varies between 20 and 50 nm[18,19] as 
well as exosomes, which represent small extracellular vesicles 
with a diameter between 25 and 100 nm.[20–22] In recent years, 
exosomes and somewhat larger extracellular vesicles have been 
intensely studied as possible biomarkers for diseases and as tar-
geted drug delivery systems.[23–26]

Cellular membranes can attain a striking variety of different 
shapes. The plasma membrane of a red blood cell, for instance, 
has a characteristic discocyte shape whereas the plasma mem-
brane of a white blood cell typically forms long membrane 

Figure 1.  Vesicle trafficking between different organelles within an animal cell: the vesicles are formed by budding and fission from different membrane-
bound organelles. The different colors (blue, red, yellow) are used to distinguish bud formation from different donor membranes. The arrowheads 
indicate adhesion and fusion events between a vesicle and an acceptor membrane. Reproduced with permission.[1] 2004, Elsevier.
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protrusions that can explore a large spatial region around the 
cell. Particularly intriguing morphologies are observed for the 
plasma membranes of neurons, which form complex dendritic 
trees as well as rather long axons. Likewise, membrane-bound 
organelles can have rather striking shapes. One example is 
provided by the endoplasmic reticulum which is displayed in 
Figure 1 in a very simplified manner because we now know that 
it includes a network of membrane nanotubes that spans the 
whole cell.[5,27]

Many of the membrane processes in vivo can also be studied 
in vitro using synthetic or reconstituted membrane com-
partments. These compartments are based on lipid bilayers 
which form closed vesicles. For these lipid vesicles, a variety of 
methods has been developed by which one can vary their size 
over a wide range, from a few tens of nanometers to many tens 
of micrometers. In the literature, three different types of lipid 
vesicles are usually distinguished: small unilamellar vesicles 
(SUVs) with a diameter below 50  nm; large unilamellar vesi-
cles (LUVs) with a typical size between 100 and 200  nm; and 
giant unilamellar vesicles (GUVs), the size of which exceeds 
one micrometer but can be as large as 100  µm. In the fol-
lowing, we will only discuss membrane compartments that 
are formed by a single bilayer membrane. Therefore, we will 
often omit the term “unilamellar” and refer to SUVs, LUVs, 
and GUVs as small nanovesicles, large nanovesicles, and giant 
vesicles, respectively.

2.2. Giant Vesicles with Membrane Necks

Giant vesicles provide a direct connection between the nano- 
and the microregime. On the one hand, these vesicles repre-
sent biomimetic compartments with linear dimensions of 
many micrometers. On the other hand, the vesicle walls are 
provided by single molecular bilayers that have a thickness of 
a few nanometers and respond sensitively to molecular inter-
actions with small solutes, biopolymers, and nanoparticles. 
These nanoscopic responses are amplified by the giant vesi-
cles and can then be studied on much larger scales by optical 
microscopy. Therefore, giant vesicles have been increasingly 
used as a versatile research tool for basic membrane science, 
bioengineering, and synthetic biology. Here, we will focus on 
the polymorphism of giant vesicles that has been studied for 
quite some time. In the following, we will illustrate this poly-
morphism with a few selected examples, all of which involve 
the formation of membrane necks which provide “worm holes” 
between two aqueous subcompartments enclosed by two mem-
brane segments.

2.2.1. Budded Vesicles with a Single Membrane Neck

One shape transformation of giant vesicles that has been 
frequently observed is the budding of these vesicles which 
leads to the formation of a small spherical bud, connected 
to the mother vesicle by a single membrane neck or “worm 
hole.” One example for such a budding process is displayed 
in Figure  2. In this example, the vesicle was prepared in an 
aqueous solution of sucrose and then transferred to an obser-
vation chamber in which the osmolarity of the exterior solution 
was increased by adding glucose. This procedure had two con-
sequences. First, the increased osmolarity reduced the volume 
of the vesicle. Second, the lipid bilayer now acquired a trans-
bilayer asymmetry because the inner leaflet of this bilayer was 
still exposed to sucrose whereas the outer leaflet was now in 
contact with glucose. The combination of volume reduction 
and transbilayer asymmetry induced the shape transformation 
from the initial pear-like shape to a budded shape, consisting 
of two (punctured) spheres that are connected by a closed 
membrane neck, as displayed in Figure  2. In this example, 
the whole transformation from the pear-like to the two-sphere 
shape took about 16 s.

The transbilayer asymmetry leads to a preferred curvature 
of the vesicle membrane, the so-called spontaneous curvature. 
This curvature can be directly estimated from the inverse size 
of the spherical bud. If this bud has a radius of about 1  µm, 
the spontaneous curvature is about 1  µm−1. Furthermore, the 
theory of curvature elasticity predicts that an outward budding 
process as in Figure 2 can only occur if the preferred or spon-
taneous curvature of the membrane exceeds a certain threshold 
value and that this threshold value depends on the volume of 
the vesicle and on the area of the vesicle membrane. Therefore, 
for a given membrane area, the bud size depends on the vesicle 
volume and on the spontaneous curvature. The vesicle volume 
is relatively easy to control by changing the osmotic conditions 
while fine-tuning of the spontaneous curvature is more difficult 
to achieve.

An unprecedented control of the spontaneous curvature has 
been recently accomplished by low densities of membrane-
bound proteins as shown in Figure 3.[29] The giant vesicles were 
exposed to nanomolar concentrations of His-tagged GFP in the 
exterior buffer solution. The His-tagged proteins were bound 
to certain anchor lipids in the outer leaflet of the vesicle mem-
brane. The density of membrane-bound protein increased lin-
early with the nanomolar concentration in the exterior buffer. 
As a consequence, the spontaneous curvature was found to 
increase linearly with the GFP concentration as well. Thus, the 
size of the bud could be controlled by changing both the vesicle 

Figure 2.  Budding of a giant vesicle, eventually creating two interior subcompartments, which are connected by a closed membrane neck or “worm 
hole.” The first snapshot defines the time point at which the imaging was started; the three subsequent snapshots represent the time lapse of an 
individual vesicle and were taken after 9, 13.4, and 15.7 s. The scale bar in the first panel is 5 µm and applies to all panels. Reproduced under terms of 
the CC-BY license.[28] Copyright 2019, The Authors, published by Royal Society of Chemistry.
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volume and the concentration of the His-tagged proteins in the 
exterior buffer.

2.2.2. Giant Vesicles with Lipid Phase Domains

Many lipid mixtures phase separate into two lipid phases, a 
liquid-ordered and a liquid-disordered phase, which are both 
fluid and form large intramembrane domains.[30–33] These 
domains are separated by a domain boundary which has a line 
energy that is proportional to the length of this boundary.[34,35] 
The budding process is facilitated by these domain boundaries 
as shown in Figure  4, where different membrane dyes have 
been used to distinguish the two types of domains via fluores-
cence microscopy.[32,36,37]

2.2.3. Active Shape Oscillations

In the previous examples, the formation of a membrane neck 
was observed during the relaxation of the vesicle shape toward 
a (meta)stable state. Recently, shape oscillations of giant vesi-
cles have been observed,[38] during which the vesicles changed 
their neck size in a recurrent manner.[39] These oscillations are 
caused by Min proteins that attach to and detach from the ves-
icle membranes,[40] with the detachment being driven by ATP 
hydrolysis. The observed shape oscillations can be understood in 
terms of a spontaneous curvature that undergoes cyclic changes 
in time.[39] During each oscillation cycle, the vesicle shape is 
transformed from a symmetric dumbbell with two equally sized 

subcompartments to an asymmetric dumbbell with two sub-
compartments that differ in their size, followed by the reverse, 
symmetry-restoring transformation, as displayed in Figure  5. 
Inspection of this figure shows that the dumbbells possess mem-
brane necks that close and open up during each oscillation cycle. 

Figure 3.  Controlled budding of giant vesicles: Two parameters were used to steer the budding transformations and to control the size of the bud. 
First, the vesicle volume was varied in the absence of His-tagged proteins by changing the osmotic conditions, as shown in panels a–c. Second, the 
spontaneous curvature of the membranes was controlled by the molar concentration of His-tagged GFP in the exterior buffer. When this molar con-
centration was increased from zero in panels (a–c) to finite values in panels (a′), (b′), and (c′), buds of different sizes were formed. The white arrows 
indicate the positions of the membrane necks. All scale bars: 5 µm. Reproduced under terms of the CC-BY license.[29] Copyright 2020, The Authors, 
published by Springer Nature.

Figure 4.  Domain-induced budding of giant vesicles as predicted by 
theory[34,35] and observed by fluorescence microscopy.[32,36,37] The two 
intramembrane domains consist of liquid-disordered (Ld) and liquid-
ordered (Lo) lipid phases: a) Cross-section through a vesicle that formed 
two lipid phase domains after a decrease in temperature;[32] b) 3D con-
focal scan of a two-domain vesicle that was formed by electrofusion;[36] 
and c) Cross-section through a two-domain vesicle after osmotic defla-
tion.[37] In each example, two different membrane dyes have been used 
to distinguish the Ld and Lo domains by fluorescence microscopy. The 
Ld phase is red in (a,b) and orange in (c), the Lo phase is blue in (a) and 
green in (b,c). Because the line tension of a domain boundary is positive, 
this boundary can reduce its line energy by constricting the vesicle to 
form a membrane neck. Scale bars: 5 µm in (a) and 10 µm in (c). Panel 
(a) reproduced with permission.[32] 2003, Springer Nature. Panel Panel 
(b) reproduced with permission.[36] Copyright 2016, published by World 
Scientific Publishing Co Pte Ltd. Panel (c) reproduced under terms of the 
CC-BY license.[37] Copyright 2020, The Authors, published by Wiley-VCH.
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In the example shown in Figure 5, 26 such oscillations have been 
observed, with an average cycle time of 56 s.

2.2.4. Multispherical Vesicles with Many Necks

The vesicle shapes in Figures  2–5 involve a single membrane 
neck. These shapes represent the simplest examples for 
stable multispherical or “multi-balloon” shapes. Indeed, the 
theory of curvature elasticity predicts that vesicles can form 
multispherical shapes consisting of an arbitrary number of 
large and small spheres that are connected by closed mem-
brane necks. One remarkable feature of these multispheres 
is that they can involve only two different sphere radii, which 
define the large and small spheres.

A recent experimental study has demonstrated that stable 
multispherical shapes can indeed be formed by giant vesicles, 
see Figure  6. Each multisphere in this figure has a complex 
morphology consisting of several spheres and several mem-
brane necks. Furthermore, it is important to note that each of 
these multispherical shapes is formed by a single membrane. 
The properties of such multispheres will be discussed further 
below, together with additional microscopy images that display 
multispheres that involve even larger numbers of spheres.

2.3. Membrane Necks at the Nanoscale

The shape of nanovesicles with a diameter below 300 nano
meters cannot be imaged by conventional optical microscopy. 
Therefore, a variety of electron microscopy (EM) methods has 
been used to image these vesicles, but all EM methods are 

restricted to a single snapshot of each nanovesicle and, thus, 
cannot monitor how the shape of such a vesicle changes with 
time. These shape transformations of nanovesicles are, how-
ever, accessible to molecular dynamics simulations.[16,17,41–45] 
Here, we focus on two recent simulations[16,17] which revealed 
that the leaflet tensions and the concentrations of small solutes, 
which adsorb onto the membranes, represent important con-
trol parameters for the nanovesicle morphologies, see Figure 7 
and Section 7.3 further below. In particular, these studies iden-
tified parameter values for the formation of membrane necks. 
Furthermore, during the engulfment of small nanodroplets, 
membranes can form non-circular necks that arise from the 
negative line tension of the contact line between nanodroplet 
and membrane,[46] see Figure 8.

2.3.1. Budding of Small Nanovesicles

To study the shape transformations of lipid nanovesicles, we 
started with the assembly of spherical vesicles that enclose a 
certain volume of water and contain a certain total number of 
lipids, see the leftmost snapshots in Figure 7. When we reduce 
their volume, the spherical vesicles are observed to transform 
into a multitude of nonspherical shapes such as oblates and 
stomatocytes as well as prolates and dumbbells. Two examples 
of these shape transformations are displayed in Figure  7. In 
panel (a) of this figure, the initially spherical vesicle transforms 
into a stomatocyte with an inward-pointing bud; in panel (b), 
the spherical nanovesicle transforms into a dumbbell with an 
outward-pointing bud and a closed neck.

The different shape transformations of these nanovesi-
cles can be controlled by the transbilayer distribution of the 

Figure 5.  Active shape oscillations of a giant vesicle that encloses Min proteins and ATP as observed experimentally[38] and computed from the theory 
of curvature elasticity.[39] The theory reveals that the shape oscillations of the vesicle can be understood in terms of a time-dependent spontaneous 
curvature that arises from the cyclic binding and ATP-driven unbinding of the proteins to and from the vesicle membrane. In this example, 26 such 
cycles with an average cycle time of 56 s have been observed. Reproduced under terms of the CC-BY license.[39] Copyright 2021, The Authors, published 
by Royal Society of Chemistry.
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assembled lipid molecules. Thus, the two spherical vesicles 
shown in Figure 7a,b are built up from the same total number 
of lipid molecules but differ slightly in the lipid numbers 
assembled in the inner and outer leaflet of the bilayer mem-
brane. In fact, redistributing only 2% of the lipids between the 
two leaflets of the spherical vesicle leads to very different shape 
transformation during the reduction of the vesicle volume. 
This sensitivity to small changes in the assembled lipid num-
bers arises from different mechanical tensions within the two 
bilayer leaflets. Thus, the formation of the inward-pointing 
bud in Figure 7a is caused by the initial stretching of the outer 
leaflet and the initial compression of the inner leaflet. Likewise, 
the formation of the outward-pointing bud Figure 7b is caused 
by the initial compression of the outer leaflet and the initial 
stretching of the inner leaflet.

2.3.2. Membrane Engulfment of Liquid Droplets

So far, we have tacitly assumed that the membrane necks are 
axisymmetric, in accordance with the giant vesicle experiments, 
see Figures  2–5, and with the molecular dynamics simula-
tions in Figure  7. One process, for which non-axisymmetric 
membrane necks have been observed, is the engulfment of 
small nanodroplets, as illustrated in Figure  8. In this case, 
the engulfment process was controlled by the mechanical ten-
sion in the lipid bilayer which was steered by the extension of 
the simulation box parallel to the membrane. We considered 
a bilayer membrane assembled with a certain, fixed number 
of lipids, and reduced the mechanical bilayer tension by 
decreasing the parallel box extension L∥, while keeping the box 
volume constant.

Figure 7.  Budding of nanovesicles as observed in molecular dynamics simulations.[16] Each snapshot displays half a vesicle, with the cross-section across 
the hydrophobic core of the bilayer membrane in grey and the lipid head groups in green. The budding transformations were induced by decreasing the 
volume v of the two spherical vesicles with v = 1. For v = v0, the vesicle membranes have zero bilayer tension. The direction of budding was controlled by 
the two leaflet tensions of the spherical bilayer: a) Formation of an inward-pointing bud for a spherical vesicle with a compressed inner and a stretched 
outer leaflet; and b) Formation of an outward-pointing bud for a spherical vesicle with a compressed outer and a stretched inner leaflet. Reproduced under 
terms of the CC-BY license.[16] Copyright 2019, The Authors, published by American Chemical Society.

Figure 6.  Multispherical shapes of giant vesicles with a total number of up to four spheres as observed by optical microscopy. Each multisphere 
involves only two different sphere sizes as predicted by the theory of curvature elasticity: a) One large and one small sphere as in Figure 2; b,c) Mul-
tispheres consisting of one large and two small spheres, forming two distinct patterns; d) A small sphere in between two large spheres; e) One large 
sphere connected to a linear tubule of three small spheres; f,g) Two large spheres and two small spheres forming two distinct patterns of necklaces; 
and h) A necklace formed by three large spheres and one small sphere. The scale bar in (a) is 10 µm and applies to all panels. Reproduced under terms 
of the CC-BY license.[28] Copyright 2020, The Authors, published by Royal Society of Chemistry.
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Initially, at time t = 0 µs, we chose L∥ = 130 d with the basic 
length scale provided by the bead diameter d = 0.8 nm. For this 
initial L∥-value, the lipid bilayer experienced a relatively high 
bilayer tension, for which the droplet formed a circular contact 
line with the membrane, see leftmost snapshots in Figure  8. 
We then reduced L∥ from 130 d to 120 d over the next 4 ms, 
thereby reducing the mechanical bilayer tension acting on the 
membrane. During the initial reduction of the membrane ten-
sion, the droplet-bilayer morphology remained axisymmetric 
and the contact line retained its circular shape. However, 
when we reached a certain threshold value of the mechanical 
tension, the system underwent an unexpected transition to a 
non-axisymmetric morphology, accompanied by strong shape 
fluctuations. As we further reduced the membrane tension, the 
non-axisymmetric morphology persisted until the nanodroplet 
was completely engulfed by the membrane and the membrane 
neck had been closed into an unusual, tight-lipped shape, see 
rightmost snapshots in Figure  8. A detailed analysis of the 
force balance along the contact line revealed that this unusual 
neck morphology is caused by the negative line tension of the 
contact line.

The process displayed in Figure  8 provides one example 
for the wetting and molding of membranes by liquid drop-
lets. Such wetting and molding processes are not limited 
to nanodroplets but can also occur for any kind of droplets 
that are formed by phase separation of an aqueous solu-
tion. Examples for this kind of phase behavior are aqueous 
two-phase systems,[47] water-in-water emulsions,[48] and bio-
molecular condensates.[49,50] So far, wetting and molding 
phenomena have been studied in some detail for GUVs 
exposed to aqueous two-phase systems[51,52] and have also 
been observed for GUVs and biomolecular condensates. A 
detailed theory for these phenomena has been developed in 
refs. [53,54].

3. Elasticity of Biomembranes

All biomembranes contain a lipid bilayer in its fluid state. On the 
molecular scale, this fluidity implies that two neighboring lipids 
swap their relative positions within nanoseconds. On the supra-
molecular scale, fluid membranes have no shear modulus, that 
is, no elastic-restoring force against shear deformations. As a con-
sequence, the shape of these membranes is governed by bending 
and stretching deformations. In this section, we will focus on the 
stable morphologies of membranes and vesicles for which the 
effects of shape undulations are small and can be largely ignored. 
This assumption is justified as long as the bending rigidity κ of 
the membranes is large compared to the thermal energy kBT. 
For a phospholipid bilayer, a typical value for κ is 20 kBT or about 
0.8 × 10−19 J at room temperature T = 25 °C.[55]

3.1. Elastic Deformations of Fluid Membranes

3.1.1. Stretching and Compression of Membranes

One important quantity that characterizes the geometry of a 
membrane is its surface area, A. In the absence of external con-
straints or forces, the membrane is tensionless and attains its 
optimal area, A = A0. In general, the membrane area A differs 
from its optimal value and then experiences the mechanical 
tension

Σ = −
A K

A A

A
A( ) 0

0

	 (1)

which is proportional to the area dilation (A − A0)/A0. A posi-
tive membrane tension, Σ > 0, leads to an increase of the mem-
brane area with A − A0 > 0 and, thus, to membrane stretching. 

Figure 8.  Time evolution of a membrane neck generated by a nanodroplet (blue) that adheres to the membrane.[46] The head groups and the hydro-
carbon chains of the lipids are yellow and green, respectively: a) Bottom views of circular membrane segments (yellow) around the droplet’s interface 
(blue), separated by the contact line which is circular at t = 0 µs, strongly non-circular after t = 3 µs, and has closed into a tight-lipped shape after 
t = 4 µs; and b) Side views of the same membrane-droplet morphologies, with perpendicular cross-sections through membrane (green) and droplet 
(blue) taken along the red dashed lines in panel (a). The non-circular shape of the membrane neck is caused by the negative line tension of the contact 
line. Reproduced under terms of the CC-BY license.[46] Copyright 2018, The Authors, published by American Chemical Society.
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A negative membrane tension, Σ  < 0, on the other hand, 
implies that A − A0 < 0 and that the membrane is compressed.

For lipid bilayers, the area compressibility modulus KA is typ-
ically of the order of 100 to 300 mN m−1 as has been measured 
by micropipette experiments.[56] This value should be compared 
with the rupture tension which is typically 5 to 10 mN m−1. 
Because the area compressibility modulus is much larger than 
the rupture tension, the area dilation (A − A0)/A0 is limited to a 
few percent before the membrane ruptures. Therefore, we can 
indeed ignore nonlinear contributions to the tension which are 
of higher order in the area dilation, which justifies the linear 
relationship in Equation (1).

The elastic stretching energy is then given by
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which is always positive and represents the reversible work that 
we have to perform in order to stretch or compress the mem-
brane from its optimal area A0 for zero tension.

3.1.2. Bending Deformations and Curvature

Bending deformations are intimately related to membrane curva-
ture. We now view the membrane as a smoothly curved surface 
which implies that each point of this surface can be character-
ized by two principal curvatures, C1 and C2. These principal 
curvatures can be constructed, in a pedestrian manner, by the fol-
lowing procedure. First, we consider all normal sections through 
the surface which contain both the point P under consideration 
and the normal vector erected at this point. The intersection 
of each normal section with the membrane surface defines a 
cross-sectional curve which has a certain curvature, C, at point 
P. When we rotate the normal section around the normal 
vector, the curvature C varies smoothly within a certain interval, 
Cmin ≤ C ≤ Cmax. The extremal values, Cmin and Cmax, define the 
principal curvatures[57,58] C1 and C2 at the chosen point P as well 
as the mean curvature M and the Gaussian curvature G via

1
2

and1 2 1 2M C C G C C( )≡ + ≡ 	 (3)

The principal curvatures are local geometric quantities which 
vary along the membrane which implies that both the mean 
and the Gaussian curvatures are local geometric quantities as 
well. It is important to note that all curvatures can be positive 
or negative which will play an important role for the stability of 
membrane necks as explained further below.

The simplest model for the curvature elasticity of a 
biomembrane is the so-called spontaneous curvature 
model,[59,60] for which the bending energy of a curved mem-
brane has the form

d 2 ( )2E A M mbe κ= ∫ − 	 (4)

which involves two material parameters, the bending rigidity 
κ and the spontaneous curvature m. Here, we have focused 
on membrane compartments and vesicles with a certain fixed 

topology, which applies to all vesicle morphologies displayed 
in Figures 2–6. In such a situation, the elastic energy does not 
involve the Gaussian curvature G which will, however, become 
important for remodeling of the membrane topology as dis-
cussed further below.

In spite of its simplicity, the spontaneous curvature model 
provides a reliable description for the polymorphism of giant 
vesicles provided the vesicle membrane contains (at least) one 
lipid component that undergoes frequent flip-flops between 
the two bilayer leaflets. In the absence of membrane proteins 
that act as lipid pumps, lipid flip-flops represent a thermally 
activated process with flip-flop times that vary from hours or 
even days for phospholipids[61–63] to seconds[64,65] or even mil-
liseconds[66] for cholesterol and other sterols. In cellular mem-
branes, lipid flip-flops are also induced by proteins, some of 
which act as lipid pumps.[67–70]

The applicability of the spontaneous curvature model to lipid 
bilayers with cholesterol has been recently demonstrated for 
two specific lipid mixtures, for a binary mixture of POPC and 
cholesterol[28] as well as for a ternary mixture of POPC, POPG, 
and cholesterol.[29] On the other hand, in the absence of flip-
flops, the number of lipids is conserved in each bilayer leaflet 
separately, which implies that the area difference between the 
two leaflets has a preferred value. This additional constraint 
defines the area–difference–elasticity model.[58,71,72] The first 
variation of the ADE model leads to the same stationary shapes 
as the spontaneous curvature model but the relative stability 
of these shapes may be different. The difference in the energy 
landscapes of the two models has been recently studied for 
the active shape oscillations of giant vesicles as displayed in 
Figure 5.[39]

3.1.3. Total Elastic Energy

In the absence of topological transformations, the total elastic 
energy of a fluid membrane is obtained by adding up the 
stretching and bending energies. For an arbitrary membrane 
shape S , we then obtain

{ } { } { }el st beE E E= +S S S 	 (5)

with the stretching and bending energies as given by Equa-
tions (2) and  (4), respectively. It turns out that the first variation 
of the total elastic energy Eel in Equation (5) leads to the same 
stationary shapes as the first variation of the elastic energy[73]

′ = Σ +E A ES S S{ } { } { }el be 	 (6)

where the stretching energy Est has been replaced by the term 
ΣA, that is, by the product of mechanical tension and mem-
brane area. In addition, the tension Σ now plays the role of a 
Lagrange multiplier that is used to ensure that the membrane 
area A has a certain prescribed value.[60,74] The formal equiva-
lence of the two elastic energies { }elE S  and { }elE ′ S  is not 
obvious and requires some careful theoretical considerations. 
Furthermore, strong stretching of the membrane acts to reduce 
the membrane thickness which will change the curvature-
elastic parameters κ and m as well.
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3.1.4. Key Parameters of Membrane Shape

In the last paragraphs, we have encountered three elastic  
parameters: the area compressibility modulus KA, the bending 
rigidity κ, and the spontaneous curvature m. In addition, we also 
saw that the membrane area A, which is a geometric quantity, 
and its optimal value A0, corresponding to a tensionless mem-
brane, play an important role. In fact, for the shape of giant vesi-
cles, we can ignore the area compressibility KA and the optimal 
area A0, when we consider the membrane A as a control para-
meter that can be directly measured by optical microscopy.[73]

Another geometric quantity which is relevant for the shape 
of vesicles and closed membrane compartments is the volume 
V of these compartments. As a consequence, we conclude that 
the shape of large membrane compartments is determined by 
two geometric parameter, membrane area A and vesicle volume 
V, as well as by two fluid-elastic parameters, the bending 
rigidity κ and the spontaneous curvature m.

The parameters A and κ have the physical units of length 
squared and of energy. Thus, we will take the vesicle size 

/(4 )R Ave π=  to be the basic length scale and to measure all 
lengths in units of Rve. Note that the vesicle size Rve is equal 
to the radius of a spherical vesicle with area A. Likewise, we 
will take the bending rigidity κ to be the basic energy scale 
and measure all energies and free energies in units of κ. As 
a consequence, we are left with only two rescaled and dimen-
sionless shape parameters which are proportional to the 
spontaneous curvature and to the vesicle volume. The precise 
definition of these two shape parameters is provided further 

below. In the context of engineering, this reduction of the 
number of independent parameters by rescaling is known as 
dimensional analysis.

3.2. Local Curvature Generation at the Nanoscale

The spontaneous or preferred curvature of the membrane arises 
from the transbilayer asymmetry of the two bilayer leaflets. Such 
an asymmetry can be generated by many different molecular 
and supramolecular mechanisms. Some of these mechanisms 
are displayed in Figure 9. It is important to note that the lipid 
bilayers of cellular membranes are asymmetric as well, dis-
playing different lipid compositions in their two leaflets.[70,75–77]

3.2.1. Transbilayer Asymmetry of Leaflet Compositions

One simple and general mechanism which should also be 
relevant for cellular membranes is the compositional asym-
metry between the two leaflets, as illustrated in Figure 9a. In 
the latter panel, the inner (lower) leaflet contains more lipids 
with large head groups. Such a situation has been studied for 
GUV membranes that were doped with the glycolipid (or gan-
glioside) GM1.[78,79] The glycolipid GM1 has attracted much 
recent interest because it is abundant in all mammalian 
neurons[80] and plays an important role in many neuronal 
processes and diseases.[81] Furthermore, GM1 acts as a mem-
brane anchor for various toxins, bacteria, and viruses such as 

Figure 9.  Local curvature generation of bilayer membranes via transbilayer asymmetry and spontaneous curvature: a–c) Compositional asymmetry 
between the two leaflets of the bilayer membranes arising from small molecules, the size of which is smaller or comparable to the bilayer thick-
ness;[28,29,83] d–f) Scaffolding based on adhesive colloids and nanoparticles with at least one linear dimension that exceeds the bilayer thickness; and 
g–i) Entropic scaffolding by flexible molecules anchored to the membranes.[85–87] In all panels, the exterior and interior buffer solutions are taken to be 
above and below the lipid bilayers, respectively. The transbilayer asymmetry and scaffolding then leads to a preferred or spontaneous curvature that is 
negative in panels (a,b,d) and positive otherwise.
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the simian virus 40.[82] The spontaneous curvature induced by 
the transbilayer asymmetry of GM1 in the GUV membranes 
was quite large and led to the formation of nanotubes when 
the GUVs were deflated osmotically. Furthermore, the retrac-
tion of the nanotubes by micropipette aspiration was used 
to measure the spontaneous tension of the membranes,[78] 
as discussed further below, see Figure  10. The spontaneous 
curvature values deduced from the micropipette experiments 
were m = −1/(155 nm) for 2 mol% GM1 and m = −1/(95 nm) 
for 4 mol% GM1. The negative values of the spontaneous 
curvature m imply that the nanotubes pointed toward the 
vesicle interior.

Alternatively, we may think about the adsorption of small 
solutes such as glucose and sucrose, which were observed to 
generate the multispherical shapes in Figure  6.[28] Likewise, 
compositional asymmetry can also be generated by the adsorp-
tion of synthetic polymers such as PEG[83] and by the binding 
of His-tagged proteins such as GFP[29] to the membrane. The 
latter mechanism has been used to control the bud size in 
Figure  3 and will be further discussed in the context of neck 
cleavage and vesicle division.

The previous examples involve small molecules, the size of 
which is smaller than or comparable to the bilayer thickness of 
4–5  nm. A somewhat different mechanism for the generation 
of local curvature is obtained for larger colloids that are bound 
to the membrane and act as scaffolds for this membrane. 
Examples for such colloids include rigid nanoparticles, liquid 
droplets, and long chain molecules. In order to act as scaffolds, 
these colloids must have two properties. First, they must have 
at least one linear dimension that is large compared to the 
bilayer thickness. Second, they must adhere to the membrane 
or must be anchored to it.

3.2.2. Membrane Scaffolding by Adhesive Nanoparticles

The panels (d–f) of Figure  9 illustrate the local generation of 
curvature via the scaffolding of membranes by adhesive nano
particles. The simplest example for membrane scaffolding is 
presumably provided by a rigid nanoparticle with a spherical 
shape as depicted in Figure 9d. In this example, the radius of 
the nanoparticle is about 2.5 times the thickness of the bilayer 
and the particle is partially engulfed by the membrane. Partial 
engulfment is stable if the spontaneous curvature of the mem-
brane is opposite to the curvature of the particle-bound mem-
brane segment.[84] In general, a nanoparticle can have many 
different shapes with different patterns of adhesive surface 
domains. Two such patterns are displayed in Figure  9e,f. In 
Figure 9e, the whole concave surface domain is adhesive (red), 
which implies curvature generation after adhesion (induced 
fit). In Figure 9f, the adhesive surface domains (red) are buried 
inside the concave part of the particle surface, and the mem-
brane must first bend before it can bind to the particle (confor-
mational selection).

3.2.3. Entropic Scaffolding by Flexible Chain Molecules

The scaffolding by rigid nanoparticles arises from the adhe-
sion between the nanoparticles and the membrane. In con-
trast, the scaffolding by flexible chain molecules is caused 
by the loss of configurational entropy of the chains resulting 
from the steric hindrance of chains by the membrane.[85–87] In 
order to stay close to the membrane, the chain molecule must, 
however, be anchored to the membrane. Several cases for this 
anchorage of a linear chain molecule need to be distinguished, 
see Figure 9g–i.

The simplest case is provided by a linear chain with a single 
anchor at one end as depicted in Figure  9g. In this case, the 
membrane bends away from the anchored chain in order to 
increase the spatial region that is accessible to the other end of 
the chain.[85,87] On the other hand, if we anchor this other chain 
end to the membrane as well, see Figure  9h, the membrane 
remains essentially flat because the entropic scaffolding is now 
limited to chain configurations, for which both anchors are 
close together, whereas large anchor–anchor separations stretch 
the chain molecule and curve the membrane in the opposite 
direction,[86] In other words, the membrane bulges toward the 
anchored chain for small anchor–anchor separations and away 
from this chain for large anchor–anchor separations. These two 
effects cancel exactly for an ideal chain, that is, when we ignore 
the chain’s self-avoidance, which implies that the chain-induced 
curvature vanishes.[86]

For a chain with two intermediate anchors as in Figure  9i, 
the segment of the chain molecule between these two anchors 
has the same configurational entropy as the chain with two 
anchored ends, displayed in Figure  9h. Therefore, the chain 
segment between the two anchors will not bend the membrane 
adjacent to it. The two dangling end segments, on the other 
hand, will bend the membrane because each of these end seg-
ments can essentially explore the same chain configurations 
as the linear chain in Figure  9g, which is anchored only at 
one end.

Figure 10.  Aspiration of tubulated GUV (red) by a micropipette (grey) of 
radius Rpip: a) The spherical mother vesicle comes into contact with the 
pipette; b) With increasing suction pressure, some of the nanotubes are 
retracted and the mother vesicle develops a tongue that has the form of 
a spherical cap; c) When the suction pressure reaches a critical value, the 
cap-like tongue becomes a hemisphere with radius Rpip, and the vesicle 
membrane starts to flow into the micropipette; and (d,e) Depending 
on the membrane area stored in the nanotubes, d) the vesicle motion 
stops as soon as all nanotubes have been retracted or e) continues until 
the vesicle is completely aspirated into the pipette. Reproduced under 
terms of the CC-BY license.[78] Copyright 2018, The Authors, published by  
American Chemical Society.
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3.3. Composite Nature of Membrane Tension

A particularly intriguing and confusing aspect of membrane 
remodeling is the role of membrane tension. For a bilayer 
membrane, this tension can be decomposed into two con-
tributions, the mechanical tension Σ, that acts to stretch or 
compress the membrane as in Equation  (1), and the spon-
taneous tension which is equal to 2κm2 and represents the 
basic tension scale of curvature elasticity.[88,89] Furthermore, 
the mechanical tension within a bilayer membrane can be 
divided up into two leaflet tensions that act within the indi-
vidual leaflets of the bilayer.[89–91] In mechanical equilib-
rium, each of these leaflet tensions must be laterally uniform 
because each leaflet represents a 2D liquid. In the following, 
we will discuss these different aspects of membrane tension 
in some detail.

3.3.1. Mechanical versus Spontaneous Tension

In the framework of curvature elasticity, the shape of a membrane  
is governed by the first variation of the elastic energy in  
Equation (6), supplemented by the term ΔPV, where ΔP = Pin − Pex  
is the pressure difference between the interior and exterior 
solution and V is the volume of the vesicle. As a result, one 
obtains a local shape equation which has the form [58,89]

κ∆ ≈ Σ Σ ≡ Σ +P m2 M with 2tot tot
2 	 (7)

up to first order in the mean curvature M, where Σtot represents 
the total membrane tension. The latter tension differs from the 
mechanical tension Σ by the additional term 2κm2  ≡  σ, the 
spontaneous membrane tension.[78,88] The latter tension is a 
material parameter that does not depend on the shape of the 
membrane, in close analogy to the interfacial tension of a 
liquid droplet.

For a giant mother vesicle that forms long membrane nano-
tubes, the mechanical tension is small compared to the spon-
taneous tension and the total membrane tension is dominated 
by the latter tension. If the mother vesicle has a spherical shape 
with radius Rmv and the tubes are cylindrical with radius Rcy, 
the relation between the mechanical tension Σ and the sponta-
neous tension σ has the form [88]

for small /cy

mv
cy mv

R

R
R RσΣ ≈ ± 	 (8)

This small magnitude of the mechanical tension reflects the 
large reservoirs of membrane area provided by the nanotubes. 
Indeed, when the tubulated vesicle is exposed to external forces 
or constraints, it can adapt to these perturbations, for fixed 
vesicle volume and membrane area, by simply shortening 
the nanotubes.

This increased robustness of tubulated vesicles has been 
demonstrated by micropipette aspiration of giant vesicles with 
inward-pointing nanotubes, as displayed in Figure  10.[78] As 
shown in this figure, the tubules were pointing toward the 
interior of the vesicle, which provides direct evidence for a 

large negative spontaneous curvature of the membrane. In 
this case, the negative spontaneous curvature was generated 
by the glycolipid (or ganglioside) GM1 that was enriched in 
the inner leaflet of the bilayer, see Figure  9a. The micropi-
pette experiments confirmed that the spontaneous tension 
is a material parameter which plays the same role for tubu-
lated giant vesicles as the interfacial tension for liquid drop-
lets. Indeed, if the area reservoir provided by the membrane 
nanotubes is sufficiently large, the micropipette aspiration of 
the vesicles leads to a mechanical instability and to the uptake 
of the vesicle by the micropipette, as in Figure  10e, in close 
analogy to the corresponding mechanical instability that has 
been observed during the micropipette aspiration of a liquid 
droplet.[92–94]

3.3.2. Spontaneous Curvature and Spontaneous Tension

A simple and intuitive understanding of the spontaneous 
tension can be obtained as follows. Consider a giant vesicle 
that has a spherical shape because of osmotic inflation, even 
though its membrane has a large spontaneous curvature m. 
In this situation, the bending energy in Equation (4) becomes 
equal to Ebe  ≈ 2κm2 A  =  σA which reveals that the sponta-
neous tension σ = 2κm2 represents the intrinsic tension scale 
of curvature elasticity.[88] This tension is proportional to the 
square of the spontaneous curvature m and thus becomes 
large for large positive and large negative values of m.

For giant vesicles, large spontaneous curvatures can be 
detected by osmotic deflation and the subsequent formation 
of small buds and/or thin nanotubes. Large positive and nega-
tive spontaneous curvatures lead to buds and tubes that pro-
trude into the exterior and interior solution, respectively. This 
method has been used for a variety of systems in which the 
giant vesicles responded to different molecules as summarized 
in Table  1. The observed budding and tubulation processes 
have been analyzed using the theory of membrane elasticity 
which led to the values for the spontaneous curvature m and 
spontaneous tension σ as displayed in the table. Table  1 also 
provides those estimates for the bending rigidity κ that were 
used to compute the spontaneous tension.

The first two columns in Table 1 were obtained for giant ves-
icles exposed to two aqueous phases of PEG-dextran solutions. 
The vesicle membranes were composed of dioleoylphos-
phatidylcholine (DOPC), dipalmitoylphosphatidylcholine 
(DPPC), and cholesterol. Based on the ternary phase diagrams 

Table 1.  Spontaneous curvature m, bending rigidity κ, and spontaneous 
tension σ = 2κm2 for giant vesicles that undergo budding and tubulation 
in response to a variety of molecular interactions, see the main text.

PEG-dextran, PEG-dextran, GM1, GM1, Glucose–
sucrose,

Lo phase[83] Ld phase[83] 2 mol%[78] 4 mol%[78] asymmetry I[28]

m [µm−1] −(1.6 ± 0.2) −(8 ± 2) −(6.45 ± 1.3) −(10 ± 2) 1.3 ± 1

κ [10−19 J] 3.6 0.8 ≃ 1 ≃ 1 ≃ 1

σ [mN m−1] 1.8 × 10−3 1.02 × 10−2 8.3 × 10−3 2.2 × 10−2 3.4 × 10−4
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elucidated in refs.  [31,95,96], two specific lipid compositions 
were studied that form a liquid-ordered (Lo) and a liquid-
disordered (Ld) phase, corresponding to the two end points of 
a certain tie line in the phase diagram. The third and fourth 
columns in Table 1 describe the results for vesicle membranes 
that were prepared with different mole fractions of the gly-
colipid (or ganglioside) GM1. The rightmost column in Table 1 
corresponds to the transbilayer asymmetry generated by an 
interior sucrose solution and an exterior glucose solution, 
which was observed to generate many different multispherical 
shapes, see Figure 6.

Recently, an unprecedented control over the spontaneous 
curvature has been achieved by binding His-tagged proteins to 
the outer leaflets of giant vesicles.[29] The vesicle membranes 
were doped with certain anchor lipids. For His-tagged GFP and 
1 mol% anchor lipids, the spontaneous curvature m was found 
to increase linearly with the molar solution concentration X of 
the protein according to[29]

=
µ

< ≤1.86
m

for 0 24nMm
X

nM
X 	 (9)

Thus, if the giant vesicle is exposed to His-tagged GFP at a 
molar concentration of 24  nM, the spontaneous curvature 
becomes m = 44.6 µm−1, a surprisingly large value. The bending 
rigidity was estimated to be 48 kBT or 2.4 × 10−19 J which implies 
that the spontaneous tension σ reached the value 0.96 mN m−1 
for the molar concentration X = 24 nm. Thus, the spontaneous 
tension varies from 10−4  mN m−1 for asymmetric solutions of 
simple sugars, see rightmost column of Table  1 up to about 
1  mN m−1 for membranes exposed to His-tagged GFP in the 
exterior solution at a concentration of 24 nm.

The coverage of the membrane by His-tagged GFP, that is, 
the density of the membrane-bound GFP has been estimated 
by calibrating the fluorescence signal of GFP with the corre-
sponding signal of another lipid-dye similar to GFP. One then 
finds that the average separation of the lipid-anchored GFPs 
always exceeded 24 nm, which is much larger than GFP’s lat-
eral size of about 3 nm.[97] Therefore, the surprisingly large 
spontaneous curvature m as described by Equation  (9) cor-
responds to a rather low density of membrane-bound GFP. 
A similar behavior has been found for the large spontaneous 
curvature generated by a low density of membrane-bound 
amphiphysin.[98]

3.3.3. Mechanical Membrane Tension

The previous discussion of the membrane’s elastic ener-
gies implies that the mechanical tension can be theoretically 
described in two apparently distinct but nevertheless equivalent 
ways. The most intuitive description is provided by Equation (1) 
which relates the mechanical tension Σ to the area dilation  
(A−A0)/A0 of a membrane segment where A0 represents the 
area of the tensionless segment. Positive and negative area 
dilations correspond to stretching and compression of the 
membrane segment. The corresponding stretching energy Est 
is given by Equation  (2) and the total elastic energy is then 
obtained from the superposition of this stretching energy with 

the bending energy Ebe as in Equation  (5). Alternatively, one 
may use the mechanical tension Σ as a Lagrange multiplier and 
consider the first variation of the bending energy under the con-
straint that the membrane area is equal to A, see Equation (6).

In equilibrium, the mechanical tension must be uniform 
along the whole membrane. Indeed, if the tension varied along 
the membrane, the resulting tension gradient would generate 
lipid flow toward the larger tension until the tension reaches 
a uniform value. In contrast to the spontaneous tension, the 
mechanical tension depends on the size and shape of a mem-
brane as will be shown explicitly for multispherical vesicles, for 
which the mechanical tension depends on the curvature-elastic 
parameters κ and m and, in addition, on the volume v.

3.4. Leaflet Tensions of Bilayer Membranes

The mechanical tension discussed so far represents the ten-
sion experienced by the whole bilayer membrane. Lipid bilayers 
consist of two leaflets which are kept in close contact via the 
hydrophobic effect. If we monitored the movements of indi-
vidual lipid molecules, we would see that each molecule stays 
in its leaflet for an extended period of time until it undergoes 
a transbilayer flip-flop from one leaflet to the other one. In the 
absence of membrane proteins that act as lipid pumps, the 
flip-flops represent a thermally activated process with flip-flop 
times that vary from hours or even days for phospholipids[61–63] 
to seconds[64,65] or even milliseconds[66] for cholesterol and other 
sterols. In cellular membranes, lipid flip-flops are also induced 
by proteins, some of which act as lipid pumps.[67–70]

Each leaflet represents a separate 2D liquid. In mechanical 
equilibrium. each leaflet is then characterized by a certain uni-
form leaflet tension. If we denote these two tensions by Σl1 and 
Σl2, the mechanical bilayer tension Σ becomes equal to the sum 
of the two leaflet tensions, that is,[16,90,91,99]

Σ = Σ + Σl l1 2 	 (10)

One direct and important consequence of this relation is that 
tensionless bilayers with Σ = 0 may still have significant leaflet 
tensions with Σl2 = −Σl1. Therefore, if leaflet 1 is stretched with 
Σl1 > 0, leaflet 2 is compressed with Σl2 < 0, and vice versa.

3.4.1. Leaflet Tensions from Molecular Simulations

In molecular simulations, the mechanical tension is obtained 
from the stress (or pressure) profile across the bilayer. This 
stress profile can be decomposed into two contributions from 
the individual leaflets after we have determined the molecular 
interface between these two leaflets. Because of thermal noise, 
this interface is rough and we need to consider certain proce-
dures to define the average position of the interface, which we 
call the “midsurface.” Several computational procedures have 
been used to obtain this midsurface.[16,91,99] All of these proce-
dures have been found to give rather similar results. The pre-
sumably simplest procedure is to define the midsurface via 
the density profile of the hydrophobic core of the bilayer mem-
brane. In contrast to the neutral surface of a bilayer,[100,101] the 

Adv. Biology 2022, 6, 2101020



www.advancedsciencenews.com www.advanced-bio.com

2101020  (13 of 34) © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH

midsurface considered here is not defined in terms of elastic 
deformations or stresses.

Two examples for the leaflet tensions of tensionless bilayers 
are displayed in Figure  11. In panel (a) of this figure, we see 
a plot of the two leaflet tensions for planar and tensionless 
bilayers. These bilayers contained two lipid components that 
differed in the size of their head groups. The leaflet tensions 
were changed by varying the mole fraction φ1 of the lipids with 
the larger head groups in leaflet 1. In panel (b) of Figure  11, 
we see a similar plot for the two leaflet tensions of spherical 
nanovesicles. In this case, we controlled the leaflet tensions by 
reshuffling lipid molecules from one leaflet to another. Thus, 
we considered a fixed total number of lipids, Nol  + Nil, and 
varied the number Nol in the outer leaflet by redistributing the 
lipids between the two leaflets.

One important function of intracellular membranes is to 
provide different spatial compartments with a strictly controlled 
exchange of molecules between these compartments. In order 
to provide a large barrier for diffusive transport, biomembranes 
usually have a relatively low bilayer tension. However, even 
if the bilayer tension is close to zero, the leaflet tensions can 
still have a rather large magnitude as shown in Figure  11. In 
this figure, the leaflet tensions are displayed in units of kBT/d2 
which is equal to 5 mN m−2. For comparison, a bilayer tension 
of such a magnitude is likely to rupture the membrane.

3.4.2. Relaxation of Leaflet Tensions by Flip-Flops

The data in Figure  11 were obtained from simulations over 
tens of microseconds. On these time scales, the lipids did not 
undergo transbilayer flip-flops from one leaflet to the other. 
Therefore, the numbers of lipids that were initially assem-
bled in the two leaflets did not change during the simulations. 
Now, let us add another lipid species such as cholesterol that 
undergoes frequent flip-flops even on the time scales of the 
simulations. The obvious question now is: how do the leaflet 
tensions behave in the presence of such flip-flops. In order to 

address this question, we studied the planar bilayers depicted 
in Figure 12.[99]

As shown in the top row of this figure, we first looked at a 
tensionless bilayer with two lipid components and focussed on 
the situation in which the upper leaflet was compressed and the 
lower leaflet was stretched, corresponding to the upper leaflet 
tension Σl1 < 0 and the lower leaflet tension Σl2 > 0 that add up 
to zero. We then added a certain number of cholesterol to this 
bilayer which we distributed symmetrically between the two leaf-
lets. Intuitively, one would expect that a cholesterol molecule that 
dwells in the compressed leaflet is more likely to undergo a flip-
flop compared to a cholesterol that dwells in the stretched leaflet. 
Therefore, for long times, the average number of cholesterols in 
the lower leaflet should be larger than the average number of 
cholesterols in the upper leaflet. Such a biased distribution was 
indeed observed. At the same time, the leaflet tensions relaxed to 
zero with a characteristic decay time of about 55 ns. A different 
behavior has been observed in simulations of mixed lipid bilayers 
with two phospholipids and cholesterol.[102] In the latter case, the 
bilayer was reported to relax toward a state with two finite leaflet 
tensions of about ±3.7 mN m−1. These leaflet tensions are quite 
large and can lead to an instability of the bilayer membrane.

3.4.3. Leaflet Tensions and Bilayer Curvature

Finite leaflet tensions of tensionless bilayers provide an intui-
tive understanding for the generation of spontaneous curva-
ture. Thus, if leaflet 1 is compressed and leaflet 2 is stretched, 
both leaflets can reduce their stress by curving in such a way 
that the area of leaflet 1 is increased and the area of leaflet 2 
is decreased. Thus, if leaflet 1 is in contact with the exterior 
solution, the bilayer should attain a positive spontaneous cur-
vature and bulge toward the exterior solution. Alternatively, 
when we think of the two water–lipid interfaces, the interface 
of the stretched leaflet with the aqueous solution should have a 
larger interfacial tension than the interface of the compressed 
leaflet. The bilayer should then attain a positive spontaneous 

Figure 11.  Leaflet tensions of tensionless bilayers without flip-flops: a) Leaflet tensions Σ1 and Σ2 of planar and tensionless bilayers with two lipid 
components, LH and SH.[91] The tensions are plotted against the mole fraction φ1 of the LH component in leaflet 1 and no LH lipids in leaflet 2; and 
b) Leaflet tensions Σol and Σil of the outer and inner leaflets of spherical nanovesicles.[16] The tensions are plotted against the number Nol of lipids in 
the outer leaflet. The lipid number Nol was varied by reshuffling the lipids between the two leaflets for fixed total number of lipids in the two leaflets. 
Both leaflet tensions vanish simultaneously for a) zero φ1 and b) for Nol = 5993. (a) Reproduced under terms of the CC-BY license.[91] Copyright 2018, 
The Authors, published by AIP Publishing LLC. (b) Reproduced with permission.[16] Copyright 2019, American Chemical Society.
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curvature in order to reduce the interfacial free energy of the 
two water–lipid interfaces.[90] The latter view was expressed a 
long time ago in the context of asymmetric monolayers.[103,104]

However, even tensionless leaflets may generate a significant 
spontaneous curvature as has been observed for the bilayer 
system displayed in the bottom row of Figure 12.[99] This asym-
metry can be understood from the analysis of the underlying 
stress profile. A tensionless bilayer implies that the z-integral 
over this profile must vanish, where z is the coordinate perpen-
dicular to the midplane of the bilayer. In addition, in order to 
compute the leaflet tensions, we need to divide the stress pro-
file up into two leaflet contributions. Vanishing leaflet tensions 
imply that the z-integrals over each leaflet contribution vanish 
separately. However, even in the latter situation, the total stress 
profile may be asymmetric and generate a significant sponta-
neous curvature.[99]

4. Local Properties of Membrane Necks

In this section, we will first emphasize the different views of 
membrane necks at the nanoscale and at the micron scale. 
These two views differ in their resolution: on the nanoscale, 
the finite thickness of the bilayer membrane plays a significant 
role whereas this thickness can be ignored at the micron scale, 
because of the large separation of length scales between the 
bilayer thickness and the lateral size of the membrane. On the 
micron scale, closed membrane necks can be characterized by 
several local properties: by a neck curvature that depends on 
the mean curvatures of the two membrane segments adjacent 
to the neck; a condition for the stability of closed necks; and a 
curvature-dependent constriction force acting on the neck.

4.1. Different Views of Membrane Necks

Closed membrane necks look quite different when we view 
them with nanoscale and with micron scale resolution. These 

two different views are displayed in Figure  13. In panels (a) 
and (b) of this figure, we see a closed membrane neck at the 
nanoscale, as observed in molecular dynamics simulations. The 
lipid bilayer has a thickness of about 4  nm and forms a neck 
with an hourglass-like shape. The neck is axisymmetric and 
has a circular waistline. For a closed neck, the outer radius of 
this waistline is equal to twice the bilayer thickness whereas the 
inner radius vanishes. For the examples shown in Figure 13a,b, 
the vesicle size is about 36 nm, which is the radius of the spher-
ical vesicles that we would obtain from the dumbbell-shaped 
vesicles by osmotic inflation. Inspection of the simulation snap-
shots shows that the hourglass-shaped neck is highly curved in 
the sense that its contour curvature is large.

At the micron scale, the view of the membrane neck as 
obtained by optical microscopy is quite different, see panels (c) 
and (d) in Figure 13. Indeed, when viewed with optical micros-
copy, the hourglass-shaped membrane segment is no longer 
visible but is replaced by the touching point of the two spheres 
connected by the neck. Thus, one might view the point-like 
neck as a direct consequence of the limited optical resolution. It 
turns out, however, that this point-like neck correctly captures 
two important aspects of the neck. First, during neck closure, 
the principal curvatures diverge but the mean curvature attains 
a finite limit. Second, this mean curvature of the neck is directly 
related to the curvature radii of the two adjacent membrane 
segments which one can read off from the optical images.

4.1.1. Closure of Hourglass-Shaped Neck

We will now discuss the closure of the hourglass shape in more 
detail. In Figure  13a, the waistline (wl) of the hourglass-shaped 
neck forms a circle with radius Rne. Along this waistline, the 
neck is characterized by two principal curvatures, the negative 
contour curvature C1,wl < 0 perpendicular to the waistline and the 
positive principal curvature C2,wl = 1/Rne > 0 parallel to the waist-
line. When the neck closes, the neck radius goes to zero and the 
principal curvature C2,wl diverges. However, the mean curvature

Figure 12.  Relaxation of leaflet tensions in the presence of flip-flops: The top row shows a bilayer membrane with two lipid components (blue and red) 
that do not undergo flip-flops from one leaflet to the other. The bilayer tension Σ = Σl1 + Σl2 is (close to) zero. However, the upper leaflet of the bilayer 
is compressed by a negative leaflet tension Σl1 < 0 whereas the lower leaflet is stretched by a positive leaflet tension Σl2 > 0, as indicated by the sche-
matic springs acting on the bilayer edges. As a third component, cholesterol (orange) is added to both leaflets so that they initially contain the same 
number of cholesterol molecules, as depicted in the middle row. During the subsequent relaxation process, the cholesterol transbilayer distribution 
becomes asymmetric with a larger number of cholesterols in the lower leaflet. Furthermore, both leaflets relax toward a tensionless state as indicated 
by the relaxed springs. The cartoon at the bottom also indicates that the two tensionless leaflets typically differ in their preferred areas. Reproduced 
under terms of the CC-BY license.[99] Copyright 2019, The Authors, published by American Chemical Society.
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1
2

( )wl 1,wl 2,wlM C C= + 	 (11)

remains finite and satisfies the asymptotic equality

1
2

( )wl ne sM M M Ml≈ ≡ + 	 (12)

in the limit of small Rne,[39] with the mean curvature Mne of the 
closed neck determined by the mean curvatures Ml and Ms of the 
two membrane segments, l and s, adjacent to the neck. Thus, as 
the neck closes, the positive singular contribution from the second 
principal curvature C2,wl = 1/Rne > 0 is cancelled by another nega-
tive contribution arising from the contour curvature C1,wl, which 
corresponds to a singular catenoid. The remaining regular neck 
curvature Mne may be positive or negative depending on the two 
mean curvatures of the adjacent membrane segments.

4.2. Curvature and Stability of Closed Membrane Necks

In the framework of curvature elasticity, the stability of a closed 
membrane neck is described by a surprisingly simple relation 

which depends only on the spontaneous curvature m and on 
the local geometry of the neck. This geometry is provided by the 
curvatures of the two membrane segments that are joined via 
the neck and define the corresponding neck curvature Mne as in 
Equation (12). Two cases corresponding to interior and exterior 
necks must be distinguished as shown in Figure 14. The inte-
rior neck is formed by an outward-pointing bud whereas the 
exterior neck is formed by an inward-pointing bud. In order to 
avoid confusion, we will use the terms “interior” and “exterior 
necks” rather than “outward” and “inward-pointing buds.”[105]

The interior neck in Figure  14a connects two interior com-
partments. Close to the interior neck, the two compartments 
are in contact with two membrane segments that have a posi-
tive mean curvature. In contrast, the exterior neck in Figure 14b 
connects two exterior compartments. Close to the exterior 
neck, the two compartments are in contact with two nested 
membrane segments, an outer and an inner one. The outer 
membrane segment has positive mean curvature, whereas 
the inner membrane segment has negative mean curva-
ture. Furthermore, all necks that have been explicitly studied 
within the framework of curvature elasticity have been axisym-
metric and had a circular cross-section. Therefore, we will now 
focus on such axisymmetric necks which implies that the two 

Figure 13.  Closed membrane necks viewed on nano and micron scales: a,b) Two examples for the hourglass-like shape of closed necks on the nanoscale 
where we still resolve the molecular bilayer. Both exterior solutions contain small solutes such as simple sugars (orange)[17]: a large solute concentration 
for good solvent conditions in (a) and a small concentrations for poor solvent conditions in (b); and c,d) Optical images of giant vesicles. The scale bar 
is 10 µm in (c) and 5 µm in (d). Reproduced under terms of the CC-BY license.[17] Copyright 2021, The Authors, published by American Chemical Society.

Figure 14.  Membrane necks or “worm holes” (red arrows) between different membrane compartments: a) Interior neck between two interior compart-
ments (light blue) which is formed by membranes with a positive spontaneous curvature. In this case, both membrane segments adjacent to the neck 
have positive mean curvatures which implies that the interior neck curvature Mne is positive as well; and b) Exterior neck between two exterior compart-
ments (white) which is formed by membranes with a negative spontaneous curvature. Now, the membrane segment in contact with the exterior bulk 
compartment has positive mean curvature whereas the membrane segment engulfing the small exterior compartment has negative mean curvature, 
which implies that the exterior neck curvature Mne is negative. For a plasma membrane, the interior compartment is the cytosol. For a membrane-bound 
organelle, the interior compartment is the lumen of the organelle.
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adjacent membrane segments can be characterized by their 
curvature radii close to the neck. These curvature radii will be 
denoted by Rl and Rs where the subscripts “l” and “s” refer to 
“large” and “small,” respectively, corresponding to the large and 
small membrane compartments in Figures 14a and 14b.

For an interior neck as in Figure 14a, the neck curvature Mne 
is then given by

1
2

( )
1
2

1 1
(interior neck)neM M M

R R
l s

l s

= + = +





	 (13)

which is always positive. For an exterior neck as in Figure 14b, 
on the other hand, the neck curvature has the form

1
2

( )
1
2

1 1
(exterior neck)neM M M

R R
l s

l s

= + = −





	 (14)

because the mean curvature Ms is now negative (note that all 
radii are taken to be positive). The neck curvature of an exterior 
neck is always negative because the curvature radius Rs is nec-
essarily smaller than the curvature radius Rl.

An interior neck as in Figure  14a is stably closed provided 
the spontaneous curvature m is positive and sufficiently large. 
More precisely, the closed interior neck is stable if

1
2

1 1
(stability of interior neck)nem M

R Rl s

≥ = +





	 (15)

The equality m = Mne describes the closure of the neck which 
opens up for m < Mne. For giant vesicles, the neck curvature can 
be directly obtained from the microscopy images of the two-
sphere vesicles as in Figures 2 and 3, which provides a simple 
and useful approach to estimate the spontaneous curvature m 
experimentally.[28,29]

On the other hand, an exterior neck as in Figure 14b is stably 
closed if the spontaneous curvature is negative with a suffi-
ciently large absolute value |m|. Indeed, the closed neck condi-
tion now has the form

1

2

1 1
(stability of exterior neck)m M

R R
ne

l s

≤ = −






 	 (16)

Because the neck curvature Mne is always negative for exterior 
necks, this inequality can only be fulfilled when the spontaneous  
curvature m is negative as well. The equality m  = Mne again 
describes the closure of the neck which now opens up for m > 
Mne.

The stability relations for closed membrane necks can be 
derived by starting from a dumbbell shape with an open but 
narrow neck and parameterizing this shape by a piece-wise 
constant-mean-curvature surface. One such parameterization 
consists of two hemispheres connected by two unduloid seg-
ments that form a narrow neck of radius Rne.[106–108] The dumb-
bell with a closed neck is obtained in the limit of zero neck 
radius Rne. The bending energy Ebe of the dumbbell has the 
form [58, 89]

( ) (0) 8 ( )be ne be ne neE R E m M Rπκ≈ ± − 	 (17)

up to first order in Rne where the plus and minus sign applies 
to interior and exterior necks, respectively. The closed neck is 
stable if the term proportional to the neck radius Rne increases 
with increasing Rne which implies m  > Mne  > 0 for interior 
necks and m < Mne < 0 for exterior necks.

4.3. Curvature-Induced Constriction Forces

The spontaneous curvature generates a constriction force f 
at the membrane neck which can be defined via the relation 
f  =  ∂Ebe/∂Rne. Using the expression for the bending energy 
as given by Equation  (17), we then obtain the constriction 
forces[29,58,89]

8 ( ) for interior necks with 0nef m M mπκ≈ − > 	 (18)

and

8 ( ) for exterior necks with 0nef M m mπκ≈ − < 	 (19)

up to first order in the neck radius Rne. If the constriction force 
f at the membrane neck is sufficiently large, the neck is cleaved 
as recently demonstrated for the controlled division of giant 
vesicles.[29] In these experiments, the binding of His-tagged 
proteins to the outer leaflets of the vesicle membranes was 
used to fine-tune the spontaneous curvature m as in Figure 3 
and Equation (9). The resulting constriction force f is displayed 
in Figure 15 and can be sufficiently large to divide the vesicles.

If the membrane neck contains a domain boundary between 
two lipid domains as in Figure  4, the constriction force is 
enhanced by the line tension λ of this domain boundary. 
Indeed, one has to take the line energy of the domain 
boundary into account, which is equal to 2πRneλ, which 
implies the additional contribution Δf  = 2πλ to the constric-
tion force for both interior and exterior necks. This force con-
tribution is always positive and, thus, constrictive because the 
line tension λ of a domain boundary between two lipid phase 
domains must be positive as required by thermodynamic sta-
bility. This enhancement of the constriction force by a domain 
boundary facilitates neck fission and vesicle division as has 
been recently demonstrated experimentally,[37] see Figure 4c. A 
significant constriction force is necessary for membrane fis-
sion and vesicle division. In addition, the Gaussian curvature 
modulus must be negative in order for the fission process to 
be “downhill” (or exergonic) and, thus, to occur spontaneously, 
see Section 7.2.

In general, the two lipid domains may differ in their spon-
taneous curvatures and bending rigidities. Thus, consider two 
lipid domains, a and b, formed by two coexisting lipid phases, 
which have spontaneous curvatures ma and mb as well as 
bending rigidities κa and κb, respectively. Adjacent to the closed 
membrane neck, the two domains have the mean curvature Ma 
and Mb. Generalizing the piece-wise constant-mean-curvature 
parameterization of the dumbbell shape to this case,[107,108] the 
constriction force f becomes

2 4 ( ) ( )f m M m Ma a a b b bπλ π κ κ[ ]= ± − + − 	 (20)
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where the plus and minus sign again applies to interior and 
exterior necks. Furthermore, it has been tacitly assumed here 
that the difference between the Gaussian curvature moduli of 
the two domains is small and can be ignored. If this differ-
ence is significant, the domain boundary is shifted out of the 
neck.[107,112]

Membrane necks are also formed during the engulfment of 
rigid particles and droplets in aqueous two-phase systems. For 
the engulfment of rigid particles, both the closed neck condi-
tion and the constriction forces involve the adhesive strength 
between particle and membrane.[113] For the engulfment of 
liquid droplets that partially wet the membrane, the interface 
between the two aqueous phases can minimize its interfacial 
free energy by being located in the neck but this free energy is 
proportional to 2Rne . Therefore, for axisymmetric necks as con-
sidered here, the closed neck conditions and constriction forces 
remain unchanged to leading order in Rne.[54] Necks should be 
axisymmetric as long as the contact line of the droplet with the 
membrane has a positive line tension λco. However, in contrast 
to the line tension of domain boundaries, the line tension of 
contact lines does not have to be positive but can be negative. 
In fact, the contact line tension λco of droplets adhering to 
lipid bilayers has been found to be negative for a wide range of 
parameters which leads to a spontaneous symmetry breaking 
of the rotational symmetry and to a tight-lipped shape of mem-
brane neck and contact line, as shown in Figure 8.[46]

5. Two-Sphere Vesicles as a Case Study

In this section, we will discuss the properties of two-sphere 
vesicles which provide the simplest examples for vesicles 
with closed necks. The following description will be some-
what technical but provides a case study which can be directly 
generalized to multispheres with more than two spheres con-
nected by more than one closed neck, as discussed in Section 6.

We will distinguish two types of two-sphere vesicles, which 
are formed for positive and negative spontaneous curvature. 
For positive spontaneous curvature, the two spheres are joined 
by interior necks which connect two interior subcompartments 
of the vesicle. For negative spontaneous curvature, the two 
spheres are joined by exterior necks which connect two com-
partments of the exterior solution. In both cases, we consider 
the vesicle morphologies as a function of two dimensionless 
shape parameters, the rescaled volume v and the rescaled spon-
taneous curvature m  which define the morphology diagram of 
the vesicles. The two-sphere vesicles are stable in certain sub-
regions of the morphology diagram. These stability regimes 
are bounded by two lines of limit shapes, denoted by L1+1 and 
L2*. Within these regimes, the shape of the two-sphere vesicles 
depends only on the volume v but not on the spontaneous cur-
vature m . However, both the constriction force acting on the 
membrane neck and the membrane tensions depend on the 
spontaneous curvature.

Both shape parameters v and m  can be controlled experi-
mentally: the volume v can be varied by the osmotic conditions 
whereas the spontaneous curvature m  can be controlled 
by a variety of mechanisms as illustrated in Figure  9. A 
high-precision method to control the spontaneous curvature 
has been recently introduced based on the binding of His-
tagged proteins such as GFP to one leaflet of the vesicle mem-
brane, see Figures 3,  9c, and Figure 15 as well as Equation (9).

5.1. Dimensionless Shape Parameters

We will focus on membranes with uniform molecular com-
position and, thus, uniform elastic properties. As mentioned 
previously, the shape of such a membrane depends on two 
fluid-elastic parameters, the bending rigidity κ and the spon-
taneous curvature m. The bending rigidity has the units of 
energy. which will be used as the basic energy scale.

Figure 15.  Constriction force f at membrane neck: a) Confocal image of a giant vesicle that consists of two spheres connected by a narrow interior 
neck. The spontaneous curvature is generated by His-tagged GFP which binds to the membrane from the exterior solution. The constriction force f 
(white arrows) acts to compress this neck. The scale bar is 5 µm; and b) Constriction force f generated by GFP as a function of the curvature difference 
m − Mne. The straight line corresponds to Equation (18) with κ = 48 kBT. For comparison, the plot also includes literature values for the constriction 
forces as generated by the specialized protein complexes of dynamin,[109] ESCRT-III,[110] and FtsZ[111]
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Consider a vesicle with surface area A and volume V. Define 
the vesicle size Rve via

/(4 )veR A π≡ 	 (21)

and the rescaled volume or volume-to-area ratio by

4
3

with 0 1
ve
3

v
V

R
vπ≡ < ≤ 	 (22)

We will also use the dimensionless spontaneous curvature

vem mR≡ 	 (23)

In general, the vesicle shapes which minimize the elastic 
energy of the membrane for given values of area and volume 
are determined by the two shape parameters v and m .[60] How-
ever, this apparent simplicity hides the morphology complexity 
which arises from the many energy branches that are “stacked” 
on top of each other and correspond to multispherical shapes 
as discussed further below.

5.2. Geometry of Two-Sphere Vesicles

The two-sphere vesicles consist of two (punctured) spheres con-
nected by a closed membrane neck. When the two spheres have 
different sizes, we distinguish the larger sphere with radius 
Rl from the smaller sphere with radius Rs. If both spheres 
have the same radius Rl = Rs, we denote this radius by R*. We 
measure all radii in units of the vesicle size Rve which leads to 
the dimensionless radii

and
ve ve

r
R

R
r

R

R
l

l
s

s≡ ≡ 	 (24)

for the large and small spheres and to the radius r* ≡ R*/Rve.
We consider a vesicle with a certain membrane area A and a 

certain volume V. For a two-sphere vesicle, the area A is equal 
to Al  + As, that is, to the sum of the large-sphere area Al and 
the small-sphere area As. Likewise, the vesicle volume V is 
equal to Vl + Vs for a two-sphere vesicle with an interior neck 

as in Figure  14a and to Vl  − Vs for a two-sphere vesicle with 
an exterior neck as in Figure 14b. When expressed in terms of 
the dimensionless radii rl and rs, the area and volume relations 
have the simple form[58, 89]

1 and2 2 3 3r r v r rl s l s+ = = ± 	 (25)

where the plus and minus sign in the second relation corre-
sponds to interior and exterior necks, It is important to note 
that the two geometric relations in Equation  (25) involve 
only a single parameter, the rescaled volume v introduced in  
Equation (22), and thus do not depend on any other parameter 
such as the spontaneous curvature.

5.2.1. Two-Sphere Vesicles with Interior Necks

First, let us consider the geometric relations in Equation  (25) 
with the plus sign for interior necks as in Figure 14a, which is 
formed for positive spontaneous curvature. We then obtain two 
different sphere radii rl and rs with

for the volume range
1

2
1r r vl s> < ≤ 	 (26)

as illustrated by the first four panels of Figure  16, where the 
volume v is reduced from left to right, mimicking the process 
of osmotic deflation. In addition, the interior neck connects two 
equally sized spheres with radii

= = ≡ =1
2

for the special volume
1
2

*r r r vl s 	 (27)

as shown in the rightmost panel of Figure 16. The latter shape 
represents a limit shape, denoted by L2*, consisting of two 
equally sized spheres; one experimental example for such a 
limit shape is shown in Figure 15a.

5.2.2. Two-Sphere Vesicles with Exterior Necks

Next, consider the geometric relations in Equation  (25) with 
the minus sign for an exterior neck as in Figure 14b, which is 

Figure 16.  Two-sphere vesicles consisting of two (punctured) spheres connected by an interior membrane neck as in Figure 14a. All vesicles have the 
same surface area but differ in the volume of their interior aqueous solution (blue), which decreases from left to right as indicated by the values of 
the dimensionless volume v defined in Equation (22), mimicking the process of osmotic deflation. For each vesicle, both spheres have positive mean 
curvature and can form for positive spontaneous curvature.[58] The leftmost shape represents the limiting case, in which the radius of the small sphere 
vanishes. The rightmost shape represents another limit shape, denoted by L2*, as provided by two equally sized spheres with the smallest possible 
volume v = =1/ 2 0.7071.
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formed for negative spontaneous curvature. In this case, the 
relations describe two nested spheres with

for the volume range 0 1r r vl s> < ≤ 	 (28)

In addition, vesicles with two nested spheres of equal size are 
now obtained for volume

0 with radii
1

2
v r rl s= = = 	 (29)

Some examples for such two-sphere vesicles are shown in 
Figure  17 where the volume v is reduced from left to right, 
mimicking the process of osmotic deflation.

5.3. Stability of Two-Sphere Vesicles

The stability of the two-sphere vesicles in Figures  16 and 17 
depends on three conditions.[28,29] First, the closed membrane 
necks must be stable against neck opening. Second, the indi-
vidual spheres should be stable against prolate-like deforma-
tions. Third, the constriction force acting on the membrane 
necks should be sufficiently small to avoid neck cleavage and 
vesicle division. In this subsection, we will focus on the sta-
bility of closed necks against neck opening as described by  
Equations (15) and (16).

When we use the vesicle size Rve as the basic length scale, 
the neck stability relations involve the rescaled spontaneous  
curvature vem mR=  and the rescaled neck curvature ne ne veM M R= .  
The rescaled neck curvature
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



 	 (30)

is a purely geometric quantity, which depends only on the 
rescaled volume v, compare the geometric relationships in 
Equation  (25), and increases monotonically with increasing 
v. Close to the limiting value v = 1, the small-sphere radius rs 
vanishes and the neck curvature Mne  as given by Equation (30) 
becomes large and positive for interior necks but large and neg-
ative for exterior necks, corresponding to the plus and minus 
sign in this equation.

5.3.1. Two-Sphere Vesicles with Interior Necks

First, consider a closed interior neck as shown in Figure  14a. 
The stability of such a neck is described by the stability condi-
tion in Equation (15). When expressed in terms of rescaled and 
dimensionless variables, including the rescaled neck curvature 

ne ne veM M R= , this stability condition becomes
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
 	 (31)

which contains the neck closure condition
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When we combine this neck closure condition with the geo-
metric relations in Equation (25), using the plus sign for inte-
rior necks, we obtain the line of limit shapes L1 + 1 as plotted in 
the morphology diagram of Figure 18a. In this diagram, the sta-
bility regime for the two-sphere vesicles with an interior neck 
corresponds to the blue shaded region, which is bounded by 
the line of limit shapes L1 + 1 from above and by the horizontal 
line of limit shapes L2* from below. The latter line describes 
two-sphere vesicles with two equally sized spheres, see right-
most panel in Figure 16, and corresponds to

= = ≥ ≡1
2

and 2* *v v m m 	 (33)

5.3.2. Two-Sphere Vesicles with Exterior Necks

Second, consider a closed exterior neck as shown in Figure 14b. 
The stability of such a neck is described by the stability 
condition in Equation  (16). When expressed in terms of 
rescaled and dimensionless variables, this stability condition  
becomes

1
2

1 1
(stability of exterior neck)nem M

r rl s

≤ = −



 	 (34)

which contains the neck closure condition

Figure 17.  Two-sphere vesicles consisting of two nested spheres connected by an exterior membrane neck as in Figure  14b. Such vesicles are 
formed for negative spontaneous curvature, m < 0 . All vesicles have the same surface area but differ in the volume of the interior aqueous solution 
(blue), as indicated by the values of the dimensionless volume v defined in Equation (22). The leftmost shape represents the limiting case in 
which the radius of the small sphere vanishes. The rightmost shape represents a limit shape with v = 0, corresponding to two nested spheres 
of equal size .
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< 	 (35)

When we combine this neck closure condition with the geo-
metric relations in Equation (25), using the minus sign for exte-
rior necks, we obtain the line of limit shapes L1+1 as plotted in 
the morphology diagram of Figure 18b. In this diagram, the sta-
bility regime for the two-sphere vesicles with an exterior neck 
corresponds to the blue shaded region, which is bounded by 
the line of limit shapes L1+1 from above and by the horizontal 
line of limit shapes L2* from below. The latter line describes two 
nested spheres of equal size, see rightmost panel in Figure 17, 
and is given by

= = ≤ ≡0 and 0* *v v m m 	 (36)

5.3.3. Membrane Tensions of Two-Sphere Vesicles

The mechanical membrane tension Σ of the two-sphere vesicle 
is given by [28, 89]

κ κ ( )Σ = − = + −m M m m M M ml s2 (2 ) 2ne 	 (37)

which depends on the neck curvature Mne. The latter cur-
vature can be expressed in terms of the curvature radii Rl 
and Rs, see Equations  (13) and (14) for interior and exterior 
necks. The tension–curvature relationship in Equation (37) 
shows explicitly that the mechanical membrane tension 
depends, via the neck curvature Mne, on the two spherical 
radii Rl and Rs and, thus, on the size and shape of the 
two-sphere vesicle.

When we add the spontaneous tension 2κm2 to the mechan-
ical tension Σ, we obtain the total membrane tension

κ κ κΣ = Σ+ = = ±






m mM m

R Rl s

2 4 2
1 1

tot
2

ne 	 (38)

where the plus and minus sign applies to interior and exterior 
necks as before. The latter expression can be directly derived 
from the two shape equations

2 4 for andtot sp sp
2

sp spκ∆ = Σ − = =P M mM M M M Ml s 	 (39)

by eliminating the pressure difference ΔP from these equa-
tions.[73] Even though this derivation does not “know” about the 
closed membrane neck, the dependence of the total membrane 
tension on the vesicle geometry is encoded in the neck curva-
ture Mne.

For a two-sphere vesicle with an interior neck, both the 
spontaneous curvature m and the neck curvature Mne are 
positive which implies that the total membrane tension Σtot in  
Equation (38) is positive as well. For a two-sphere vesicle with 
an exterior neck, both the spontaneous curvature m and the 
neck curvature Mne are negative which leads again to a posi-
tive total tension Σtot. Therefore, the total membrane tension is  
positive for all two-sphere vesicles. In contrast, the mechanical 
tension Σ turns out to be negative for a large range of parameters.

The limit shapes L1+1 in the morphology diagram of Figure 18 
are characterized by the neck closure condition Mne = m. When 
this equality is inserted into Equation  (37), the mechanical  
tension becomes

κ σΣ = = +m L2 for all limit shapes2
1 1 	 (40)

that is, the mechanical tension Σ is always positive and equal 
to the spontaneous tension σ for the limit shapes L1+1. This 
equality holds for both positive and negative spontaneous cur-
vature, see the corresponding lines L1+1 in Figure 18a,b. It also 
follows from Equation (37) that

Σ = = ± =M
R R

m
l s

0 for 2
1 1

ne 	 (41)

corresponding to the red dashed lines in Figure 18a,b. Further-
more, along the line of limit shapes L2* in Figure  18a,b, the 
mechanical tension is given by

Figure 18.  Stability regimes (light blue) of two-sphere vesicles as a function of rescaled spontaneous curvature m and rescaled volume v for a) positive 
and b) negative spontaneous curvatures. Note the different ranges of v-values in the two panels. The two-sphere vesicles consist of two (punctured) 
spheres connected by a closed membrane neck. Both stability regimes are bounded by two lines, the line of limit shapes L1 + 1 with m Mls=  and the line 
of limit shapes L2*, consisting of two equally sized spheres. The stability regimes are divided up into two subregimes with positive and negative mechan-
ical tension, Σ > 0 and Σ < 0. The mechanical tension vanishes along the red dashed line. In contrast, the total membrane tension Σtot = Σ + 2κm2  
is positive for all two-sphere vesicles.
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where the asymptotic equality, as indicated by the ≈ symbol, 
holds for large positive m, and by

κΣ = − <m L m2 for and 02
2* 	 (43)

As mentioned, the shape of a two-sphere vesicle depends only 
on v and, thus, does not change as we vary the spontaneous 
curvature m  for constant v, which corresponds to a horizontal 
trajectory within the stability regimes in Figure 18a,b. Likewise, 
the neck curvature 2Mne = Ml + Ms remains constant along such 
a horizontal trajectory. It then follows from Equation  (37) that 
the mechanical tension Σ ≈ −2κm2, that is, this tension becomes 
more and more negative as we go to large positive or large nega-
tive spontaneous curvatures. At the same time, the constriction 
force f increases as 8κ|m| as follows from Equations  (18) and 
(19). Therefore, the enhancement of the constriction force is 
accompanied by an increased compression of the vesicle mem-
brane, both for positive and for negative spontaneous curvature.

6. Multispherical Shapes of Vesicles

The two-sphere vesicles discussed in the previous section repre-
sent the simplest examples for stable multispherical or “multi-
balloon” shapes. Indeed, the theory of curvature elasticity predicts 
stable (Nl + Ns)-multispheres consisting of Nl large and Ns small 
spheres connected by closed membrane necks for arbitrary 
values of Nl and Ns. As for the two-sphere vesicles, we can again 
distinguish interior and exterior necks, see Figure 14, which are 
formed for positive and negative spontaneous curvature, respec-
tively. In the following, we will focus on positive spontaneous 
curvature and interior membrane necks because this case has 
also been studied experimentally in a systematic manner.

6.1. Multispheres from Curvature Elasticity

All (Nl + Ns)-multispheres with up to three spheres are depicted 
in Figure  19 for positive spontaneous curvature. All of these 

multispheres are connected by interior necks as introduced in 
Figure 14a. As far as two-sphere vesicles are concerned, we now 
distinguish (1 + 1)-multispheres, for which the two individual 
spheres have two different radii, from (2*)-multispheres, for 
which both spheres have the same radius, see the two boxes 
labeled by (1 + 1) and (2*) in Figure 19. These two-sphere shapes 
involve only a single membrane neck: the ls neck between the 
large and the small sphere for the (1 + 1)-multisphere and the 
** neck for the (2*)-multisphere. However, as soon as we con-
sider multispherical shapes with more than two spheres, these 
shapes can involve different types of necks.

One example is provided by the left multisphere pattern in 
the (1 + 2) box of Figure 19, which involves both an ls and an ss 
neck between two small spheres. Another example is the right 
multisphere in the (2 + 1) box of Figure 19, which involves both 
an ls neck and an ll neck between two large spheres. Inspec-
tion of the (1 + 2) box of Figure  19 also reveals that we must 
distinguish two different patterns of (1 + 2)-multispheres: one 
pattern involves one ls and one ss neck whereas the other pat-
tern involves two ls necks. Likewise, the (2 + 1) box of Figure 19 
contains one pattern with two ls necks and one pattern with one 
ls and one ll neck. We use the term “multisphere pattern” to 
distinguish different connectivities for the same number of Nl 
large and Ns small spheres. These different patterns have the 
same vesicle volume V but will, in general, differ in the types of 
necks that connect the spheres.

The number of different patterns for (Nl + Ns)-multispheres 
increases with the number of spheres. This increasing complexity 
is illustrated in Figure  20 which displays the possible multi-
spherical patterns with four spheres that a vesicle of fixed area 
can form. Inspection of Figures 19 and 20 shows that we have 
two patterns for (1 + 2)- and (2 + 1)-multispheres, four patterns 
for (1 + 3)-multispheres, six patterns for (2 + 2)-multispheres,  
and four patterns for (3 + 1)-multispheres. Likewise, we have 
one pattern for (2*)- and (3*)-multispheres and two patterns for 
(4*)-multispheres. All multispheres considered here are tree- 
like in the graph-theoretic sense and do not contain a subset of 
spheres that form a closed cycle. Such cycles could be generated 
if we considered the possibility of membrane fusion between 
different spheres. Note also that the total number of multi-
sphere patterns increases from 5 for three spheres (Figure 19) 
to 16 for four spheres (Figure 20).

Figure 19.  Different (Nl + Ns)-multispherical or “multi-balloon” vesicles with Nl + Ns ≤ 3 as well as (N*)-multispheres with N* = 2 and N* = 3 equally 
sized spheres, as predicted theoretically. All multispheres displayed here have the same membrane area and can be obtained from the spherical vesicle 
in the upper left box by reducing the vesicle volume (light blue). Each contact point between two spheres contains a closed interior neck as in Figure 14a, 
which implies that each multisphere is formed by a single membrane. The (Nl + Ns)-multispheres can involve three types of membrane necks, denoted 
by ls, ss, and ll. The (N*)-multispheres involve only a single type of neck, denoted by **. Both the (1 + 2)-multispheres and the (2 + 1)-multispheres can 
form two distinct multisphere patterns. In both cases, the two distinct patterns have the same volume. The 〈 symbol indicates the relative stability of 
the two (1 + 2) and the two (2 + 1) patterns, labeled by P 1 and P 2 in the (1 + 2) box, arising from the least stable necks, see main text.
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6.1.1. Geometry of (Nl + Ns)-Multispheres

The geometry of the multispheres displayed in Figures 19 and 
20 is obtained by generalizing the geometric relations for the 
case of two-sphere vesicles, see Equation  (25). As before, we 
consider a vesicle of volume V which is bounded by a mem-
brane of surface area A. We take the vesicle size /(4 )R Ave π=  
to be the basic length scale and define the dimensionless large-
sphere radius rl  = Rl/Rve and small-sphere radius rs  = Rs/Rve. 
The geometry of all possible (Nl  + Ns)-multispheres is then 
described by[58,89]

1 and2 2 3 3N r N r N r N r vl l s s l l s s+ = + = 	 (44)

which depend now on three parameters, on the large-sphere 
and small-sphere numbers Nl and Ns as well as on the dimen-
sionless volume v defined in Equation (22). For the special case 
of N* equally sized spheres with rl = rs = r*, the geometric rela-
tions in Equation (44) simplify and become

= =1 and* *
2

* *
3N r N r v 	 (45)

which leads to the sphere radius = 1/* *r N  and to the volume 
= = 1/* *v v N .

The stability of the multispheres again involves three condi-
tions: the stability of the closed necks against neck opening; the 
stability of individual spheres against the sphere-prolate insta-
bility; and the stability of the necks against membrane fission. 
We will again focus on the stability of closed necks as described 
in the next paragraphs.

6.1.2. Stability of Different Types of Necks

As illustrated in Figures 19 and 20, a multisphere pattern with 
more than two spheres may involve different types of necks 
which differ in their neck curvature and, thus, in their stability. 
A certain multisphere pattern is stable against neck opening if 
all closed necks are stable.

To discuss the different necks and their stability, we will first 
distinguish their neck curvature by introducing the notation

1

2

1

2

1 1
M M M

R R
ab a b

a b

( )≡ + = +






 	 (46)

for closed interior necks connecting a sphere of mean curvature 
Ma  = 1/Ra with a sphere of mean curvature Mb  = 1/Rb where 
both subscripts a and b can be equal to l or s or *. The subscript 

Figure 20.  Different patterns of multispheres or “multi-balloons” with four spheres. All 16 multisphere patterns can again be obtained from the 
spherical vesicle in the upper left corner of Figure 19 by reducing the vesicle volume for conserved membrane area. All multispheres with the same 
values of Nl and Ns have the same volume. As in Figure 19, each contact point between two spheres contains an interior membrane neck and each 
multisphere pattern is formed by a single membrane that encloses the whole vesicle volume (light blue). For visual clarity, only one of the least stable 
necks, which can be an ss, ls, or ** neck, is labeled. Note that 7 out of 16 patterns with four spheres contain a three-way junction, provided by one 
sphere that is connected to three other spheres.
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* corresponds to the special case of multisphere patterns that 
consist of N* = Nl + Ns equally sized spheres. Thus, an ll, ls, ss, 
and ** neck has neck curvature Mll, Mls, Mss, and M**, respec-
tively. Because Rs < Rl and Ms > Ml, these neck curvatures are 
ordered according to

M M Mll ls ss< < 	 (47)

For the special case of a multisphere that consists or N* = Nl + Ns  
equally sized spheres, the large-sphere and small-sphere 
radii become equal, with Rl = Rs = R*, and the neck curvature 

= =1/ /** * *M R N Rve.
The stability condition for a closed neck as given by Equa-

tion (15) now becomes

0 with or or orm M M M M M Mab ab ss ls ll≥ > = ∗∗ 	 (48)

For an ls-neck, we obtain the stability condition Mls ≤ m which 
has the same form as for the single neck of a (1 + 1)-sphere. 
Likewise, the observation of a stable ss- and ll-neck implies 

1m M Rss s≥ = −  and 1m M Rll l≥ = − , respectively. When a multi-
spherical shape exhibits several types of membrane necks, this 
shape is only stable if all of its necks are stable against neck 
opening. Because the neck curvatures are ordered according to 
Mll  < Mls  < Mss, a sufficiently large spontaneous curvature m 
that exceeds the curvature Mss of the ss neck ensures that all 
necks are stable.

6.1.3. Stability Regimes of Multisphere Patterns

Each (Nl  + Ns)-multisphere pattern is stable within a certain 
parameter regime that is governed by the stability of its least 
stable neck. The least stable neck may be different for dif-
ferent multisphere patterns that can be formed by the same 
numbers of large and small spheres. Examples for such sta-
bility differences are found for the two patterns of (1 + 2)- and 
(2 + 1)-multispheres in Figure  19 as well as for the four pat-
terns of (1 + 3)-multispheres and for the six patterns of (2 + 2)- 
multispheres in Figure  20. Consider, for instance, the two  
(1 + 2)-multisphere patterns, 1P  and 2P , in Figure  19. The sta-
bility of the 1P  pattern, which involves one ss and one ls neck, 
is determined by the neck curvature Mss of the ss neck and 
the stability condition m ≥ Mss. The stability of the 2P  pattern, 
which involves two ls necks, is determined by these identical 
necks and the corresponding stability condition m ≥ Mls. The 
inequality Mls  < Mss then implies that the pattern 2P  has an 
enlarged stability regime compared to the pattern 1P  as long as 
we ignore transmutations between these two patterns, see fur-
ther below. This enhanced stability regime of the 2P  pattern is 
indicated by the 〈 symbol in Figure 19.

As for the case of (1 + 1)-multispheres, see Figure  18, each 
multisphere pattern is stable against neck opening within a 
certain stability regime of the morphology diagram. This sta-
bility regime is located between two lines of limit shapes, 
the line of limit shapes LNl + Ns, at which the least stable neck 
closes, and the line of limit shapes LN*, corresponding to  
N* = Nl + Ns equally sized spheres. The least stable neck will in 
general be different for different multisphere patterns with the 

same number of large and small spheres, see Figures  19 and 
20, which implies that the line of limit shapes LNl + Ns for these 
different patterns will be somewhat different as well. In con-
trast, the line of limit shapes LN* is always determined by the ** 
necks with neck curvature = = +1/ /** * veM R N N Rl s . For posi-
tive spontaneous curvatures, the limit shapes LN* are found at

1
andv v

N N
m m N N

l s

l s= ≡
+

≥ ≡ +∗ ∗ 	 (49)

Thus, all (Nl + Ns)-multisphere patterns are located above this 
horizontal line in the morphology diagram.

Each stability regime of the different multispheres and mul-
tisphere patterns leads to a different branch of the bending 
energy.[28,58,114] Furthermore, the different stability regimes 
strongly overlap with each other, which implies that we typi-
cally find a large number of different branches of the bending 
energy for a given point in the morphology diagram. These dif-
ferent branches are stacked on top of each other and constitute 
a complex and rugged landscape of the bending energy.

6.1.4. Membrane Tensions of Multispheres

For (Nl + Ns)-multispheres, the mechanical membrane tension 
is given by

κ κ ( )Σ = − = + −m M m m M M mls l s2 (2 ) 2 	 (50)

which has the same form as Equation  (37) for (1 + 1)- 
multispheres with the neck curvature Mne being replaced by 
Mls, the neck curvature of an ls neck. In the limit, in which 
all spheres attain the same radius Rl  = Rs  = R*, all necks 
become ** necks and the neck curvature Mls becomes equal 
to M** = 1/R*. Note that the tension–curvature relationship in 
Equation (50) does not depend on the sphere numbers Nl and 
Ns explicitly but depends on these numbers only implicitly via 
the radii Rl and Rs, as follows from the geometric relations in 
Equation (44).

Two-sphere vesicles or (1 + 1)-multispheres are special in the 
sense that they involve only a single ls neck with neck curva-
ture Mne = Mls, which determines both the stability of the mul-
tispherical shape and the mechanical tension. In contrast, the 
stability of (Nl  + Ns)-multispheres with more than one neck 
depends on the neck curvature of the least stable neck, which is 
often provided by an ss neck and the associated neck curvature 
Mss, whereas the mechanical tension is always determined by 
the neck curvature Mls of the ls neck as in Equation (50).

The mechanical tension vanishes for m  = 2Mls which 
partitions the stability regime of each (Nl  + Ns)-multispher-
ical pattern into two subregimes, a small one with positive 
mechanical tension and a large one with negative mechanical 
tension, in close analogy to the partitioning of the stability 
regime for (1 + 1)-multispheres as displayed in Figure  18. For 
the special case of N* equally sized spheres with neck curva-
ture = =1/ /** * * veM R N R , the mechanical tension becomes 

κΣ = −m N R mve2 ( / )*  for spontaneous curvature * *m m N≥ =  
which implies κΣ = ∗N R2 / ve

2  at the corner point with 
/* * vem N R= .[28] For all (Nl + Ns)-multispheres, the mechanical 
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tension becomes large and negative both for large positive and 
for large negative spontaneous curvatures.

6.2. Experimental Observations of Stable Multispheres

A striking variety of multisphere patterns has been recently 
observed in experimental studies of giant vesicles that were 
exposed to asymmetric sugar solutions.[28] Some relatively 
simple examples with Nl + Ns ≤ 4 are shown in the introduc-
tory Figure 6. Indeed, this figure displays a (1 + 1)-multisphere 
in panel (a), two (1 + 2)-multisphere patterns in panels (b) and 
(c), a (2 + 1)-multisphere in panel (d), a (1 + 3)-multisphere in 
panel (e), two (2 + 2)-multisphere patterns in panels (f) and (g), 
as well as a (3 + 1)-multisphere in panel (h). More complex mul-
tisphere patterns that consist of more than four spheres have 
also been observed, see the optical images in Figures 21 and 22.

The microscopy images in Figures  21 and 22 confirm sev-
eral general features of multispheres as predicted by the theory 
of curvature elasticity. First, each multisphere is formed by a 
single membrane which encloses the whole vesicle volume. 
Second, each multisphere involves only two different sphere 
radii, the large-sphere radius Rl and the small-sphere radius 
Rs, which is a direct consequence of the shape equation as 
obtained from the first variation of the bending energy. Third, 
the observed multisphere patterns are all located within the sta-
bility regimes predicted by the theory.[28]

6.2.1. Transmutations between Different Multisphere Patterns

The experimental observations also revealed that the small 
spheres are rather mobile and can be rearranged by diffusion 
of the ss necks between two small spheres.[28] In this way, a 
given sphere pattern can be transmuted into another sphere 
pattern, built up from the same numbers of large and small 

spheres. One frequent transmutation was observed for tubules 
of small spheres, see examples in Figures  21 and 22, which 
underwent transitions between linear and branched tubules. 
During these transitions, one small sphere diffused along 
another small sphere, corresponding to the diffusion of an 
ss neck, until this neck was transferred onto a third small 
sphere, thereby generating a three-way junction between four 
small spheres.

The diffusion of a small sphere along a large sphere, corre-
sponding to the diffusion of an ls neck, should also occur quite 
frequently because this diffusion process is not expected to 
encounter any energy barrier.[115] What is less obvious is that a 
diffusing ls neck can be transferred onto a second small sphere 
which is also connected to the large sphere. Such a transfer 
would change the ls neck into an ss neck which may involve a 
substantial energy barrier.

As an example, let us consider the two (1 + 2)-multisphere 
patterns, 1P  and 2P , in Figure  19. The pattern 1P  on the left 
involves one ls and one ss neck whereas the pattern 2P  on the 
right involves two ls necks. Both patterns have been observed 
for giant vesicles, see the optical images of the two patterns 
in Figure  6b,c. To transmute the 2P  pattern into the 1P  pat-
tern, one ls neck must first diffuse over the membrane of the 
large sphere until the two small spheres are close together. In a 
second step, the ls neck can then be transferred onto the second 
small sphere, thereby transforming the ls neck into an ss neck.

So far, such a transmutation process from pattern 2P  to pat-
tern 1P  has not been observed directly but could become acces-
sible if one monitors the long-time behavior of pattern 2P  as 
displayed in Figure  6c. Indeed, if pattern 2P  were transmuted 
into pattern 1P , the new ss neck may be unstable and open up, 
because the stability regime of the 1P  pattern is smaller than the 
stability regime of the 2P  pattern as indicated by the 〈 symbol 
in the (1+2) box of Figure  19. Therefore, the transmutation of 
the 2P  into the 1P  pattern can lead to a stable P1 pattern or to 
another shape without an ss neck.

Figure 21.  Patterns of (1 + Ns)-multispheres or “multi-balloons formed by giant vesicles, which were exposed to asymmetric sucrose–glucose solu-
tions.[28] The multisphere patterns displayed here consist of one large sphere and a linear or branched tubule with Ns ⩾ 4 small spheres: Linear tubule 
with a) Ns = 4, b) Ns = 5, and c) Ns = 6. Branched tubule with d) Ns = 7, e,f) Ns = 8, g) Ns = 14, and h) Ns = 15. Each branched tubule contains three-way 
junctions, consisting of one small sphere that is connected to three other small spheres. All scale bars are 10 µm. Reproduced under terms of the 
CC-BY license.[28] Copyright 2020, The Authors, published by Royal Society of Chemistry.
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6.3. Junctions of Membrane Tubules

The multispherical tubules in Figure  21d and in several 
panels of Figure  22 contain tubular junctions, corresponding 
to individual spheres that are connected to more than two 
neighboring spheres. The analysis of the corresponding time-
lapse movies[28] shows that most of these junctions are three-
way junctions, with some exceptions, such as the junction in 
Figure 22c which represents a four-way junction.

Stable three-way junctions have also been observed for the 
nanotubular network of the endoplasmic reticulum whereas 
stable four-way junctions have been difficult to detect.[2,4,5,116,117] 
As far as membrane elasticity is concerned, there are two main  
differences between the membrane tubules formed by giant 
vesicles as discussed here and the membrane nanotubes of the 
reticular networks. First, the tubules displayed in Figures  21 
and 22 have a diameter of about 2 µm whereas the nanotubes 
of the reticular networks have a diameter of about 50–100 nm, 
as has been deduced from electron microscopy. Therefore, the 
membranes of the reticular networks have a much larger spon-
taneous curvature. Second, the tubules formed by the giant 
vesicles undergo strong bending fluctuations in response to 
thermal noise. In contrast, the tubular segments between two 
junctions of the reticular networks appear to be rather straight, 
indicating the presence of a substantial membrane tension.

To get some insight into this difference in the tubular mor-
phology, let us consider a three-way junction as in Figure 21d 
but imagine that it consists of a larger number of small spheres 
as in Figure 22e. The junction contains a specific small sphere, 
which forms the junctional center. This center is linked via 
three ss necks to three linear tubules or junctional arms. Two 
of these arms have a free end while one arm is connected to 
the large sphere via an ls neck. The free ends undergo strong 
thermal fluctuations whereas the ls end is constrained to move 
on the surface of the large sphere. We will now perform some 
Gedanken experiments with this junction.

First, we aspirate the large sphere by a micropipette and grap 
one of the free ends by a laser trap to exert a pulling force on 
it. We will then encounter several distinct force regimes. First, 
we will straighten two arms of the junction until the pulled 
free end becomes collinear with the junctional center and the 
ls end. At this point, the third junctional arm will still undergo 
strong thermal fluctuations. When we further increase the 
pulling force, the small spheres of this third arm will be drawn 
into the straightened tube segment until all small spheres are 
part of this segment. So far, the number of small spheres has 
been conserved and we have arrived at a straight tubule con-
sisting of all small spheres that formed the original junction. 
However, when we continue to increase the pulling force even 
further, we may start to open up the closed necks between 

Figure 22.  Patterns of (N*)-multispheres formed by giant vesicles that were exposed to asymmetric sucrose–glucose solutions.[28] Each pattern shown 
here forms a branched or linear tubule with N* equally sized spheres: a) Branched chain with N* = 14. Twelve of these spheres are clearly visible. In 
addition, one sphere, located at the right chain end, is out of focus and another one, connected to the second sphere from the left is hardly visible.  
b) Branched chain with N* = 15; c) Another branched chain with N* = 15. Fourteen of these spheres are visible, another one is hidden behind the 
bottom sphere; d) Linear chain with N* = 24; and e) Branched chain with N* = 39. The precise number of small spheres has been obtained from the 
analysis of the corresponding time-lapse movies. Such movies also revealed three-way junctions in (a), (b), and (e) as well as the presence of a four-way 
junction in (c). The scale bar in (a) is 10 µm and applies to all panels. Reproduced under terms of the CC-BY license.[28] Copyright 2020, The Authors, 
published by Royal Society of Chemistry.
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the small spheres. As a result, the multispherical tubule will 
be transformed into an unduloidal or cylindrical tubule.[83] 
Because the necks experience a curvature-induced constric-
tion force as given by Equation (18), the opening of the closed 
necks is expected to require a pulling force that exceeds a cer-
tain threshold value.

Alternatively, we may use two laser traps to exert pulling 
forces on both free ends of the three-way junction considered 
here. These two pulling forces will act to straighten all three 
arms simultaneously. At the same time, the applied forces will be 
transmitted to the junctional center and the three arms will exert 
three forces onto this center. These three forces will initially be 
unbalanced and add up to a nonzero force acting on the center. 
The junction will then start to move until the three forces acting 
on the center add up to zero force. This force balance implies 
that the junctional arms form a contact angle of 360/3 = 120 
degrees at the junctional center. The latter contact angle is the 
angle typically observed for reticular networks of nanotubes.

Now, let us extend these considerations to a four-way junc-
tion, again consisting of a large number of spheres, as displayed 
in Figure 23a. The junction is taken to experience a significant 
tension which leads to four straight arms of the junction. Force 
balance now implies that the contact angle between two neigh-
boring arms is equal to 360/4 = 90 degrees. The membrane 
tension contributes an elastic energy that is proportional to 
the total length of the junctional arms. Because the membrane 
tubules of the four-way junction are fluid, this junction can be 
divided up into two three-way junctions as shown in Figure 23b, 
with contact angles of 120 degrees at both three-way junctions. 
It turns out that the total length of the tubules in Figure  23b 
is smaller than the total length of the four-way junction in 
Figure 23a which implies that the mechanical membrane ten-
sion and the membrane’s elastic energy are reduced when we 
transform the four-way junction into two three-way junctions. 
As a consequence, we conclude that membrane tubules under 
tension prefer to form three-way rather than four-way junctions 
in agreement with the experimental observations on the retic-
ular networks of nanotubes.

7. Remodeling of Membrane Topology

The remodeling processes of membranes as described in the 
previous sections involved striking shape transformations but 
did not change the topology of the membrane compartments. 
Thus, even the multispherical shapes consisting of many 
spheres connected by closed necks have the same topology as 
a spherical vesicle because they can be smoothly transformed 
into a single sphere by osmotic inflation. In the following, we 
will now consider remodeling processes that involve mem-
brane fission and fusion, both of which change the topology of 
the membranes.

7.1. Different Topologies of Membrane Compartments

Membrane compartments and vesicles are closed surfaces, the 
topology of which depends only on one integer number, the 
so-called Euler characteristic χ. This characteristic is defined for 

any partitioning of the membrane surface into a discrete set of 
surface segments.[57] One widely applied discretization method 
is triangulation but one may also use a mesh of smooth curves 
that are embedded in the surface. Any discretization involves 
the surface segments themselves, which are usually called 
“faces,” the edges between neighboring faces, and the vertices 
at which several edges come together. The Euler characteristic 
χ is then defined by

F E Vχ = − + 	 (51)

where F, E, and V is the number of faces, edges, and vertices, 
respectively. These three numbers depend on the chosen par-
titioning of the surface as one can easily see by using a tetra-
hedron, a cube or an icosahedron as simple discretization of a 
sphere and counting F, E, and V for these different polyhedra. 
In contrast, the Euler characteristic χ itself is independent of 
this partitioning and defines the topology of the surface. Thus, 
we obtain χ = 2 for a tetrahedron, a cube, or an icosahedron as 
well as for any other discretization of a spherical surface.

Three simple examples for closed membrane surfaces which 
differ in their Euler characteristic are displayed in Figure  24. 
The torus or doughnut-like shape on the left has the Euler char-
acteristic χ = 0, the sphere has χ = 2, and the combined surface 
of two spheres has χ = 4. Likewise, the topology of Nve separate 
spherical compartments is characterized by χ  = 2Nve and the 
topology of a sphere with Nha handles by χ = 2 − 2Nha.

7.1.1. Topological Remodeling by Fusion and Fission

By definition, a topological transformation of a membrane com-
partment or vesicle changes its topology and, thus, its Euler 
characteristic. In the living cell, the organelle membranes 
continuously undergo such topological transformations by 
membrane fission (or scission) and by membrane fusion, as 
illustrated in Figure 1. Likewise, the simple shapes in Figure 24 

Figure 23.  Junctions of membrane tubules. Because the tubules are fluid, 
force balance at the junction implies that all contact angles between 
neighboring tubules have the same value: a) Four-way junction with all 
contact angles equal to 90 degrees; and b) Two three-way junctions with 
all contact angles equal to 120 degrees. The total length of the tubules in 
(a) is somewhat larger than the total length of the tubules in (b), which 
implies a reduction in the elastic membrane energy when we transform 
the four-way junction into two three-way junctions. The resulting tube 
pattern with two three-way junctions represents a simple example of a 
Steiner minimal tree[118–121] as studied in mathematical graph theory.

Adv. Biology 2022, 6, 2101020



www.advancedsciencenews.com www.advanced-bio.com

2101020  (27 of 34) © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH

can also be connected by fission and fusion processes. The 
torus in Figure 24 can be smoothly deformed into a stomato-
cyte with two exterior necks and fission of one neck leads to a 
shape with spherical topology. The fission of a sphere leads to 
two spheres. On the other hand, fusion of two spheres leads 
to a single sphere which we can then transform into a torus 
by another fusion step. One possible shape transformation to 
facilitate the latter fusion process is to first deflate the sphere, 
thereby obtaining a discocyte with both of its poles in close 
proximity, and subsequently fuse the membrane segments of 
these two poles.

A single fission process always leads to an increase of the 
Euler characteristic by Δχ = +2 whereas a single fusion process 
always leads to a decrease of χ by Δχ = −2. These values of Δχ 
for individual fission and fusion events are completely general 
and apply to all vesicle shapes as long as each vesicle mem-
brane forms a closed surface without bilayer pores or bilayer 
edges, both before and after the events. Therefore, computing 
the Euler characteristic of two membrane compartments pro-
vides a simple and general method to distinguish fission and 
fusion processes which is not always obvious. One membrane 
process in the cell for which fission has often been confused 
with fusion is the closure of an autophagosome.[122]

It is interesting to note that the preparation of synthetic vesi-
cles also involves topological transformations and associated 
changes of the Euler characteristic. Consider, for example, the 
formation of Nve vesicles from a planar, solid-supported mem-
brane and assume that the planar bilayer has Npo additional 
bilayer pores after the vesicle formation. The changed topology 
of the membrane then implies the change Δχ = 2Nve − Npo of 
the Euler characteristic, which does not depend on the shapes 
of vesicles and pores.

7.1.2. Curvature Elasticity of Topological Transformations

The Euler characteristic is intimately related to the Gaussian 
curvature G = C1C2 as introduced in Equation  (3). Indeed, for 
a closed membrane surface, the Gauss–Bonnet theorem of dif-
ferential geometry implies the simple relationship

d d 21 2AG AC C πχ∫ = ∫ = 	 (52)

between the area integral over the Gaussian curvature G and 
the Euler characteristic χ. In the context of membrane elasticity, 
one may then consider the additional curvature energy[59]

κ πχκ= ∫ =d 2G G GE AG 	 (53)

which involves the Gaussian curvature modulus κG. This mod-
ulus has the physical units of an energy and thus the same 
physical units as the bending rigidity κ.

The Gaussian curvature modulus is difficult to measure. Sta-
bility arguments indicate that −2 <  κG/κ  < 0 for phospholipid 
vesicles.[123] Furthermore, both experimental[124,125] and simula-
tion[126] studies indicate that the Gaussian curvature modulus 
κG is indeed negative and that its magnitude |κG| is roughly 
equal to the bending rigidity κ. Therefore, one expects that 
κG ≃ −κ ≃ −10−19 J. The Gaussian curvature energy EG of a mem-
brane compartment as given by Equation  (53) does not depend 
explicitly on the membrane tension but will, in general, depend 
implicitly on this tension via the Gaussian curvature modulus κG.

The simple relation between the area integral over the 
Gaussian curvature G and the Euler characteristic χ as given by 
Equation  (52) applies to a closed membrane surface with uni-
form molecular composition and, thus, uniform elastic proper-
ties. This relation becomes more complex when the membrane 
contains domain boundaries[35,107,112] or when it involves bilayer 
pores or edges. In these cases, the area integral over the 
Gaussian curvature gives an additional term for each domain 
boundary and for each bilayer edge. Each of these terms is 
proportional to the line integral over the geodesic curvature[57] 
along the domain boundary or bilayer edge.

7.2. Curvature-Induced Fission of Membranes

Curvature-induced fission of membranes has been recently 
observed for giant vesicles exposed to His-tagged proteins in the 
exterior solution.[29] The binding of these proteins to NTA anchor 
lipids made it possible to control the spontaneous curvature in 
a precise manner, as described by Equation (9). In this way, we 
were able to transform prolate vesicles into dumbbells with a 
closed neck, see the first two images in Figure 25. The sponta-
neous curvature was then further increased by increasing the 
molar GFP concentration, which led to the cleavage of the mem-
brane neck and the division of the vesicle. This process directly 
demonstrates that the spontaneous curvature generates a sub-
stantial constriction force at the membrane neck, see Figure 15.

The fission process involves the closure and subsequent 
cleavage of the membrane neck, as shown schematically in 
Figure  26a–c, where we depict the fission process of a small 
nanovesicle in order to explicitly resolve the lipid bilayer. The 

Figure 24.  Closed membrane compartments with different topologies as distinguished by their Euler characteristic χ: A torus (or doughnut) with  
χ = 0, a sphere with χ = 2, and two spheres with χ = 4. Membrane fission (or scission) increases the Euler characteristic χ whereas membrane fusion 
decreases χ. Fission can be used to create a large number Nve of vesicles with a large positive Euler characteristic, χ = 2Nve. Fusion of toroidal vesicles 
can be used to create membrane surfaces with a large number Nha of handles and a large negative Euler characteristic, χ = 2 − 2Nha.
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neck cleavage has to overcome a free energy barrier arising 
from the local disruption of the bilayer structure. On the 
supramolecular scale, one may envisage this barrier for neck 
fission to arise from a cut across the bilayer and the creation 
of two ring-like hydrophobic bilayer edges across the neck. 
The “healing” of these bilayer edges then leads to two sepa-
rate daughter vesicles. The mechanical work of fission is pro-
portional to the total length of the bilayer edges. This length is 
minimal if the bilayer is cleaved across the neck.

The free energy landscape corresponding to such an exer-
gonic or “downhill” fission process is displayed in Figure 26d. 
In this case, the free energy of the two-vesicle state is lower 
than the free energy of the dumbbell with a closed membrane 
neck, and the free energy difference Δ21 in Figure 26d is neg-
ative. The fission rate, on the other hand, is governed by the 
positive free energy barrier Δ1b that the process has to overcome 
before it can be completed.

The observed fission of membrane necks as displayed in 
Figure 25 has several implications for the free energy landscape 
in Figure 26. First, from a comparison of the two vesicle shapes 

before and after fusion in Figure  26a,c, we can conclude that 
the fission process involves only a relatively small change in the 
bending energy of the vesicle membrane. It then follows that, 
during neck fission, the contribution of the curvature energy 
to the free energy difference Δ21 is dominated by the change in 
the Gaussian curvature energy EG as defined in Equation (53). 
This energy change is given by ΔEG = 2πΔχκG = 4πκG. Further-
more, the observed fission process represents a spontaneous or 
exergonic process, which implies that the bending modulus κG 
is negative, in agreement with previous conclusions,[123–126] pro-
vided we can ignore changes in the elastic stretching energy of 
the membrane. As mentioned, before fission, the mechanical 
tension of the dumbbell-shaped vesicle is negative and the ves-
icle membrane is compressed.

The mechanism of curvature-induced fission of small nano
vesicles as schematically depicted in Figure  26 provides an  
explanation for some early simulation results.[43,44] In one of 
these studies,[43] the nanovesicle was exposed to two different 
types of water beads in the interior and exterior compartment. 
The associated spontaneous curvature is likely to generate a 

Figure 25.  Curvature-induced fission of a giant vesicle: Transformation of a dumbbell-shaped vesicle with an open membrane neck into a two-sphere 
vesicle with a closed neck, and subsequent neck fission and vesicle division by increasing the molar concentration of His-tagged GFP in the exterior 
buffer.[29] The GFP binds to anchor lipids in the outer leaflet of the vesicle membrane, thereby generating a surprisingly large positive spontaneous 
curvature. This curvature generates a sufficiently large constriction force, compare Figure 15, which is consistent with the large negative mechanical 
tension in the same parameter regime. Reproduced under terms of the CC-BY license.[29] Copyright 2020, The Authors, published by Springer Nature.

Figure 26.  Fission of small nanovesicle and corresponding free energy landscape: Schematic fission process which a) starts from a dumbbell with 
a closed neck, b) proceeds via the cleavage of this neck, corresponding to the shortest possible cut (broken line) across the vesicle membrane, and 
c) ends up with two separate daughter vesicles. The cut leads to two circular membrane edges which have a positive edge tension and determine the 
free energy barrier; and d) Schematic free energy landscape versus an abstract reaction coordinate, with the free energy barrier provided by the cleaved 
neck. For the fission process to be “downhill” (exergonic) in free energy, the free energy difference Δ21 between the two vesicle state 2 and the dumb-
bell state 1 must be negative. For Δ21 < 0, the fission process can proceed without being coupled to another process such as nucleotide hydrolysis. The 
velocity or rate of the fission process, on the other hand, is determined by the positive free energy barrier Δ1b.
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constriction force that can be sufficiently large to cleave the 
neck as predicted theoretically[58,89] and as observed experimen-
tally for giant vesicles.[29] The latter mechanism should also 
apply to the fission of one-component monolayers of asym-
metric block copolymers which has also been observed in mole-
cular simulations.[44]

The curvature-induced constriction force at a membrane 
neck is described by the force–curvature relationships in  
Equations (18) and (19) for interior and exterior necks, respectively.  
These relationships are local and apply to all possible types of 
membrane necks between large and small spheres, provided 
we replace the neck curvature Mne by the neck curvatures Mll, 
Mls, Mss, or M**, depending on the type of neck under con-
sideration. For positive spontaneous curvature, the different 
neck curvatures are ordered according to Mll  < Mls  < Mss as in 
Equation  (47). Because the constriction forces at the different 
necks are proportional to m  − Mne, the ll necks experience the 
largest constriction forces.

7.3. Adhesion-Induced Fission of Nanovesicles

Using molecular simulations, we recently observed the bud-
ding and fission of nanovesicles, induced by the adsorption 
of small solutes onto the vesicle membranes.[17] Low concen-
trations of these solutes were present in the exterior aqueous 
solution and formed an adsorption layer on the outer leaflet of 
the vesicle membrane. This adsorption layer generated a sig-
nificant spontaneous curvature that could be used to change 
the morphology of the vesicles. In addition to the solute con-
centration, we identified the solvent conditions as a second key 
parameter for these processes. By definition, good solvent con-
ditions imply that the solution remains spatially uniform for all 
solute concentrations. A poor solvent, on the other hand, leads 
to a certain range of solute concentrations in which the solu-
tion undergoes liquid–liquid phase separation. Examples for 
this kind of phase behavior are provided by aqueous two-phase 
systems,[47,51,52] by water-in-water emulsions,[48] and by biomo-
lecular condensates.[49,50]

For good solvent conditions, the budding of a nanovesicle 
can be controlled by reducing the vesicle volume for constant 
solute concentration or by increasing the solute concentration 
for constant vesicle volume. After the budding process has been 
completed, the budded vesicle consists of two membrane sub-
compartments which are connected by a closed membrane neck. 
The budding process is reversible as can be demonstrated explic-
itly by reopening the closed neck via a decrease of the solute con-
centration. For poor solvent conditions, on the other hand, we 
observe two unexpected morphological transformations of nan-
ovesicles, as shown by the simulation snapshots in Figure  27. 
Close to the binodal line, at which the aqueous solution under-
goes phase separation, the vesicle exhibits recurrent shape 
changes with closed and open membrane necks, see the simula-
tion snapshots in Figure 27a, which cover a time period of about 
35  µs and are reminiscent of the flickering fusion pores (kiss-
and-run) that have been observed for synaptic vesicles.[127–129]

As we approach the binodal line even closer, the recurrent 
shape changes are truncated by the fission of the membrane 
neck which leads to the division of the nanovesicle into two 

daughter vesicles, see the simulation snapshots in Figure 27b, 
which cover a relatively short time period of less than a micro-
second and show the last neck closure and the subsequent fis-
sion event. Inspection of Figure 27b reveals that the underlying 
fission mechanism is provided by the solute-mediated adhesion 
of the two membrane segments close to the neck, which leads 
to a growing, non-axisymmetric contact area between these 
two segments. In this way, our simulations reveal a nanoscale 
mechanism for the budding and fission of nanovesicles, a 
mechanism that arises from the interplay between membrane 
elasticity and solute-mediated membrane adhesion.

7.4. Tension-Induced Fusion of Membranes

Some time ago, we used molecular dynamics simulations 
to study the fusion of lipid bilayers on the nanoscale and its 
dependence on bilayer tension.[130–132] We observed a variety 
of pathways including hemifusion and bilayer rupture but 
we always found a range of positive bilayer tensions that led 
to fusion. One example for such a fusion process induced by 
bilayer tension is displayed in Figure 28a–c, which corresponds 
to two nanovesicles with a diameter of about 22  nm under a 
relatively high bilayer tension.[132] In this example, the fusion 
process proceeds in three steps. After about 260  ns as shown 
in Figure  28c, the two nanovesicles adhere to each other and 
form a relatively small contact area. After about 360  ns, the 
two adhering bilayers become disrupted, see Figure  28b, and 
then form, after about 400  ns, an open fusion pore that con-
nects the two subcompartments in Figure 28a. The schematic 
free energy landscape corresponding to such an exergonic or 
“downhill” fusion process is displayed in Figure 26d.

7.4.1. Leaflet versus Bilayer Tensions

In the fusion simulations just described, we did not resolve 
the leaflet tensions of the bilayers. Thus, we observed fusion of 
nanovesicles induced by a positive bilayer tension. Preliminary 
simulations provide evidence that we can also obtain fusion 
for tensionless bilayers, for which the outer leaflet tension is 
stretched and the inner leaflet is compressed, corresponding to 
positive outer leaflet tension and negative inner leaflet tension.
Therefore, the leaflet tensions seem to provide another control 
parameter for the fusion of membranes.

7.4.2. Comparison with the Fusion of Liquid Droplets

It is interesting to note that the tension-induced fusion of two 
vesicles is, to some extent, similar to the coalescence of two 
liquid droplets, which is driven by the reduction of interfacial 
area. Consider two spherical liquid droplets of a certain liquid 
phase with volumes V1 and V2 and interfacial areas A1 and A2. 
When the two droplet coalesce for fixed total volume V1 + V2, 
the interfacial area A12 of the merged droplets will be smaller 
than the combined interfacial area A1  + A2 of a two original 
droplets. Likewise, the interfacial free energy, which is equal 
to interfacial area times interfacial tension, is also reduced by 
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droplet coalescence because the interfacial tension is a size-
independent material parameter. However, both the bilayer 
tension and the leaflet tensions of membranes depend on 
the size and the shape of the membrane, as explicitly demon
strated for multispherical vesicles, see Equation (50). Further-
more, the membrane tension will also affect the Gaussian 
curvature modulus. Therefore, tension-induced fusion of 
membranes is more subtle and not really analogous to the 
fusion of droplets.

8. Summary and Outlook

In this paper, we described recent results about the remodeling 
of biomembranes, combining experimental observations on 

giant vesicles and molecular dynamics simulations of small 
nanovesicles with the theory of membrane elasticity. Two 
types of remodeling processes have been distinguished. First, 
the remodeling of membrane shape for a given membrane 
topology has been addressed and, second, the remodeling of 
membrane topology, which is coupled to membrane fission and 
membrane fusion.

The remodeling of membrane shape leads to a striking 
polymorphism both for giant vesicles (Figures  2–6) and for 
small nanovesicles (Figures  7 and 8). This polymorphism can 
be understood from the interplay of curvature elasticity and 
membrane tension. For a given membrane area, the curvature 
elasticity of vesicles is determined by two dimensionless shape 
parameters, the rescaled spontaneous curvature and the rescaled 
vesicle volume as defined in Equations  (22) and (23). The 

Figure 28.  Tension-induced fusion of two spherical nanovesicles with a diameter of 22 nm. The lipids, that are initially assembled in the two vesicles, 
are distinguished by different colors, even though they are identical: a–c) The process starts in (c) from two vesicles that form a local adhesive contact, 
proceeds with the disruption of the two adhering bilayers in (b), and ends up in (a) with the opening of the fusion pore. The process from (c) to (a) 
takes about 140 ns.[132]; and d) Schematic free energy landscape versus an abstract reaction coordinate, with the free energy barrier corresponding to 
the disrupted bilayers within the adhesive contact. Reproduced with permission.[132] Copyright 2008, Royal Society of Chemistry.

Figure 27.  Unusual morphological transitions of nanovesicles exposed to small solutes (orange dots) in the exterior aqueous solution (blue), for low 
solute concentrations Φ and poor solvent conditions. The cross-sections of the vesicle membranes depict lipid bilayers with green head groups and 
grey hydrocarbon chains. The solutes form adsorption layers (orange-green) at the outer leaflets of the bilayers: a) Time series of budded nanovesicle 
with recurrent shape changes between dumbbells with open and closed necks for solute mole fraction Φ = 0.025; and b) Division of nanovesicle by 
fission of the membrane neck for Φ = 0.026, which leads to two daughter vesicles that adhere via the adsorbed solutes. Reproduced under terms of 
the CC-BY license.[17] Copyright 2021, The Authors, published by American Chemical Society.
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spontaneous curvature can be generated by many membrane-
bound molecules and nanostructures (Figure 9). This curvature-
elastic parameter has been determined for a variety of giant 
vesicle systems as summarized by Table  1 and Equation  (9). 
An unprecedented control over the spontaneous curvature 
has been recently achieved using nanomolar concentrations of 
His-tagged GFP, see Figure 3 and Equation  (9). The underlying 
molecular mechanisms, which are responsible for this large 
curvature generation, remain to be identified. One complication 
is that the binding of His-tagged molecules depends strongly on 
the pH of the aqueous solution (S.Pramanik, J.Steinkühler, R. 
Dimova, J. Spatz, R. Lipowsky, Binding of His-tagged molecules 
to lipid membranes and giant vesicles; unpublished),

The spontaneous curvature determines the spontaneous 
membrane tension σ = 2κm2, which is a material parameter and 
represents the intrinsic tension scale of curvature elasticity.[88] 
Depending on the spontaneous curvature m and the bending 
rigidity κ, the spontaneous tension σ can vary between 10−4 and 
1 mN m−1, as follows from the numerical values in Table 1 and 
from those based on Equation  (9). Using micropipette experi-
ments (Figure  10), the spontaneous tension has been directly 
measured for the compositional transbilayer asymmetry gener-
ated by the glycolipid (ganglioside) GM1.

The total membrane tension across the whole bilayer is 
equal to the sum of the spontaneous tension σ  = 2κm2 and 
the mechanical tension Σ. In contrast to the spontaneous ten-
sion, the mechanical tension Σ depends on both the shape and 
on the size of the membrane compartment. This dependence 
can be explicitly computed for two-sphere and multisphere 
vesicles, see Equations  (37) and (50). The mechanical bilayer 
tension Σ can be further decomposed into two leaflet ten-
sions as in Equation (10). One important conclusion about the 
leaflet tensions is that, in the absence of lipid flip-flops, these 
tensions can be quite significant even if the bilayer tension 
vanishes, see the examples in Figure 11. In the presence of fre-
quent flip-flops, a planar bilayer with three lipid components 
has been observed to attain tensionless leaflets[99] as one might 
expect intuitively (Figure  12). However, the relaxation process 
of the leaflet tensions is difficult to monitor and has not been 
observed in another simulation study of multi-component 
bilayers.[102] Another open issue is the time-dependent relaxa-
tion of the leaflet tensions in small nanovesicles.

The theory of membrane elasticity was then used to eluci-
date the local properties of membrane necks. First, the neck 
curvature Mne was defined in Equations  (13) and (14) for inte-
rior and exterior necks. Using this neck curvature, two simple 
but important local relationships describe the stability of closed 
necks (Equations 15 and 16) and the constriction forces that act 
to squeeze these necks (Equations 18 and 19).

We used the closed neck relations, together with the area 
and volume relations (Equation 25), to determine the stability 
regimes of two-sphere vesicles (Figure  18). Inspection of this 
figure shows that the mechanical tension is large and nega-
tive for large positive and negative spontaneous curvatures, in 
accordance with the constriction forces. Two-sphere vesicles 
are special because they involve only a single type of mem-
brane neck. In contrast, multispheres can involve up to three 
different types of necks that satisfy different stability relations. 
The overall stability of a certain multisphere is then determined 

by the least stable neck. Multispherical shapes nicely illustrate 
the morphological complexity of membrane compartments 
(Figures 19–22).

The formation of membrane necks is also essential for the 
remodeling of membrane topology via membrane fission and 
fusion events. This kind of remodeling can be described in a 
very general manner in terms of the Euler characteristic χ of 
the membrane compartments (Equation  51 and Figure  24). 
Single fission events increase the Euler characteristic by 
Δχ  =  +2 whereas single fusion events decrease it by Δχ  =  −2. 
These changes in the Euler characteristic lead to changes in 
the Gaussian curvature energy (Equation  53), which are pro-
portional to the Gaussian curvature modulus. If this modulus 
is negative, the curvature energy decreases during fission and 
increases during fusion. Thus, if the contribution of the elastic 
stretching energy to the free energy landscape could be ignored, 
we would conclude that fission is a spontaneous process 
whereas fusion is not. This conclusion agrees with the experi-
mental observation that fission can be induced by increasing 
the spontaneous membrane curvature using low densities of 
membrane-bound proteins (Figure 25).

On the other hand, the elastic stretching energy seems to 
make a significant contribution to the free energy landscape for 
the adhesion-induced fission of nanovesicles (Figure  27) which 
leads to two adhering daughter vesicles that experience a positive 
mechanical tension. Furthermore, the tension-induced fusion of 
small nanovesicles (Figure 28) implies that the fusion process is 
downhill in the presence of a sufficiently large positive membrane 
tension. Thus, the relative contributions of curvature elasticity 
and tension during these fission and fusion processes remain to 
be clarified and represent an interesting topic for further studies.

The remodeling of membrane shape and topology provides 
many more challenges to be addressed in the future. In the 
context of multispherical vesicles, we would like to develop 
experimental methods by which we could obtain specific multi-
spheres “on demand.” Likewise, it should be rather interesting 
to see how the multispheres respond to external forces and 
constraints in order to open and close the membrane necks in 
a controlled manner. Analogous remodeling processes should 
be accessible to giant vesicles with liquid-ordered and liquid-
disordered domains (Figure 4). Using appropriate anchor lipids 
for the His-tagged proteins, it seems possible to obtain different 
spontaneous curvatures within the different domains. These 
different spontaneous curvatures, together with the line ten-
sion of the domain boundaries, will have a strong effect on the 
remodeling of the vesicle morphologies. In particular, it should 
be possible to spatially localize fusion and fission processes at 
the domain boundaries or within certain domains. Finally, it 
will be rather interesting to construct synthetic membrane sys-
tems that couple membrane fission and fusion events to active 
processes such as the shape oscillations in Figure 5.
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