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A B S T R A C T   

Giant lipid vesicles form unusual multispherical or “multi-balloon” shapes consisting of several spheres that are 
connected by membrane necks. Such multispherical shapes have been recently observed when the two sides of 
the membranes were exposed to different sugar solutions. This sugar asymmetry induced a spontaneous cur
vature, the sign of which could be reversed by swapping the interior with the exterior solution. Here, previous 
studies of multispherical shapes are reviewed and extended to develop a comprehensive theory for these shapes. 
Each multisphere consists of large and small spheres, characterized by two radii, the large-sphere radius, Rl, and 
the small-sphere radius, Rs. For positive spontaneous curvature, the multisphere can be built up from variable 
numbers Nl and Ns of large and small spheres. In addition, multispheres consisting of N* = Nl + Ns equally sized 
spheres are also possible and provide examples for constant-mean-curvature surfaces. For negative spontaneous 
curvature, all multispheres consist of one large sphere that encloses a variable number Ns of small spheres. These 
general features of multispheres arise from two basic properties of curvature elasticity: the local shape equation 
for spherical membrane segments and the stability conditions for closed membrane necks. In addition, the 
(Nl + Ns)-multispheres can form several (Nl + Ns)-patterns that differ in the way, in which the spheres are 
mutually connected. These patterns may involve multispherical junctions consisting of individual spheres that 
are connected to more than two neighboring spheres. The geometry of the multispheres is governed by two 
polynomial equations which imply that (Nl + Ns)-multispheres can only be formed within a certain restricted 
range of vesicle volumes. Each (Nl + Ns)-pattern can be characterized by a certain stability regime that depends 
both on the stability of the closed necks and on the multispherical geometry. Interesting and challenging topics 
for future studies include the response of multispheres to locally applied external forces, membrane fusion be
tween spheres to create multispherical shapes of higher-genus topology, and the enlarged morphological 
complexity of multispheres arising from lipid phase separation and intramembrane domains.   

1. Introduction 

On the molecular scale, cellular membranes are based on the as
sembly of lipids and proteins into molecular bilayers. The lipid bilayer 
structure was first proposed in the 1920s for the plasma membranes of 
red blood cells [1] and directly observed by electron microscopy in the 
1950s for many different cellular membranes [2,3]. The electron mi
croscopy images revealed that the bilayers have a thickness of only 4 to 
5 nm. In contrast, the lateral extension of these bilayers is much larger 
and can exceed tens or even hundreds of micrometers. One intriguing 
aspect of cellular membranes is their striking polymorphism, that is, 
their ability to attain many different shapes. This polymorphism is 
intimately related to the fluidity of the membranes. That biomembranes 

are in a fluid state became generally accepted at the beginning of the 
1970ies based on three different developments: fast lateral diffusion of 
lipids as observed by spin-labeled lipids and steroids [4,5]; theoretical 
models for the curvature elasticity of fluid membranes [6–8]; and the 
proposal of the fluid-mosaic model [9]. 

The polymorphism of biomembranes can be elucidated using bio
mimetic model systems such as lipid bilayers and vesicles. One partic
ularly useful model system are giant unilamellar vesicles (GUVs), the 
shape of which can be observed in the optical microscope and can be 
computed based on the theory of membrane elasticity. [10–12] A recent 
example for this fruitful interplay between theory and experiment are 
multispherical shapes of GUVs [13], which provide the main theme of 
this review. 
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One key parameter of biomembrane elasticity is the preferred or 
spontaneous curvature 1 of the membrane which arises from the trans
bilayer asymmetry between the two bilayer leaflets. Transbilayer 
asymmetry between the two leaflets can be generated by many molec
ular mechanisms as briefly reviewed in the following Section 2. These 
mechanisms include the compositional asymmetry between the two 
leaflets, which is ubiquitous in cellular membranes [14,15], as well as 
the molecular interactions between the leaflets and the adjacent 
aqueous buffers. One example are lipid bilayers with one leaflet exposed 
to a sucrose solution and the other leaflet exposed to a glucose solution. 
For GUV membranes, the latter mechanism has been observed to 
generate many multispherical shapes, see Figs. 1 and 2 [13]. 

Spherical shapes are also formed by liquid droplets. Indeed, droplets 
attain such shapes in order to minimize their interfacial area and thus 
their interfacial free energy. If we bring two spherical droplets into 
contact, we can create a transient two-sphere shape which would, 
however, be unstable and either decay into smaller droplets or merge 
into a larger droplet that will eventually relax into the shape of a single 
sphere. Now, imagine that we stabilize the transient two-sphere droplet 
by imposing a constraint on its interfacial area. Such a constraint can be 
achieved by a fluid membrane that encloses the two-sphere droplet. The 
two droplets are then enclosed by a single membrane which connects the 
two droplets by a closed membrane neck, thereby forming a two-sphere 
vesicle, see Fig. 1a. The stability of such a vesicle depends on the 
spontaneous curvature of the vesicle membrane and on the vesicle ge
ometry, as explained below in some detail. 

Two-sphere vesicles as in Fig. 1a represent the simplest examples for 
multispherical shapes. Indeed, the theory of membrane elasticity pre
dicts stable multispherical shapes consisting of an arbirtrary number of 
(punctured) spheres connected by closed membrane necks [16,17]. 
Many of these shapes have been observed recently for GUVs that were 
exposed to asymmetric sugar solutions, see Figs. 1 and 2. The shapes in 
Fig. 1 were obtained for positive spontaneous curvature, those in Fig. 2 
for negative spontaneous curvature. 

The (Nl + Ns)-multispheres displayed in Fig. 1 are observed when the 
vesicle membranes are exposed to an inner solution of sucrose and to an 
outer solution of glucose. Thus, the two leaflets of the bilayer mem
branes experience different molecular interactions which generate a 
positive spontaneous curvature of about 1 μm− 1. As illustrated in Fig. 1, 
such a spontaneous curvature can create a large variety of multi
spherical shapes connecting individual spheres with positive mean 
curvature. 

When the two aqueous solutions are swapped, i.e., when the interior 
solution contains glucose and the outer solution sucrose, the sponta
neous curvature becomes negative leading to different multispherical 
morphologies as shown in Fig. 2. All of these multispheres consist of one 
large sphere that encloses a variable number of small spheres. For these 
(1 + Ns)-multispheres, the large sphere has a positive mean curvature 
whereas the small spheres are inverted spheres and have a negative 
mean curvature. 

From a theoretical point of view, multispheres are appealing for 
several reasons. First, the existence of multispherical shapes highlights 
the curvature elasticity of fluid membranes. Indeed, these shapes arise 
from two basic properties of curvature elasticity: the coexistence of two 
spherical membrane segments with different radii and the connection of 
two spheres by closed membrane necks. Second, many properties of 
these shapes can be expressed in terms of simple equations and thus 
obtained from elementary calculus. In particular, the mechanical ten
sion experienced by the membranes of the multispherical vesicles can be 
calculated explicitly, thereby revealing how this tension is determined 
by the interplay of curvature elasticity and vesicle geometry. Third, the 
membrane shapes considered here are intimately related to three 

different branches of ‘serious’ mathematics: constant-mean-curvature 
surfaces as considered in differential geometry; Steiner minimal trees 
as studied in mathematical graph theory; and sphere packings as 
elucidated in discrete geometry. On the one hand, multispherical shapes 
provide a direct and unexpected connection between these distinct 
mathematical topics. On the other hand, multispheres formed by fluid 
membranes provide a new and striking application of these mathemat
ical concepts. 

Some theoretical results for multispherical shapes have been re
ported previously [16–19]. The first two papers [18,19] described these 
shapes in a rather qualitative manner while the two subsequent reviews 
[16,17] summarized many features of multispherical membranes with 
positive spontaneous curvature but largely ignored those with negative 
spontaneous curvature. Here, the theory of multispherical shapes will be 
developed in a comprehensive way for both positive and negative 
spontaneous curvature, using the recent experimental observations in 
Figs. 1 and 2 as a strong incentive. 

This paper is organized as follows. In the next Section 2, we will 
briefly review the different molecular mechanisms that are known to 
generate a significant spontaneous curvature. In Section 3, we first 
discuss some general features of multispherical shapes, thereby intro
ducing the basic concepts of multisphere patterns and junctions. In 
Section 4, two curvature-elastic properties will be emphasized which are 
essential for the striking polymorphism of multi-sphere shapes: (i) the 
possible coexistence of two spherical radii on the same vesicle; and (ii) 
the formation and stability of closed membrane necks. Section 5 pro
vides some examples for different (Nl + Ns)-patterns and small values of 
Nl and Ns. Section 6 is about the multisphere geometry which is gov
erned by two polynomial equations. One important consequence of 
these equations is the limited range of volumes for which a certain 
(Nl + Ns)-multisphere can be formed (irrespective of its stability). Sec
tion 7 combines the stability relations for closed membrane necks with 
the multisphere geometry to obtain the stability regimes of multi
spherical shapes. Finally, the main results of the analysis are summa
rized in the last Section 8 together with an outlook on possible future 
studies. 

2. Transbilayer asymmetry and spontaneous curvature 

One key parameter for the formation of multispherical shapes is the 
preferred or spontaneous curvature which provides a quantitative 
measure for the transbilayer asymmetry of the membranes. Such an 
asymmetry can be generated by a variety of molecular and colloidal 
mechanisms which will be briefly reviewed in the following. 

2.1. Leaflets with different densities and compositions 

The presumably simplest asymmetry between the two bilayer leaflets 
is obtained for one-component bilayers if the leaflets differ in their 
molecular densities or, equivalently, in their areas per lipid. More pre
cisely, one has to look at tensionless bilayers and at the deviations of the 
leaflet densities from their reference values for tensionless leaflets. 
Because the two leaflet tensions add up to the bilayer tension, a 
tensionless bilayer involves one stretched and one compressed leaflet, 
including the special reference state in which both leaflet tensions 
vanish. The corresponding stress asymmetry has been studied by mo
lecular dynamics simulations both for planar lipid bilayers [20] and for 
lipid nanovesicles [21]. The simulations show that the bilayers prefer to 
curve in such a way that the stretched leaflet decreases its area per lipid 
whereas the compressed bilayer increases this molecular area, thereby 
decreasing the absolute value of the mechanical tensions in both leaflets. 

The two leaflets may also differ in their molecular compositions and 
in the corresponding mole fractions. As an example, consider a two- 
component bilayer containing a phospholipid such as POPC and a 
glycolipid such as GM1 that has a relatively large head group, as shown 
schematically in Fig. 3a. Intuitively, one would expect that the bilayer 

1 Here and below, ‘spontaneous curvature’ is an abbreviation for ‘sponta
neous mean curvature’. 
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Fig. 1. Multispherical shapes of giant unilamellar vesicles (GUVs) for positive spontaneous curvature. Such multispheres are observed when the inner leaflet of the 
bilayer membrane is exposed to sucrose whereas the outer leaflet is in contact with glucose. Each shape involves two types of spheres, large spheres with radius Rl and 
small spheres with radius Rs. (Nl + Ns)-multispheres are obtained when the membrane forms Nl large spheres and Ns small spheres. The different panels display such 
multispheres with different sphere numbers Nl and Ns, apart from (b) and (c) as well as (f) and (g), which show two distinct patterns of (1 + 2)-spheres and of (2 + 2)- 
spheres, respectively. Scale bar in (a) is 10 μm and applies to all panels [13]. 

Fig. 2. Multispherical shapes of GUVs for negative spontaneous curvature. Such multispheres are observed when the inner leaflet of the bilayer membranes is 
exposed to glucose whereas the outer leaflet is in contact with sucrose. Each panel displays a (1 + Ns)-multisphere with one large sphere that encloses Ns small 
spheres. Scale bar in (e) is 5 μm and applies to all panels [13]. 

Fig. 3. Transbilayer asymmetry and spontaneous curvature arising from small molecules and solutes: (a) Compositional asymmetry between the two leaflets of the 
lipid bilayer with large-head group lipids (yellow) such as the glycolipid GM1 in the upper leaflet. This asymmetry leads to a positive spontaneous curvature; (b) 
Small solutes (purple) that do not adsorb onto the bilayer, thereby creating a depletion layer (grey) adjacent to the upper leaflet. The bilayer then prefers to bulge 
away from the exterior compartment which implies a negative spontaneous curvature; and (c) Small solutes (orange) that adsorb onto the upper bilayer leaflet, 
thereby creating an adsorption layer that induces a positive spontaneous curvature. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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prefers to bulge towards the leaflet with the higher mole fraction of the 
large-head-group lipid because these lipids tend to occupy more area per 
lipid. Even though this view does not take the constraint of vanishing 
bilayer tension into account, it is corroborated by molecular dynamics 
simulations [22–24]. In Fig. 3a, the upper leaflet has a higher mole 
fraction of the large-head-group lipids and is in contact with the exterior 
compartment which implies that the induced spontaneous curvature is 
positive. 

2.2. Attractive and repulsive solute-membrane interactions 

Somewhat different mechanisms for the generation of membrane 
curvature are obtained when the membrane interacts with solutes that 
are small compared to the bilayer thickness. The solutes may be effec
tively repelled from or attracted to the membrane as depicted in Fig. 3b 
and c, respectively. If the solutes are repelled from the membrane, they 
form depletion layers from which the solute molecules are excluded [25, 
26]. In Fig. 3b, the solutes are dissolved in the exterior compartment and 
then form a depletion layer in front of the upper leaflet. The depletion 
layer reduces the translational entropy of the small solutes. In order to 
decrease this entropy loss, the membrane prefers to bulge away from the 
exterior compartment which corresponds to a negative spontaneous 
curvature, see Fig. 3b. 

On the other hand, if the solutes are attracted towards the mem
brane, they form adsorption layers in front of the bilayer leaflets, see 
Fig. 3c. One then expects that the membrane bulges towards the leaflet 
with the higher solute coverage and, thus, towards the aqueous 
compartment with the higher solute concentration [25,27]. The latter 
behavior has been observed in molecular dynamics simulations [20,28] 
and has been used to estimate the spontaneous curvature as generated 
by sucrose and glucose molecules [13], see Figs. 1 and 2. 

The adsorption of divalent Ca2+ ions on phospholipid bilayers has led 
to some controversy because two experimental studies came to different 
conclusions about the sign of the ion-induced bilayer asymmetry. 
Indeed, whereas one study [29] found that the bilayer prefers to bulge 
towards the solution with the higher Ca2+ concentration, in accordance 
with the behavior depicted in Fig. 3c, another study [30] concluded that 
the Ca2+ adsorption layer leads to a preferred curvature in the opposite 
direction, i.e., that the bilayer covered with Ca2+ ions prefers to bulge 
towards the solution with the lower ion concentration. Other recent 
studies have provided some evidence that the area per lipid is reduced 
by the adsorption of Ca2+ ions and that this reduction becomes more 
pronounced for higher Ca2+ concentrations [31–33]. Assuming such a 
concentration-dependent reduction of the area per lipid, one would 
expect that the bilayer bulges towards the solution with the lower Ca2+

concentration. 

2.3. Membrane scaffolding by adhesive nanoparticles 

Next, consider rigid nanoparticles with a size that is large compared 
to the bilayer thickness. If the molecular interactions between the 
nanoparticle and the bilayer membrane are attractive, the particle acts 
as a scaffold for the shape of the membrane. The simplest example for 
membrane scaffolding is provided by a rigid nanoparticle with a 
spherical shape as depicted in Fig. 4a. In this example, the radius of the 
nanoparticle is about 2.5 times the thickness of the bilayer and the 
particle is partially engulfed by the membrane. Partial engulfment can 
be stabilized by a spontaneous curvature of the membrane that is 
opposite to the curvature of the particle-bound membrane segment [34]. 
In general, a nanoparticle can have many different shapes with different 
patterns of adhesive surface segments. Two such patterns are displayed 
in Fig. 4b,c. In Fig. 4b, the whole concave surface segment is adhesive 
(red), which leads to curvature generation after adhesion (induced fit). 
In Fig. 4c, the adhesive surface domains (red) are buried inside the 
concave part of the particle surface, and the membrane must first bend 
before it can bind to the particle (conformational selection). 

2.4. Entropic scaffolding by anchored chain molecules 

The scaffolding by rigid nanoparticles arises from the adhesion be
tween the nanoparticles and the membrane. In contrast, the scaffolding 
by long chain molecules is caused by the loss of configurational entropy 
of the chains resulting from the steric hindrance of these chains by the 
membrane [35–37]. In order to stay close to the membrane, the chain 
molecule must, however, be anchored to the membrane. Several cases 
for this anchorage of a linear chain molecule need to be distinguished, 
see Fig. 5. 

The simplest case is provided by a linear chain with a single anchor at 
one end as depicted in Fig. 5a. In this case, the membrane bends away 
from the anchored chain in order to increase the spatial region that is 
accessible to the other end of the chain [35,37]. On the other hand, if we 
anchor this other chain end to the membrane as well, see Fig. 5b, the 
membrane remains essentially flat because the entropic scaffolding is 
now limited to chain configurations, for which both anchors are close 
together, whereas large anchor-anchor separations stretch the chain 
molecule and curve the membrane in the opposite direction [36]. If the 
chain molecules have intermediate anchor segments as in Fig. 5c, the 
entropic scaffolding is limited to the loose chain ends and the membrane 
prefers to bend away from these ends. 

2.5. Curvature generation by membrane-bound proteins 

Bilayer asymmetry and spontaneous curvature can also be generated 
by membrane-bound proteins. A simple example is provided by His- 
tagged GFP proteins that bind to NTA anchor lipids. Early experi
mental studies addressing the curvature generation by these proteins 

Fig. 4. Adhesion-induced scaffoding of membranes by rigid nanoparticles (orange): (a) A spherical nanoparticle with a diamater of about 10 nm and a uniform 
adhesive surface (red). Sufficiently strong adhesion leads to the engulfment of the particle by the membrane; and (b,c) Two types of convex-concave nanoparticles 
with different patterns of adhesive surface domains. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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[38,39] were interpreted in terms of protein crowding. In contrast, a 
more recent study has demonstrated that His-tagged GFP generates a 
surprisingly large spontaneous curvature even in the dilute regime, in 
which the separation of the membrane-bound proteins is large compared 
to their lateral size [40], as indicated in Fig. 6a. 

Another membrane-bound protein that has been shown to generate a 
large spontaneous curvature in the dilute regime is amphiphysin as 
depicted in Fig. 6b [43]. This protein forms an antiparallel homodimer 
[41,42] that has the shape of a banana with a curvature radius of about 
11 nm and acts as a local scaffold for the adjacent membrane segment. 
The curvature radius of the banana-like shape suggests that, in the dense 
regime, the protein may generate a spontaneous curvature of up to 
1/(11 nm). However, because of its anisotropic shape, the 
membrane-bound amphiphysin may undergo an isotropic-nematic 
transition at a certain critical density [27]. A third example is pro
vided by clathrin-coated pits, see Fig. 6c, which are assembled at the 
membrane with the help of adaptor proteins such as AP-2 [44–47]. 
These coated pits represent the first step of clathrin-dependent endo
cytosis. The associated spontaneous curvature can be estimated from the 
dimensions of the clathrin-coated vesicles that are eventually formed by 
the endocytic process. For native coats within human cells [48], the 
outer diameter of the coat was found to vary between 75 and 130 nm 
while the enclosed vesicle had a radius between 18 and 43 nm. Thus, the 
spontaneous curvature of the bilayer membrane is expected to have a 
value between – 1/(18 nm) and – 1/(43 nm) where the negative sign 
reflects the endocytic process. These estimates can be used to develop a 
quantitative theory for the endocytosis of transferrin-coated nano
particles [34] and to explain the non-monotonic dependence of this 
process on particle size as observed experimentally [49,50]. 

3. General features of multispheres 

The previous section briefly reviewed the different molecular and 
colloidal mechanisms that can generate a significant spontaneous cur
vature of the biomembrane. Once the membrane has acquired such a 
curvature, it can form multispherical shapes which will now be dis
cussed in some detail. In this introductory section, we will describe 
general features of the multispheres, in later sections, we will discuss 
their local properties, their geometry, and their stability regimes in a 
quantitative manner. 

3.1. Each multisphere formed by a single membrane 

Each multisphere as displayed in Figs. 1 and 2 is formed by a single 
membrane, which encloses both the spheres and the membrane necks 
connecting the spheres. Thus, each sphere is actually a punctured sphere 
and its punctures are connected to the punctures of neighboring spheres 
via closed membrane necks. In some cases, the time evolution of the 
multispherical shape has been directly observed in the microscope. One 
example is displayed in Fig. 7, which shows the shape transformation of 
a pear-like shape at time t = 0 to a (1 + 1)-multisphere with one closed 
membrane neck after about 15 s. If we inflated the (1+1)-multisphere 
osmotically, we would open up the closed neck, return to a pear-like 
shape, and eventually to a single large sphere. 

Because each multispherical shape is formed by a single membrane, 
these shapes are quite different from adhesion-induced assemblies of 
several vesicles. Indeed, if we added a fluorescent probe to one (punc
tured) sphere of the multisphere, the probe would diffuse across the 
membrane necks and eventually spread over the whole multispherical 
membrane. Likewise, if we added a fluorescent probe to one of the 

Fig. 5. Entropic scaffolding of membranes by flexible chain molecules (purple) with one or two anchor segments (red): (a) If the chain is anchored to the membrane 
at only one end, the membrane is bent away from the chain by the configurational entropy of the chain; (b) In contrast, the membrane remains essentially flat if the 
chain is anchored at both ends; and (c) For a chain with two intermediate anchor segments, the membrane is bent away from the loose chain ends as follows by 
combining the two cases in (a) and (b) [35,36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Curvature generation by membrane-bound proteins: (a) Low density of His-tagged GFP bound to NTA anchor lipids (orange) in the outer bilayer leaflet [40]; 
(b) Homodimer of amphiphysin, providing a banana-shaped scaffold for the membrane [41–43]; and (c) Clathrin-coated pit with clathrin ‘legs’ (yellow) connected to 
the membrane via AP-2 adaptor proteins (light green) [44–47]. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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aqueous subcompartents, the latter probe would eventually spread over 
the whole interior compartment of the multisphere. In practise, each 
membrane neck will act as a bottleneck for the diffusive transport of a 
membrane dye from one spherical membrane segment to a neighboring 
one and of a water-soluble dye between aqueous subcompartments. 

3.2. Multisphere patterns built up from large and small spheres 

The multispheres displayed in Fig. 1 were formed for positive 
spontaneous curvature of the vesicle membranes. These multispheres 
contain large and small spheres, both of which have a positive mean 
curvature, as can be directly deduced from the optical images. More 
precisely, each multisphere involves only two types of spheres, large 
ones with radius Rl and small ones with radius Rs. Indeed, inspection of 
Fig. 1 shows that each multisphere involves only two positive values of 

the mean curvature as given by Ml = 1/Rl for all large spheres and by 
Ms = 1/Rs for all small spheres. Thus, each multisphere in Fig. 1 is built 
up from Nl large spheres and from Ns small spheres, thereby forming an 
(Nl + Ns)-multisphere. For given numbers, Nl and Ns, the small and large 
spheres can form distinct multisphere patterns that differ in the way, in 
which the spheres are mutually connected. One example for two distinct 
(1 + 2)-patterns is provided by Fig. 1b and c, another example by the 
two (2 + 2)-patterns displayed in Fig. 1f and g. 

The multispheres displayed in Fig. 2 were formed for negative 
spontaneous curvature of the vesicle membranes. All of these patterns 
consist of a variable number Ns of small, inverted spheres that are 
enclosed by a single large sphere. These (1 + Ns)-multispheres can again 
be characterized by two radii, the radius Rl of the large sphere and the 
radius Rs of the small spheres but the corresponding mean curvatures 
have now different signs, with positive mean curvature Ml = +1/Rl for 

Fig. 7. Time course for the formation of a (1 + 1)-multisphere with one membrane neck for positive spontaneous curvature. At time t = 0, the GUV has a pear-like 
shape which develops a hour-glass waist that leads to a closed membrane neck after about 15 s. This shape transformation is observed after increasing the osmolarity 
in the exterior solution, thereby reducing the volume of the vesicle. Scale bar in the first image is 5 μm and applies to all images [13]. 

Fig. 8. Multispherical shapes consisting of N* equally sized spheres for positive spontaneous curvature. The sphere number N* increases from N* = 14 in (a) to 
N* = 39 in (e). All (N*)-multispheres provide examples for constant-mean-curvature surfaces. Furthermore, apart from (d), all (N*)-multispheres displayed here 
exhibit multispherical junctions. Each junction consists of one central sphere that is connected to more than two neighboring spheres. Scale bar in (a) is 10 μm and 
applies to all panels [13]. 
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the large sphere and negative mean curvature Ms = − 1/Rs for the small, 
inverted spheres. For a given value of Ns, the (1 + Ns)-multispheres can 
form distinct multisphere patterns, which are again distinguished by the 
way in which the spheres are mutually connected. 

3.3. Multisphere patterns built up from equally sized spheres 

For positive spontaneous curvature, special multispheres consisting 
of N* equally sized spheres are also possible. These shapes correspond to 
the limiting case when the large-sphere-radius Rl and the small-sphere- 
radius Rs become equal and the (Nl + Ns)-multisphere becomes an (N*)- 
multisphere with N* = Nl + Ns. Several examples of such multispheres 
are displayed in Fig. 8. Close inspection of the optical images in this 
figure reveals that most of these shapes involve multispherical junctions, 
consisting of a central sphere that is connected to more than two 
neighboring spheres by more than two membrane necks. For fixed 
sphere number N*, several (N*)-patterns can be distinguished that now 
differ in the way in which the N* equally sized spheres are connected by 
the membrane necks and, thus, differ in the number of multispherical 
junctions and in the number of spheres between these junctions. 

Each (N*)-multisphere can be reached, in principle, via many 
different (Nl + Ns)-spheres that satisfy Nl + Ns = N*. The (14*)-multi
sphere displayed in Fig. 8a, for example. could be reached deflating a 
(1 + 13)-multisphere or a (2 + 12)-pattern or a (3 + 11)-pattern. 
Furthermore, each of these different types of multispheres can form 
several distinct multisphere patterns. As we will see further below, the 
(N*)-multispheres have the smallest volume of all possible (Nl + Ns)- 
multispheres with Nl + Ns = N*. Therefore, it should be quite interesting 
to study the response of an (N*)-multisphere to an increase in its volume 
by osmotic inflation. 

The formation of multispherical junctions is not limited to (N*)- 
multispheres but has also been observed for (Nl + Ns)-multispheres built 
up from large and small spheres. Two examples for positive spontaneous 
curvature are displayed in Fig. 9a and b, one example for negative 
spontaneous curvature in Fig. 9c. 

3.4. Local and global properties of multispheres 

To proceed, we will now distinguish local from global properties of 
multispherical shapes. By definition, local properties do not depend 
explicitly on the numbers Nl and Ns of large and small spheres that 
characterize the different (Nl + Ns)-multispheres. Important local prop
erties are provided by the shape equation for multispheres, by the sta
bility conditions for closed membrane necks, and by the constriction 
forces acting on these closed necks, which will be discussed in the next 
section. In contrast, the geometry of multispheres depends explicitly on 
the sphere numbers Nl and Ns. This dependence is described by two 
polynomial relationships between these numbers, the radii Rl and Rs of 
large and small spheres as well as the total volume and total membrane 
area of the multispheres. 

It is important to note that local properties may have global conse
quences for the membrane shapes. One example is provided by the local 
shape equation for multispheres to be examined in the next section. This 
equation determines two local properties, the total membrane tension 
Σtot and the pressure difference ΔP, but has the global consequence that 
a multisphere can involve only up two different sphere radii, irre
spective of the total number of spheres. On the other hand, the effective 
neck mean curvature Mne, which plays an important role both for the 
stability of the necks and for the constriction forces acting at those necks, 
represents a local quantity but depends implicitly on the overall multi
sphere geometry as encoded in the rescaled volume v to be defined 
further below. 

4. Shapes with two constant mean curvatures 

As before, we will denote the radius of the large spheres by Rl and the 
radius of the small spheres by Rs. The corresponding mean curvatures of 
the large and small spheres are given by 

Ml =
1
Rl

and Ms = ±
1
Rs

. (1)  

The plus sign in the second equality applies to small spheres that have a 
positive mean curvature as in Fig. 1 whereas the minus sign applies to 
small spheres with a negative mean curvature as in Fig. 2. As shown in 
the next subsection, the small spheres have positive and negative mean 
curvatures if the membrane has positive and negative spontaneous 
curvatures, respectively. In contrast to the mean curvature Ms of the 
small spheres, the mean curvature Ml of the large spheres is always 
positive. 

4.1. Shape equation for spherical membrane segments 

The spontaneous cuvature model [7,51,52] is based on the bending 
energy 

Ebe = 2κ
∫

dA(M − m)
2 (2)  

of the membrane, which involves two membrane-elastic parameters, the 
bending rigidity κ and the preferred or spontaneous curvature m. In 
addition, the model involves two geometric parameters, the vesicle 
volume V and the membrane area A, as well as the associated conjugate 
variables provided by the pressure difference 

ΔP ≡ Pin − Pex (3)  

between the interior and exterior compartments and the mechanical 
tension Σ. It is convenient to use the two variables ΔP and Σ as Lagrange 
multipliers in order to ensure that the vesicle shape has a certain volume 
and a certain area [51,52]. As a consequence, one then has to minimize 
the shape functional 

Fig. 9. (1 + Ns)-multispheres with junctions for (a,b) positive and (c) negative spontaneous curvature: (a) Branched chain with Ns = 7 small spheres forming one 
junction; (b) Branched chain with Ns = 15 small spheres and one junction, formed by the third small sphere from the upper left chain end; and (c) Branched 
multispherical chain with Ns = 11 small spheres and three junctions, enclosed by one large sphere. All scale bars: 10 μm [13]. 
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F = − ΔP V + ΣA + Ebe (4)  

with the bending energy as given by Eq. (2). 
For spherical membrane segments with mean curvature Msp, the 

Euler-Lagrange equation of the shape functional in Eq. (4) has the form 

ΔP = Pin − Pex = 2 Σtot Msp − 4κmM2
sp (5)  

with the total membrane tension 

Σtot = Σ + 2κm2 , (6)  

which depends on the mechanical tension Σ and on the spontaneous 
tension [27] which is equal to 2κm2. 

The shape equation is quadratic in the mean curvature Msp and can 
have two real-valued solutions, Msp = Ma and Msp = Mb, which coexist 
on the same vesicle for given values of Σtot and ΔP. The two solutions of 
the shape Eq. (5) have the general form 

Ma =
Σtot

4κm
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Σtot

4κm

)2

−
ΔP
4κm

√

(7)  

and 

Mb =
Σtot

4κm
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Σtot

4κm

)2

−
ΔP
4κm

√

. (8)  

Furthermore, if a membrane forms spherical segments with mean cur
vatures Ma and Mb, a combination of the two separate shape equations 
for Ma and Mb leads to the total membrane tension [13,17] 

Σtot = 2κm(Ma + Mb) (9)  

and to the pressure difference 

ΔP = Pin − Pex = 4κmMaMb . (10)  

It is important to note that the total membrane tension Σtot and the 
pressure difference ΔP depend on the combination κm of the two 
membrane-elastic parameters κ and m as well as on the mean curvatures 
Ma and Mb of the two types of spheres. This interplay between curvature- 
elasticity and vesicle geometry also applies to the mechanical membrane 
tension Σ = Σtot − 2κm2 that will be examined in some detail further 
below. 

The two solutions Ma and Mb in Eqs. (7) and (8) are real-valued as 
long as the discriminant under the square root is non-negative which is 
equivalent to the condition 

Σ2
tot ≥ 4κmΔP . (11)  

When we express the total membrane tension Σtot and the pressure 
difference ΔP in terms of Ma and Mb via Eqs. (9) and (10), we find that 
the inequality in Eq. (11) can be rewritten in the form (Ma − Mb)2 ≥ 0 
which is always fulfilled irrespective of the signs of Ma and Mb. 

For the limiting case Σ2
tot = 4κmΔP, the two solutions Ma and Mb in 

Eqs. (7) and (8) become identical and lead to the single solution 
Ma = Mb = M* with 

M* =
Σtot

4κm
=

̅̅̅̅̅̅̅̅̅
ΔP
4κm

√

, (12)  

corresponding to a multisphere that is built up from a certain number of 
equally sized spheres with constant mean curvature M* as in Fig. 8. 

4.1.1. Multispheres for positive spontaneous curvature 
For positive spontaneous curvature, m > 0, the membrane prefers to 

form shapes with positive mean curvature. In fact, all multispherical 
shapes displayed in Fig. 1 consist of large and small spheres, both of 
which have positive mean curvature. Denoting the mean curvature of 

the large and small spheres by Ml and Ms with Ms > Ml, the general so
lution in Eqs. (7) and (8) leads to 

Ml = Mb and Ms = Ma for m > 0. (13)  

It then follows from Eqs. (9) and (10) that the total membrane tension 
Σtot and the pressure difference ΔP are positive as well. Vice versa, for 
ΔP > 0 and Σtot > 0, both solutions Ml = Mb and Ms = Ma as given by 
Eqs. (8) and (7) are positive for positive spontaneous curvature, m > 0. 
Thus, we conclude that m > 0 leads to multispherical shapes with pos
itive mean curvatures of all individual spheres, which experience a 
positive total tension Σtot > 0 and a positive pressure differene ΔP > 0. 

4.1.2. Multispheres for negative spontaneous curvature 
The multispherical shapes in Fig. 2 consist of one large sphere with 

radius Rl and a variable number of small and inverted spheres with 
radius Rs. In this case, the large sphere has positive mean curvature, 
Ml > 0, whereas the small and inverted spheres have negative mean 
curvature Ms < 0 which implies that 

Ml =
1
Rl

> 0 and Ms = −
1
Rs

< 0 . (14)  

Comparison with the general solution in Eqs. (7) and (8) now leads to 

Ml = Ma and Ms = Mb for m < 0. (15)  

Furthermore, for a membrane shape without self-intersections, the 
radius Rs of the small spheres must satisfy Rs ≤ Rl which implies 

Ma + Mb = Ml + Ms =
1
Rl

−
1
Rs

≤ 0 . (16)  

Using this inequality together with m < 0 in Eq. (9) for the total mem
brane tension Σtot, we conclude that Σtot is again positive. Likewise, it 
also follows from Eq. (10) for the pressure difference ΔP that this dif
ference is positive for m < 0, Ml = Ma > 0, and Ms = Mb < 0. 

Vice versa, if we examine the two solutions Ma and Mb in Eqs. (7) and 
(8) for negative spontaneous curvature m < 0, positive total membrane 
tension, Σtot > 0, and positive pressure difference, ΔP > 0, we obtain 
Ma > 0 from Eq. (7) and Mb < 0 from Eq. (8). Thus, we conclude that a 
negative spontaneous curvature leads to multispherical shapes with one 
large sphere of positive mean curvature Ml = Ma > 0 and a variable 
number of small, inverted spheres with negative mean curvatures 
Ms = Mb < 0. In addition, both the large sphere and the small, inverted 
spheres experience a positive total tension Σtot > 0 and a positive pres
sure differene ΔP = Pin − Pex > 0. 

4.2. Digression: constant-mean-curvature surfaces 

As mentioned, multispheres consisting of N* equally sized spheres, 
see Fig. 8, represent constant-mean-curvature (CMC) surfaces with mean 
curvature M = M* as in Eq. (12). Constant-mean-curvature (CMC) sur
faces have been studied in differential geometry for a long time, 
generalizing the concept of minimal surfaces with constant mean cur
vature M = 0. The classic example for CMC surfaces are soap films and 
soap bubbles, the shape of which is governed by the Laplace equation 

ΔP = Pin − Pex = 2ΣintM (17)  

with the interfacial tension Σint. The Laplace equation is linear in the 
mean curvature M and determines the shape of interfaces exposed to the 
pressure difference ΔP between the interior and the exterior compart
ment. This equation follows from the first variation of the shape 
functional 

Fint = − ΔP V + ΣintA , (18)  

which has the same form as the first two terms of the shape functional 
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for membranes in Eq. (4). However, the second term now represents the 
interfacial free energy which depends on the interfacial tension Σint. The 
latter tension is a material parameter which must be postive as required 
by the thermodynamic stability of liquid- liquid interfaces. In contrast, 
the mechanical tension Σ in Eq. (4) depends on the geometry of the 
membrane and can attain both positive and negative values corre
sponding to stretched and compressed membranes. 

For ΔP = 0, the Laplace equation (17) describes a minimal surface 
with M = 0. For a long time, the only examples for freely suspended 
CMC surfaces with M ∕= 0 were provided by the unduloids of Delaunay 
[53], which provide a one-parameter family of tubular shapes that 
interpolate smoothly between multispherical tubes consisting of equally 
sized (and punctured) spheres and cylindrical tubes. More recently, 
additional CMC surfaces have been constructed by pertubing a cluster of 
identical spheres that touch each other [54–58]. One example are tri
unduloids [57,58] that consist of three unduloidal arms connected by a 
central core. 

In the research field of CMC surfaces, the physical system typically 
used to motivate these surfaces are the shapes of soap films and liquid 
droplets. However, when the initial cluster of identical and touching 
spheres is viewed as a cluster of liquid droplets, the resulting CMC 
surface is not stable. Indeed, the cluster will either fall apart and then 
form many small droplets or it will coalesce into one large droplet that 
will eventually attain the shape of a single sphere. However, when the 
initial cluster of droplets is enclosed by a membrane, this membrane can 
lead to a stable multispherical shape as considered here. 

4.3. Vesicle shapes with one constant mean curvature 

To reveal the general relationship between CMC surfaces with one 
constant mean curvature and membrane shapes, we start from the first 
variation of the shape functional F in Eq. (4) which leads to the 
Euler–Lagrange equation [59] 

ΔP = 2 Σ M − 2κ∇2
LBM − 4κ[M − m][M(M + m) − G] (19)  

with the Laplace-Beltrami operator ∇2
LB and the (local) Gaussian cur

vature G. The Laplace-Beltrami term vanishes for constant values of the 
mean curvature M. In fact, for constant M, all terms in Eq. (19) become 
constant as well, apart from the last term proportional to the Gaussian 
curvature. Indeed, the Gaussian curvature G can still vary along the 
surface even for constant M. One example for such a spatial variation of 
G is provided by unduloids [60]. However, when we choose the constant 
mean curvature M to be equal to the spontaneous curvature m, we arrive 
at the simplified shape equation 

ΔP = 2 Σ M = 2Σm with M = m. (20)  

Therefore, we conclude that a CMC surface with constant mean curva
ture M = m satisfies the general Euler-Lagrange equation (19) of the 
spontaneous curvature model. Multispherical shapes with M = M* = m 
provide a special example for this general property. In the morphology 
diagram to be discussed further below, these CMC shapes correspond to 
special corner points of the stability regimes for (Nl + Ns)-multispheres. 

A CMC surface with M = m has zero bending energy Ebe as follows 
from the form of this energy in Eq. (2). Because the bending energy 
density 2κ(M − m)2 cannot be negative, a membrane that forms a CMC 
surface with M = m and Ebe = 0 has the lowest possible bending energy 
of all possible shapes. 

Red blood cells sometimes form thin tube-like protrusions or myelin 
forms [61], which have been compared to unduloids with M = m [62]. It 
should be noted, however, that the theoretical study in Ref. [62] did not 
include multispherical tubes as considered here because of the 
small-scale cutoff as provided by the bilayer thickness for the radius of 
the membrane neck. This issue will be addressed in the next section 
when we discuss the shape of membrane necks on the nanoscale. 

Tubular membrane shapes that resemble unduloids have also been 

observed in the nonequilibrium context of the pearling instability [63]. 
The theories used to describe this instability were first based on the 
assumption of zero spontaneous curvature [64] and were later extended 
to nonzero values of the spontaneous curvature [65]. The experimen
tally observed tubes reported in Refs. [63] and [65] developed pearls or 
bulges that moved along the tubes or underwent complex relaxation 
processes, directly demonstrating the nonequilibrium character of these 
tubes. On the other hand, one tube segment displayed in Fig. 5 of Ref 
[63] looks like a multispherical tube consisting of alternating large and 
small spheres, which represents a possible (meta)stable shape as follows 
from the theory described here. Thus, it is conceivable that the pearling 
instability can be used to generate stable multispherical tubes but 
whether such an approach is experimentally feasible remains to be seen. 

5. Local properties of membrane necks 

As explained before, the spheres in Figs. 1 and 2 are punctured 
spheres with their punctures being connected by closed membrane 
necks. On the nanoscale, the outer diameter of a closed neck is about 8 to 
10 nm, corresponding to the thickness of two adjacent lipid bilayers. 
Such a nanoscopic diameter cannot be resolved by conventional optical 
microscopy. Therefore, the fine structure of the necks cannot be detected 
in the optical images of Figs. 1 and 2. 

Closed necks were first identified theoretically in the context of limit 
shapes as obtained from numerical solutions for axially symmetric 
shapes [52]. These limit shapes are characterized by shape contours that 
develop a point-like kink at which the curvature is ill-defined. Limit 
shapes with one neck have also frequently been observed in experi
mental studies. One example is provided in Fig. 7 which displays the 
time-dependent shape transformation of a pear-shaped vesicle into a 
two-sphere vesicle with a closed membrane neck. In this example, the 
neck closure process was induced by osmotic deflation, i.e., by 
increasing the sugar concentration and thus the osmotic pressure in the 
exterior solution, which leads to a reduction of the vesicle volume. In 
addition to limit shapes that originate from the closure of membrane 
necks as in Fig. 7, another type of limit shape is caused, for positive 
spontaneous curvature, by the limited range of volumes for which the 
multispherical geometry is possible. 

5.1. Mean curvature of closed necks 

Consider two punctured spheres with mean curvatures Ma and Mb. 
When these two spheres are connected by a closed neck, this neck can be 
characterized by the (effective) mean curvature Mne which is defined by 

Mne ≡ Mab ≡
1
2
(Ma + Mb) =

1
2

(
1
Ra

±
1
Rb

)

. (21)  

This definition will be used both for necks between large and small 
spheres with a = l and b = s as well as for two identical spheres with 
a = b = l or a = b = s or a = b =*, where the last case applies to the necks 
of multispheres consisting of equally sized spheres. 

Closed membrane necks look quite different when we view them 
with nanoscale and with micron scale resolution. These two different 
views are displayed in Fig. 10. In panels (a) and (b) of this figure, we see 
a closed membrane neck at the nanoscale, as observed in molecular 
dynamics simulations. The lipid bilayer has a thickness of about 4 nm 
and forms a neck with an hourglass-like shape. The neck is axisymmetric 
and has a circular waistline. For a closed neck, the outer radius of this 
waisline is equal to twice the bilayer thickness whereas the inner radius 
vanishes. For the examples shown in Fig. 10a,b the vesicle size is about 
36 nm, which is the diameter of the spherical vesicle that we would 
obtain from the dumbbell-shaped vesicle by osmotic inflation. Inspec
tion of the simulation snapshots shows that the hourglass-shaped neck is 
highly curved in the sense that its contour curvature is large and 
negative. 
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At the micron scale, the view of the membrane neck as obtained by 
optical microscopy is quite different, see panels (c) and (d) in Fig. 10. 
Indeed, when viewed with optical microsopy, the hourglass-shaped 
membrane segment is no longer visible but is replaced by the touching 
point of the two spheres connected by the neck. Thus, one might view 
the point-like neck as a direct consequence of the limited optical reso
lution. It turns out, however, that this point-like neck correctly captures 
two important aspects of the neck. First, during neck closure, the two 
principal curvatures diverge but the mean curvature attains a finite 
limit. Second, this mean curvature of the neck is directly related to the 
curvature radii of the two adjacent membrane segments which can be 
obtained from the optical images. 

5.2. Closure of hourglass-shaped neck 

We will now discuss the closure of the hour-glass shape in more 
detail. In Fig. 10a, the waistline (wl) of the hourglass-shaped neck forms 
a circle with radius Rne. Along this waistline, the neck is characterized by 
two principal curvatures, the negative contour curvature C1,wl < 0 
perpendicular to the waistline and the positive principal curvature C2, 

wl = 1/Rne > 0 parallel to the waistline. When the neck closes, the neck 
radius goes to zero and the principal curvature C2,wl diverges. However, 
the mean curvature 

Mwl =
1
2
(C1,wl + C2,wl)

remains finite and satisfies the asymptotic equality 

Mwl ≈ Mne ≡
1
2
(Ma + Mb) (22)  

in the limit of small Rne [66], with the mean curvature Mne of the closed 
neck being determined by the mean curvatures Ma and Mb of the two 
membrane segments adjacent to the neck. Thus, as the neck closes, the 
positive singular contribution from the second principal curvature C2, 

wl = 1/Rne > 0 is cancelled by another negative contribution arising 
from the contour curvature C1,wl, a cancellation that corresponds to the 
singular shape of a catenoid with vanishing neck radius. The remaining 
regular neck curvature Mne may be positive or negative depending on 
the two mean curvatures, Ma and Mb, of the adjacent membrane seg
ments. When these membrane segments are provided by two punctured 
spheres, the neck curvature in Eq. (22) can be expressed in terms of the 
sphere radii, leading back to the neck curvature of multispherical shapes 
as described by Eq. (21). 

5.3. Curvature and stability of interior necks 

Inspection of Fig. 1 for positive spontaneous curvature shows that all 
membrane necks are interior necks in the sense that they provide con
nections between two interior compartments, as schematically shown in 
Fig. 11a. Further inspection of Fig. 1 also reveals that a single multi
sphere can involve different types of necks. One example is provided by 
the (1 + 2)-multisphere in Fig. 1b which involves one ls neck between 
the large sphere and one of the small spheres as well as one ss neck 
between the two small spheres. The latter shape is also displayed in 
Fig. 11b where the two different types of necks are labeled explicitly. In 
addition, an ll neck connecting two large spheres is also possible, for an 
example see Fig. 1h. 

Fig. 10. Closed membrane necks viewed on nano and micron scales: (a,b) Two examples for the hourglass-like shape of closed necks on the nanoscale where we can 
see the molecular bilayers. Both exterior solutions contain small solutes such as simple sugars (orange) [28]: a large solute concentration for good solvent conditions 
in (a) and a small concentration for poor solvent conditions in (b); and (c,d) Optical images of giant two-sphere vesicles which are connected by a closed membrane 
neck that is not directly visible. Scale bars: 10 μm in (c) and 5 μm in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 11. Interior necks of multispherical 
shapes formed by membranes with positive 
spontaneous curvature, m > 0: (a) Interior 
membrane neck (red arrow) which connects 
two interior aqueous compartments (blue); 
and (b) A (1 + 2)-multisphere consisting of 
one large and two small spheres connected 
by two types of interior necks (two red ar
rows), one ls neck between the large and one 
of the small spheres, and one ss neck be
tween the two small spheres. All (punctured) 
spheres in (a) and (b) have positive mean 
curvature. For m > 0, two large spheres can 
also be connected by an ll neck as in Fig. 1h. 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the web version of this article.)   
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5.3.1. Mean curvature of interior necks 
The three types of necks, which can be formed for positive sponta

neous curvature, are governed by three different neck curvatures. An ss 
neck has the curvature 

Mss ≡
1
2
(Ms + Ms) =

1
Rs

, (23)  

the curvature of an ls neck is equal to 

Mls ≡
1
2
(Ml + Ms) =

1
2

(
1
Rl

+
1
Rs

)

, (24)  

and the curvature of an ll neck has the form 

Mll ≡
1
2
(Ml + Ml) =

1
Rl

. (25)  

By definition, the size of a small sphere is smaller than or equal to the 
size of a large sphere, that is, Rs ≤ Rl. As a consequence, the three 
possible curvatures of interior necks satisfy the inequalities 

0 < Mll ≤ Mls ≤ Mss for m > 0. (26)  

5.3.2. Stability relations for interior necks 
Interior necks as in Fig. 11 are stably closed provided the sponta

neous curvature m is positive and sufficiently large. More precisely, a 
closed interior neck with mean curvature Mne = Mab is stable if the 
spontaneous curvature m exceeds the neck curvature, i.e., if 

m ≥ Mab =
1
2

(
1
Ra

+
1
Rb

)

(stability of interior neck), (27)  

as follows from Eq. (37) further below. The equality m = Mab describes 
the closure of the neck which opens up for m < Mab. For giant vesicles, 
the neck curvature can be directly obtained from the microscopy images 
of the multispherical vesicles as in Figs. 1, 7, and 8, which provides a 
simple and useful approach to estimate the spontaneous curvature m 
experimentally [13,40]. 

The stability relation in Eq. (27) applies to all three types of necks 
with Ra = Rl or Ra = Rs and Rb = Rl or Rb = Rs. The corresponding neck 
curvatures Mll, Mls, and Mss satisfy the inequalities 0 < Mll ≤ Mls ≤ Mss. 
As a consequence, all necks are closed if the spontaneous curvature is 
sufficiently large and satisfies 

0 < Mll ≤ Mls ≤ Mss ≤ m (all interior necks stably closed) (28)  

whereas all necks are unstable against neck opening for 

0 < m < Mll ≤ Mls ≤ Mss (all interior necks open up). (29)  

5.4. Curvature and stability of exterior necks 

Some multispheres as observed for negative spontaneous curvature 
are displayed in Fig. 2. All membrane necks of these multispheres are 
exterior necks in the sense that they connect two exterior compartments, 
as schematically shown in Fig. 12a. Further inspection of Fig. 2 also 
reveals that a single multisphere can involve only two different types of 
necks. One example is provided by the (1 + 2)-sphere in Fig. 2b which 
involves one ls neck between the large sphere and one of the small, 
inverted spheres as well as one ss neck between the two small, inverted 
spheres. The latter shape is also displayed in Fig. 12b where the two 
different types of necks are labeled explicitly. In contrast to multispheres 
with positive spontaneous curvature, ll necks connecting two large 
spheres with positive mean curvature are not possible for negative 
spontaneous curvature. 

5.4.1. Effective mean curvature of exterior necks 
The two types of necks in Fig. 12b are governed by two different neck 

curvatures. An ss neck between two small, inverted spheres has the 
negative curvature 

Mss ≡
1
2
(Ms + Ms) = −

1
Rs

< 0 . (30)  

Likewise, the curvature of an ls neck is given by 

Mls ≡
1
2
(Ml + Ms) =

1
2

(
1
Rl

−
1
Rs

)

≤ 0 . (31)  

The case Mls = 0 applies to the limiting case with Rs = Rl corresponding 
to a small inverted sphere that has the same radius as the large sphere. 
Furthermore, because the radius Rs of the small spheres satisfies Rs ≤ Rl, 
the curvature of the ss and ls necks satisfy the inequalities 

Mss ≤ Mls ≤ 0 for m < 0. (32)  

5.4.2. Stability relations for exterior necks 
Exterior necks as in Fig. 12 are stably closed if the spontaneous 

curvature m is negative with a sufficiently large absolute value |m|. 
Indeed, the closed neck condition now has the form 

m ≤ Mab =
1
2

(
1
Ra

−
1
Rb

)

(stability of exterior neck), (33)  

as follows from Eq. (37) further below. Because the neck curvature Mab is 
always negative for exterior necks, the inequality in Eq. (33) can only be 
fulfilled if the spontaneous curvature m is negative as well. The equality 
m = Mab again describes the closure of the neck which now opens up for 
Mab < m. 

The stability relation in Eq. (33) applies to both ss and ls necks. The 
corresponding neck curvatures Mss, and Mls now satisfy the inequalities 

Fig. 12. Exterior necks of multispherical 
shapes formed by membranes with negative 
spontaneous curvature: (a) Exterior mem
brane neck (red arrow) which connects two 
exterior aqueous compartments (white); and 
(b) A (1 + 2)-multisphere consisting of one 
large and two small spheres connected by 
two types of exterior necks (two red arrows), 
an ls neck between the large and one of the 
small, inverted spheres, and an ss neck be
tween the two small, inverted spheres.The 
large (punctured) sphere has positive mean 
curvature whereas the two small spheres 
have negative mean curvature. (For inter
pretation of the references to color in this 
figure legend, the reader is referred to the 
web version of this article.)   
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Mss ≤ Mls ≤ 0. As a consequence, both types of necks are closed if the 
negative spontaneous curvature satisfies 

m ≤ Mss ≤ Mls ≤ 0 (all exterior necks stably closed) (34)  

whereas all necks are unstable against neck opening for 

Mss ≤ Mls ≤ m ≤ 0 (all exterior necks open up). (35)  

5.5. No multispheres with both interior and exterior necks 

The stability conditions for closed necks imply that a stable multi
spherical shape cannot involve both interior and exterior necks. Indeed, 
the stability relations for interior necks is described by Eq. (28) which 
has the form 

0 < Mll ≤ Mls ≤ Mss ≤ m  

whereas the stability relations for exterior necks are given by 

m ≤ Mss ≤ Mls ≤ 0  

according to Eq. (34). Therefore, the same multispherical shape cannot 
involve both stable interior necks, for which the spontaneous curvature 
m > 0, and stable exterior necks, for which m ≤ 0. 

In particular, no multispheres can be formed with both a stable 
interior ll neck and a stable exterior ls neck because the corresponding 
stability conditions 

0 < Mll ≤ m and m ≤ Mls ≤ 0 (36)  

cannot be fulfilled for any value of the spontaneous curvature m. Note 
that these restrictions apply to membranes with a laterally uniform 
composition and thus laterally uniform elastic properties as considered 
here. If the membrane contains different intramembrane domains, cor
responding to coexisting lipid phases, stable multispheres with both 
exterior and interior necks become possible. 

5.6. Curvature-induced constriction forces 

The stability relations for closed membrane necks can be derived by 
starting from a dumbbell shape with an open but narrow neck and 
parametrizing this shape by a piece-wise constant-mean-curvature sur
face. One such parametrization consists of two hemispheres connected 
by two unduloid segments that form a narrow neck of radius Rne 
[67–69]. The dumbbell with a closed neck is obtained in the limit of zero 
neck radius Rne. The bending energy Ebe of the dumbbell has the form 
[16,17] 

Ebe(Rne) ≈ Ebe(0) ± 8πκ(m − Mne)Rne (37)  

up to first order in Rne where the plus and minus sign applies to interior 
and exterior necks, respectively. The closed neck is stable if the term 
proportional to the neck radius Rne increases with increasing Rne which 
implies m > Mne > 0 for interior necks and m < Mne < 0 for exterior 
necks. 

The spontaneous curvature generates a constriction force f at the 
membrane neck which can be defined via the relation f = ∂Ebe/∂Rne. 
Using the expression for the bending energy as given by Eq. (37), we 
then obtain the constriction forces [16,17,40] 

f ≈ 8πκ(m − Mne) for interior necks with m > 0 (38)  

and 

f ≈ 8πκ(Mne − m) for exterior necks with m < 0, (39)  

up to first order in the neck radius Rne. It is important to note that the 
constriction force f vanishes for m = Mne, corresponding to the neck 
closure condition, but increases linearly with the difference between the 

spontaneous curvature m and the neck curvature Mne. 
If the constriction force f at the membrane neck becomes sufficently 

large, the neck is cleaved as recently demonstrated for the controlled 
division of giant vesicles [40]. In these experiments, the binding of 
His-tagged proteins to the outer leaflets of the vesicle membranes was 
used to fine-tune the spontaneous curvature m, compare Fig. 6a. The 
spontaneous curvature was controlled by the solution concentration of 
the proteins, which generated a constriction force f that was sufficient to 
divide the vesicles, even though the solution concentration remained in 
the nanomolar regime. 

For a given value of the spontaneous curvature, the constriction force 
f is different for different types of necks. For positive spontaneous cur
vature, the neck curvatures Mls and Mss are positive and ordered ac
cording to Mls < Mss. It then follows from Eq. (38) that the associated 
constriction forces fls and fss fulfill the inequality 

fls ≡ 8πκ(m − Mls) > 8πκ(m − Mss) ≡ fss (m > 0). (40)  

For negative spontaneous curvature, the neck curvatures Mls and Mss are 
negative and ordered according to Mss < Mls which implies |Mls| < |Mss|. 
It then follows from Eq. (39) that the corresponding constriction forces 
fls and fss fulfill the inequality 

fls ≡ 8πκ(Mls − m) > 8πκ(Mss − m) ≡ fss (m < 0). (41)  

Therefore, for both positive and negative spontaneous curvature the 
constriction force at an ls neck exceeds the constriction force at an ss 
neck. 

In the above considerations, we have regarded the effective mean 
curvatures Mne of the necks as basic local variables. However, these neck 
curvatures can be expressed in terms of the radii Rl and Rs of the large 
and small spheres and these radii depend implicitly on the sphere 
numbers Nl and Ns as well as on the overall vesicle geometry. This 
dependence becomes most transparent when we use rescaled radii rl and 
rs as well as the rescaled volume v as defined further below by Eqs. (45) 
and (46). 

6. Different patterns of multispheres 

For a given number of Nl large and Ns small spheres, we can distin
guish different (Nl + Ns)-patterns that differ in the way, in which the 
spheres are mutually connected. One simple example are the two pat
terns of (1 + 2)-multispheres displayed in Fig. 1b and c. A general way to 
identify the different (Nl + Ns)-patterns is by mapping the large spheres 
onto blue vertices, the small spheres onto red vertices, and the mem
brane necks onto edges connecting the corresponding pairs of vertices. 
In this way, the multisphere pattern is mapped onto a graph, the vertices 
of which have two different colors. Patterns are distinct if they are 
mapped onto two-colored graphs that are not isomorphic. 

One should note that the inverse mapping from two-colored graphs 
onto multisphere patterns is subject to the additional constraint that the 
individual spheres of the multisphere should not overlap and that the 
spherical membrane segments should not intersect [17]. Consider, for 
example, a graph consisting of 14 blue vertices, in which one central 
blue vertex is connected to the remaining 13 blue vertices. The corre
sponding (14*)-multisphere pattern would consist of 13 large spheres 
connected to a central large sphere via 13 ll necks, but such a pattern is 
not possible because of the steric hindrance between the 14 large 
spheres. Likewise, we may consider a graph with a central red vertex 
connected to 12 blue vertices but the corresponding (12 + 1)-multi
sphere pattern with 12 ls necks is again impossible. 

In this and the following sections, we will focus on multisphere 
patterns that can be obtained, at least in principle, by reducing the 
volume of a single large sphere with radius Rl equal to the vesicle size 

Rve ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A/(4π)

√
, (42)  
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which is defined in terms of the total area A of the vesicle membrane. 
Experimentally, the vesicle volume can be reduced by osmotic deflation, 
i.e., by increasing the osmotic pressure in the exterior solution. During 
such a deflation process, the area A remains unchanged. Furthermore, 
different (Nl + Ns)-patterns have the same number of large and small 
spheres which implies that they have the same volume. Therefore, in the 
following cartoons, all (Nl + Ns)-patterns are taken to have the same 
area and all patterns for fixed values of Nl and Ns are taken to have the 
same volume. If we increased the volume of any of these patterns by 
osmotic inflation, we would eventually return to the initial single sphere 
of radius Rl = Rve. Furthermore, when mapped onto a two-colored 
graph, all multispheres that can be obtained from a single large sphere 
by volume reduction have a tree-like connectivity, i.e., the corre
sponding graph contains no cycles of vertices and edges. For such 
multispheres, the number of membrane necks is equal to Nl + Ns − 1. On 
the other hand, multispheres that contain cyles of spheres could be 
created by membrane fusion as briefly mentioned at the end. 

The number of possible multisphere patterns increases strongly with 
both Nl and Ns. Counting the number of different patterns for large 
values of Nl and/or Ns is a difficult problem of combinatorics and will not 
be pursued here. Instead, we will illustrate the different patterns for 
relatively small values of both Nl and Ns. However, because of the local 
properties of closed membrane necks as described in the previous sec
tion, the stability of any (Nl + Ns)-pattern depends primarily on the 
presence or absence of ss and ls necks. Therefore, we can still draw 
general conclusions about the stability of any (Nl + Ns)-patterns. It is 
again important to distinguish the patterns for positive from those for 
negative spontaneous curvature, as described in the following two 
subsections. 

6.1. Different patterns for positive spontaneous curvature 

For positive spontaneous curvature, the small and large spheres can 
be connected by ss, ls, and/or ll necks, see Fig. 1. The different necks 
have the mean curvatures Mss, Mls, and Mll, respectively, which are or
dered according to Mll ≤ Mls ≤ Mss. The stability of the whole pattern is 
determined by the least stable neck. We then have to distinguish three 
cases, corresponding to (i) patterns with at least one ss neck, (ii) patterns 
with no ss necks but at least one ls neck, and (iii) patterns with no ss and 
no ls necks. 

If a pattern involves at least one ss neck, the pattern is stable pro
vided the curvature Mss of this neck satisfies the inequality 

Mss =
1
2
(Ms + Ms) =

1
Rs

≤ m . (43)  

One example for this case is provided by the pattern ℘1 in Fig. 13a. 
Likewise, if a pattern has no ss necks but at least one ls neck, it is stable as 
long as the neck curvature Mls is sufficiently small and fulfills the 
inequality 

Mls =
1
2
(Ml + Ms) =

1
2

(
1
Rl

+
1
Rs

)

≤ m . (44)  

One example is the pattern ℘2 in Fig. 13a. Because Mls ≤ Mss, the sta
bility regime of ℘2 is larger than the stability regime of ℘1. These sta
bility regimes can be described in a quantitative manner as will be 
shown further below. 

Fig. 13 displays all possible patterns of (1 + 2)- and (2 + 1)-multi
spheres. In these two simple cases, only two different patterns have to be 
distinguished. All patterns consists of Ntot = 3 spheres and involve only 
two necks, which can be ss, ls, or ll necks, see Fig. 13. Optical images of 
GUVs that form the patterns ℘1 and ℘2 in Fig. 13 are displayed in 
Fig. 1b,c (for different v-values). In Fig. 14, all possible (2 + 2)-patterns 
are depicted. Now, we have to distinguish six different patterns which 
provides a simple example for the increased number of different patterns 
when we increase the sphere numbers Nl and/or Ns. 

For fixed sphere numbers Nl and Ns, the different stability relations 
for the ss, ls, and ll necks lead to three different subsets of the (Nl + Ns)- 
patterns. The first subset is defined by those patterns that involve at least 
one ss neck. The second subset is defined by those patterns that involve 
no ss neck but at least one ls neck. For the (1 + 2)- and (2 + 1)-multi
spheres in Fig. 13, each of these two subsets contains only one pattern. 
For the (2 + 2)-multispheres in Fig. 14, on the other hand, the six 
possible (2 + 2)-patterns form two subsets, each of which consists of 
three different patterns. 

The third subset of patterns is provided by N * = Nl + Ns equally 
sized spheres connected by membrane necks of the same type, denoted 
by **. For N* = 2 and N* = 3, only one such pattern can be formed as 
shown in Fig. 15. For N* ≥ 4, several patterns can be formed that differ 
in their connectivity and their number of junctions. The simplest 
example is provided by N* = 4 with two distinct patterns: one pattern is 
provided by a linear chain of spheres without a junction, the second 
pattern by a branched chain with one three-way junction, see Fig. 15. 
Each (N*)-pattern can be reached, for a given value of N*, from different 
(Nl + Ns)-patterns with Ntot = Nl + Ns = N*. The single (3 *)-pattern, for 
example, can be obtained by deflation of the two (1 + 2)-patterns and by 
deflation of the two (2 + 1)-pattern displayed in Fig. 13. In fact, the (N*)- 
multispheres have the smallest possible volume of all multispheres with 
the same total number of spheres Ntot = N* as will be shown below. 

6.2. Different patterns for negative spontaneous curvature 

For negative spontaneous curvature, the membrane can form stable 
(1 + Ns)-patterns with Ns small spheres enclosed by one large sphere. 
These (1 + Ns)-patterns can involve only ss and ls necks but no ll necks. 
Furthermore, (N*)-patterns with N* = Nl + Ns equally sized spheres are 
no longer possible, apart from the special case of (1 + 1)-multispheres 
consisting of two nested spheres that have the same size. 

Some examples for (1 + Ns)-patterns are displayed in Fig. 16 for 
Ns ≤ 3 and in Fig. 17 for Ns = 4. For all values of Ns, only one pattern, 
which has Ns in-buds connected by ls necks to the large sphere, has no ss 
neck. All other patterns have at least one ss neck. Inspection of Figs. 16 
and 17 shows that the number of (1 + Ns)-patterns with at least one ss 
neck increases strongly with Ns, from only one such pattern for Ns = 2, as 
displayed in Fig. 16, to six such patterns for Ns = 4, see Fig. 17. 

Fig. 13. (a) Two distinct patterns of (1 + 2)-multispheres: The spheres of the pattern ℘1 are connected by one ls and one ss neck whereas the pattern ℘2 with two out- 
buds involves only ls necks. Both patterns have the same vesicle volume (blue) and the same membrane area, but differ in the number of ss and ls necks. The 〈 symbol 
indicates that the stability regime of the ℘1 pattern is reduced compared to the one of the ℘2 pattern; and (b) Two distinct patterns for (2+1)-multispheres with the 
same volume and the same area but different necks. Both in (a) and (b), the large-sphere radius is taken to be two times larger than the small-sphere radius. 
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6.3. Transmutations between different patterns 

The experimental observations revealed that the small spheres are 
rather mobile and can be rearranged by diffusion of the ss necks between 
two small spheres [13]. In this way, a given multisphere pattern can be 
transmuted into another multisphere pattern, built up from the same 
numbers of large and small spheres. Frequent transmutations were 

observed for tubules of small spheres, both for the (1 + Ns)-multispheres 
in Fig. 9 and for the (N *)-multispheres in Fig. 8, which underwent 
transitions between linear and branched tubules. During these transi
tions, one small sphere diffused along another small sphere, corre
sponding to the diffusion of an ss neck, until this neck was transferred 
onto a third small sphere, thereby generating a three-way junction be
tween four small spheres. This mobility of the small spheres provides 

Fig. 14. Six distinct patterns of (2 + 2)-multispheres: For the three patterns in the top row, the least stable neck is provided by the ss neck. In contrast, for the three 
patterns in the bottom row, the ls neck is the least stable one. All six patterns have the same vesicle volume (blue) and the same membrane area. The large-sphere 
radius is taken to be two times larger than the small-sphere radius. The 〈 symbol indicates that the stability regime of the top-row patterns is reduced compared to the 
one of the bottom-row patterns. Optical images of GUVs that form the second pattern in the top row and the first pattern in the bottom row are displayed in Fig. 1f 
and g, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Multisphere patterns of N* = Nl + Ns equally sized spheres for positive spontaneous curvature with N* = 2, 3, and 4: One (2*)-pattern and one (3*)-pattern 
but two (4*)-patterns that differ in their connectivity: one (4*)-pattern corresponds to a linear chain without any junction, the other (4 *)-pattern is provided by a 
branched chain with one three-way junction. All four pattern have the same vesicle volume (blue) and the same membrane area. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. (1 + Ns)-multisphere patterns for negative spontaneous curvature with Ns = 1, 2, and 3: one (1 + 1)-pattern; two (1 + 2)-patterns; and four (1 + 3)-patterns. 
For all values of Ns, only one pattern involves no ss neck. All patterns shown here have the same vesicle volume (blue) and the same membrane area. The large-sphere 
radius is taken to be five times larger than the small-sphere radius. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 17. Seven (1 + 4)-multisphere patterns for negative spontaneous curvature: Only the right-most pattern with four in-buds has no ss neck. Each of the other six 
patterns involves at least one ss neck, which determines their stability. All patterns have the same vesicle volume (blue) and the same membrane area. The large- 
sphere radius is taken to be five times larger than the small-sphere radius. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

R. Lipowsky                                                                                                                                                                                                                                      



Advances in Colloid and Interface Science 301 (2022) 102613

15

strong evidence that the closed membrane necks were not clamped by 
attractive interactions between the adjacent membrane segments. 

The diffusion of a small sphere along a large sphere, corresponding to 
the diffusion of an ls neck, should also occur frequently because this 
diffusion process is not expected to encounter any energy barrier. What 
is less obvious is that a diffusing ls neck can be transferred onto a second 
small sphere which is also connected to the large sphere. Such a transfer 
would change the ls neck into an ss neck which may involve a substantial 
energy barrier. As an example, let us consider the two (1 + 2)-multi
sphere patterns, ℘1 and ℘2, in Fig. 13. The pattern ℘1 on the left involves 
one ls and one ss neck whereas the pattern ℘2 on the right involves two ls 
necks. Both patterns have been observed for giant vesicles, see the op
tical images in Fig. 1b and c. To transmute the ℘2 pattern into the ℘1 
pattern, one ls neck must first diffuse over the membrane of the large 
sphere until the two small spheres are close together. In a second step, 
the ls neck can then be transferred onto the second small sphere, thereby 
transforming the ls neck into an ss neck. 

As indicated by the 〈 symbol in the (1 + 2)-box of Fig. 13, the sta
bility regime for the ℘2 pattern is larger than the one for the ℘1 pattern. 
Therefore, if ℘1 is transmuted to ℘2 for fixed shape parameters, the 
resulting ℘2 pattern should be stable as well. In contrast, if ℘2 is 
transmuted to ℘1, the resulting pattern ℘1 need not to be stable and the 
least stable neck will open up if the initial ℘2 pattern was located outside 
of the stability regime for ℘1. 

6.4. Junctions of multispherical tubules 

The multispherical tubules in Fig. 9 and in most panels of Fig. 8 
contain multispherical junctions, corresponding to individual spheres 
that are connected to more than two neighboring spheres. A detailed 
analysis of the corresponding time-lapse movies [13] shows that most of 
these junctions are three-way junctions, with some exceptions, such as 
the junction in Fig. 8c which represents a four-way junction. 

Stable three-way junctions are typical for the nanotubular network of 
the endoplasmic reticulum whereas stable four-way junctions seem to be 
quite rare [70–74] As far as membrane elasticity is concerned, there are 
two main differences between the multispherical tubules formed by 
giant vesicles as discussed here and the membrane nanotubes of the 
reticular networks. First, the tubules displayed in Figs. 9 and 8 have a 
diameter of about two micrometers whereas the nanotubes of the 
reticular networks have a diameter of about 50 to 100 nm, as estimated 
from electron microscopy images. Therefore, the membranes of the 
reticular networks have a much larger spontaneous curvature. Second, 
the tubules formed by the giant vesicles undergo strong bending fluc
tuations in response to thermal noise. In contrast, the tubular segments 
between two junctions of the reticular networks appear to be rather 
straight, indicating the presence of a substantial membrane tension. 

To get some insight into this difference in the tubular morphology, 
let us consider a three-way junction as in Fig. 9a and imagine that it 
involves a much larger number of small spheres. The junction contains a 
specific small sphere, which forms the junctional center. This center is 
linked via three ss necks to three linear tubules or junctional arms. Two 
of these arms have a free end while one arm is connected to the large 
sphere via an ls neck. The free ends undergo strong thermal fluctuations 
whereas the ls end is constrained to move on the surface of the large 
sphere. We will now perform some thought experiments with this 
junction. 

First, we aspirate the large sphere by a micropipette and grap one of 
the free ends by a laser trap to exert a pulling force on it. We will then 
encounter several distinct force regimes. First, we will straighten two 
arms of the junction until the pulled free end becomes colinear with the 
junctional center and the ls end. At this point, the third junctional arm 
will still undergo strong thermal fluctuations. When we further increase 
the pulling force, the small spheres of this third arm will be drawn into 
the straightened tube segment until all small spheres are part of this 
segment. When we continue to increase the pulling force even further, 

we may start to open up the closed necks between the small spheres. As a 
result, the multispherical tubule will be transformed into an unduloidal 
or cylindrical tubule [75]. Because of the constriction force f as given by 
Eq. (38), which acts to compress the closed neck, the opening of the 
closed membrane necks is expected to require a pulling force that ex
ceeds a certain threshold value. 

Alternatively, we may use two laser traps to exert pulling forces on 
the free ends of the three-way junction. These two pulling forces will act 
to straighten all three arms simultaneously. At the same time, the 
applied forces will be transmitted to the junctional center and the three 
arms will exert three forces onto this center. These three forces will 
initially be unbalanced and add up to a nonzero force acting on the 
center. The junction will then start to move until the three forces acting 
on the center add up to zero force. This force balance implies that the 
junctional arms form contact angles of 360/3 =120 degrees at the 
junctional center, see Fig. 18a. The latter contact angle is also observed 
for the reticular networks of nanotubes. 

Now, let us extend these considerations to a four-way junction, again 
consisting of a large number of spheres. The junction is assumed to 
experience a significant membrane tension which leads to four straight 
arms of the junction. Force balance now implies that the contact angle 
between two neighboring arms is equal to 360/4 =90 degrees as in 
Fig. 18b. The membrane tension contributes an elastic energy that is 
proportional to the total length of the junctional arms. Because the 
membrane tubules of the four-way junction are fluid, this junction can 
be divided up into two three-way junctions, each of which with contact 
angles of 120 degrees, see Fig. 18c. It turns out that the total length of 
the tubules with two three-way junctions is smaller than the total length 
of the four-way junction which implies that the mechanical membrane 
tension and the membrane’s elastic energy are reduced when we 
transform the four-way junction into two three-way junctions. This 
transformation is intimately related to Steiner minimal trees [76–79] as 
studied in mathematical graph theory. 

6.5. Digression: Steiner minimal trees 

In general, Steiner minimal trees are networks of vertices and edges 
which are connected in such a way that the total length of the edges 
attains the smallest possible value. The analysis of such networks has a 
long history [80]. The classic example are planar networks in two di
mensions, built up from vertices that are connected by straight line 
segments. The corresponding Steiner minimal trees are relevant for 
many real-life applications such as the planning of road networks, canal 
systems, and power grids as well as the design of electric circuits and 
microchips. 

Thus, consider N points or ‘terminals’ in the plane and look for a 
network of minimal total length interconnecting these terminals. If we 
impose the restriction that these terminals should be directly connected 
by straight line segments, we obtain a minimal spanning tree. On the 
other hand, if we relax this restriction and allow n additional points, so- 
called Steiner points, to be added to the network, the resulting network 
of N + n vertices represents a Steiner tree. When the number n of Steiner 
points is varied, the Steiner tree with the shortest length defines a 
Steiner minimal tree. In a Steiner minimal tree, all Steiner points are 
connected to three other points by three edges and these three edges 
form mutual contact angles of 120◦ [76,79]. 

The search for Steiner minimal trees in two dimensions can be per
formed in the lab using soap films between two parallel glass plates that 
are separated by immobile posts between the plates [77,81,82]. The 
confinement between the plates forces the soap film to form a 
two-dimensional network. The terminals are provided by the posts be
tween the plates. The fluidity of the soap film allows this film to split up, 
thereby creating additional Steiner points. The equilibrium state of the 
soap film corresponds to a minimum of its area and, thus, of its inter
facial free energy, both of which are proportional to the length of the 
network. 
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In practise, the soap film method is only feasible for relatively small 
numbers of terminals. For larger terminal numbers, the search for 
Steiner minimal trees requires numerical algorithms by which one can 
generate and compare large numbers of different Steiner trees. Even 
though this problem is computationally complex and known to be 
𝒩℘-hard [79,83], effective algorithms have been developed to find 
Steiner minimal trees in two dimensions starting from minimal spanning 
trees [84]. The problem of finding Steiner minimal trees in three di
mensions has also been addressed, in particular when the terminals form 
the vertices of simple polyhedra [76,78,85]. For the latter geometries, 
the Steiner points have the same geometric properties as in two di
mensions, i.e., they are connected to three other points and the corre
sponding edges form mutual contact angles of 120◦. 

7. Geometry of multispheres 

As explained previously, GUV membranes with positive spontaneous 
curvature form (Nl + Ns)-multispheres, consisting of Nl large spheres 
with radius Rl and Ns small spheres with radius Rs, see Fig. 1. In contrast, 
GUV membranes with negative spontaneous curvature form 1 + Ns 
multispheres, consisting of one large sphere with radius Rl and Ns small, 
inverted spheres with radius Rs, see Fig. 2. In both cases, the geometry of 
the multispheres is described by two relatively simple geometric re
lations that will be examined in the present section. In contrast to the 
local properties discussed in Sections 4 and 5, the two geometric re
lations are global in the sense that they depend explicitly on the sphere 
numbers Nl and Ns. 

7.1. Dimensionless shape parameters 

It will be useful to perform the following analysis using dimension
less quantities. The vesicle size Rve =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A/(4π)

√
as defined in Eq. (42) is 

taken to provide the basic length scale and all radii will be measured in 
units of Rve. We then obtain the dimensionless radii 

rl ≡
Rl

Rve
and rs ≡

Rs

Rve
(45)  

for the large and small spheres. 
Another important quantity that will enter the geometric relations is 

the rescaled volume v, which is defined by dividing the vesicle volume V 
by the volume of a sphere with radius Rve, i.e., by 

v ≡
V

4π
3 R3

ve
with 0 < v ≤ 1. (46)  

For fixed membrane area A and thus fixed vesicle size Rve, the lower 
boundary value v = 0 corresponds to a vesicle with vanishing volume 
whereas the upper boundary value v = 1 corresponds to a single large 
sphere. 

7.2. Multisphere geometry for positive spontaneous curvature 

A multisphere consisting of Nl large spheres of radius Rl and Ns small 
spheres of radius Rs has the surface area 

A = 4π
(
NlR2

l + NsR2
s

)
(47)  

and the volume 

V =
4π
3
(
NlR3

l + NsR3
s

)
. (48)  

When expressed in terms of the dimensionless parameters, the area 
relation in Eq. (47) becomes 

Nlr2
l + Nsr2

s = 1 (49)  

and the volume relation in Eq. (48) attains the simple form 

Nlr3
l + Nsr3

s = v , (50)  

with the rescaled volume v as defined in Eq. (46). Therefore, for m > 0, 
we obtain two equations for the two variables rl and rs, which depend on 
three parameters as provided by the large-sphere number Nl, the small- 
sphere number Ns, and the rescaled volume v. 

7.2.1. Multispheres consisting of equally sized spheres 
In order to understand the possible solutions of the two geometric 

relationships in Eqs. (49) and (50), we first consider the limiting case of 
Nl + Ns = N* equally sized spheres with rescaled radius rl = rs ≡ r*. The 
area relation in Eq. (49) then simplifies and becomes 

(Nl + Ns)r2
* = 1 . (51)  

This equation has one positive and one negative root for r*. To be 
physically meaningful, the radius r* must we positive. Thus, we discard 
the negative root and obtain the single solution 

r* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ > 0 . (52)  

Furthermore, for rl = rs = r*, the volume relation in Eq. (50) implies 

v = (Nl + Ns)r3
* =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ ≡ v* (53)  

where the second equality is obtained by inserting the explicit expres
sion r* = 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
. As shown further below, the volume v = v* cor

responds to a boundary minimum of the volume v as a function of the 
radius rs. 

The geometric relations in Eqs. (49) and (50) lead to a single solution 
for Nl + Ns equally sized spheres with radius r = r* and volume v = v* as 
given by Eqs. (52) and (53). As a consequence, the condition that the 
small-sphere radius rs should not exceed the large-sphere radius rl can 

Fig. 18. Junctions of membrane tubules. 
Because the tubules are fluid, force balance 
at such a junction implies that all contact 
angles between neighboring tubules have 
the same value: (a) Three-way junction with 
all contact angles equal to 120◦; (b) Four- 
way junction with all contact angles equal 
to 90◦; and (c) Two three-way junctions with 
all contact angles equal to 120◦. The total 
length of the tubules in (b) is somewhat 
larger than the total length of the tubules in 
(c), which implies a reduction in the elastic 
membrane energy when we transform the 
four-way junction in (b) into two three-way 
junctions. as in (c).   
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now be divided up into two separate conditions as provided by 

0 ≤ rs ≤ r* for the small-scale radius rs (54)  

and by 

r* ≤ rl ≤ 1 for the large-scale radius rl. (55)  

7.2.2. Large-sphere radius as a function of small-sphere radius 
In the following, we will regard the small-sphere radius rs as the 

independent variable which implies that the large-sphere radius rl be
comes a function of rs. Indeed, the area relation in Eq. (49) then leads to 

rl =
1̅̅
̅̅̅

Nl
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − Nsr2
s

√

≡ g(rs) (56)  

where the positive root of r2
l was chosen in order to implement the 

physical requirement that the radius rl must be positive. Furthermore, 
the discriminant under the square root in Eq. (56) is positive or zero for 
all rs-values within the range 0 ≤ rs ≤ r* as given by Eq. (54) because 
r* ≤ 1/Ns. 

The boundary values of g(rs) as obtained for rs = 0 and rs = r* are 

rl = g(0) =
1̅̅
̅̅̅

Nl
√ for rs = 0 (57)  

and 

rl = g(r*) =
1̅̅
̅̅̅

Nl
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − Nsr2
*

√

= r* for rs = r* . (58)  

7.2.3. Dependence of volume on small-sphere radius 
When we insert the expression for rl = g(rs) as given by Eq. (56) into 

the volume relation in Eq. (48), we obtain the functional relationship 

v = h(rs) (59)  

with the volume function 

h(rs) ≡
1̅̅
̅̅̅

Nl
√

(
1 − Nsr2

s

)3/2
+ Nsr3

s , (60)  

which represents the volume v as an algebraic function of the small- 
sphere radius rs. The volume function h(rs) is again defined for the 
whole range of possible rs-values as given by 0 ≤ rs ≤ r* and has the 
boundary values 

v = h(0) =
1̅̅
̅̅̅

Nl
√ for rs = 0 (61)  

and 

v = h(r*) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ = v* for rs = r* . (62)  

7.2.4. Local extrema of volume function 
Next, we determine those values of rs for which the volume function 

h(rs) attains a local extremum, i.e., at which the first derivative of h with 
respect to rs vanishes. Using the explicit expression for the volume 
function h as given by Equ (60), this derivative becomes 

dh
drs

= 3Nsrs(rs − rl) with rl = g(rs) (63)  

as in Eq. (56). This expression vanishes for two different values of rs. 
First, it vanishes for 

rs = 0 with v = h(rs = 0) =
1̅̅
̅̅̅

Nl
√ (64)  

and the large-sphere radius rl = 1/
̅̅̅̅̅
Nl

√
. The volume function h(rs) at

tains a local maximum at rs = 0 because 

d2h
dr2

s
|rs=0 = −

3Ns
̅̅̅̅̅
Nl

√ < 0 . (65)  

Second, the first derivative of the volume function h also vanishes for 

rl = rs = r* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ , (66)  

corresponding to the radius r* of Nl + Ns equally sized spheres. At rs = r*, 
the volume function h(rs) attains a local minimum because 

d2h
dr2

s
|rs=r*

=
3Ns

Nl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
> 0 . (67)  

7.2.5. General features of volume function 
As shown above, the volume function v = h(rs) has only two local 

extrema, a local maximum at rs = 0, where it attains the value v = h(0)
= 1/

̅̅̅̅̅
Nl

√
as in Eq. (61), and a local minimum at rs = r* with v = h(r*) =

1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
as in Eq. (62). As a consequence, the function v = h(rs) de

creases monotonically from its maximum at rs = 0 to its minimum at 
rs = r*. 

The dependence of the volume v on the small-sphere radius rs is 
displayed in Fig. 19 for (Nl + Ns)-multispheres with Nl = 1 as well as 
Ns = 2, 3, and 15 small spheres. Because these multispheres involve only 
one large sphere, all volume functions have the maximal value v(0) = 1/
̅̅̅̅̅
Nl

√
= 1. Note that the range of possible v-values, as given by v* ≤ v ≤ 1 

increases with the small-sphere number Ns because v* = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√

decreases with increasing Ns. Optical images for the (1 + Ns)-multi
spheres chosen in Fig. 19 are displayed in Fig. 1b,e and in Fig. 9b. 

For (Nl + Ns)-multispheres with Nl ≥ 2, the volume function attains 
the maximal value v = h(0) = 1/

̅̅̅̅̅
Nl

√
≤ 1/

̅̅̅
2

√
and then decreases 

monotonically towards its minimal value v* = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
. 

7.2.6. Volume regimes for positive spontaneous curvature 
In the general case of (Nl + Ns)-multispheres, we need to distinguish 

up to four different volume regimes. First, the formation of multispheres 
consisting of a total number of Ntot = Nl + Ns spheres is impossible for 
small values of v with 

v < v* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ =
1̅̅̅
̅̅̅̅

Ntot
√ (no multispheres). (68)  

This conclusion is valid irrespective of the values of the small- and large- 
sphere radii. Second, the degenerate case of Ntot = N* equally sized 
spheres is only possible for the volume 

v = v* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ =
1̅̅
̅̅̅̅

N*
√ (equally sized spheres), (69)  

corresponding to the smallest possible volume of all (Nl + Ns)-multi
spheres with Nl + Ns = N*, see the examples in Fig. 19. It is interesting to 
note that the minimal volume v* decreases with increasing total sphere 
number Nl + Ns. 

Third, the formation of an (Nl + Ns)-multisphere is possible if the 
volume lies within the range 

v* < v ≤
1̅̅
̅̅̅

Nl
√ (multisphere with rs < rl), (70)  

where the maximal volume v = 1/
̅̅̅̅̅
Nl

√
is obtained for the small-sphere 

radius rs = 0. Fourth, no multisphere can be formed for the volume range 

1̅̅
̅̅̅

Nl
√ < v ≤ 1 (no multispheres). (71)  

For multispheres with Nl = 1 as considered in Fig. 19, the latter volume 
regime is absent and the third regime as described by Eq. (70) extends up 
to v = 1. 
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7.3. Multisphere geometry for negative spontaneous curvature 

For negative spontaneous curvature, m < 0, the geometric relation
ships simplify because the multispheres can involve only one large 
sphere, that is, the large-sphere number Nl = 1. Indeed, if two large 
spheres with positive mean curvature are connected by a closed ll neck, 
the corresponding neck curvature satisfies 0 < Mll ≤ m as in Eq. (28), 
which cannot be fulfilled if the spontaneous curvature m is negative, 
compare Eq. (36). 

The area of a (1 + Ns)-multisphere with Ns small, inverted spheres is 
given by 

A = 4π
(
R2

l + NsR2
s

)
(72)  

and its volume by 

V =
4π
3
(
R3

l − NsR3
s

)
. (73)  

The minus sign in front of the second term reflects the fact that V de
scribes the volume of the interior solution whereas all small spheres are 
filled with exterior solution, see the small spheres (white) in Figs. 12, 16, 
and 17. When expressed in terms of the dimensionless radii rl and rs as 
defined by Eq. (45), the area relation in Eq. (72) becomes 

r2
l + Nsr2

s = 1 (74)  

and the volume relation in Eq. (73) attains the form 

r3
l − Nsr3

s = v , (75)  

with the rescaled volume v as in Eq. (48). Therefore, for m < 0, we 
obtain two equations for the two variables rl and rs which depend on 
only two parameters, the small-sphere number Ns and the rescaled 
volume v. 

7.3.1. Dependence of volume on small sphere radius 
Next, we use the area relationship in Eq. (74) to express the large 

sphere radius rl as a function of the small sphere radius rs. Because the 
large sphere radius must be positive, we take the positive root of r2

l in Eq. 
(74) which leads to 

rl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − Nsr2
s

√

. (76)  

The physical requirement that the large sphere radius rl as given by Eq. 
(76) should be real-valued implies that the values of the small sphere 
radius rs must be restricted to the range 0 ≤ rs ≤ 1/

̅̅̅̅̅
Ns

√
. 

Inserting the expression for the large scale radius rl in Eq. (76) into 
the volume relation as given by Eq. (75), we obtain the functional 
dependence of the volume v on the small sphere radius rs which has the 
form 

v =
(
1 − Nsr2

s

)3/2
− Nsr3

s . (77)  

To determine the physically meaningful range of the small sphere radius 
rs, we impose two additional constraints. First, we require that the vol
ume should not be negative, that is, v ≥ 0. The condition v = 0 is 
equivalent to 

(
1 − Nsr2

s

)1/2
= N1/3

s rs or rs =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ns + N2/3
s

√ . (78)  

Therefore, the volume v as given by Eq. (77) satisfies 

v ≥ 0 for 0 ≤ rs ≤
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ns + N2/3
s

√ . (79)  

This upper boundary value for rs is smaller than 1/
̅̅̅̅̅
Ns

√
and, thus, re

duces the range of physically meaningful rs-values as previously ob
tained from the requirement that the large sphere radius rl in Eq. (76) 
must be real-valued. This range of rs-values is further reduced by the 
additional constraint that the individual spheres of the (1 + Ns)-multi
spheres must not overlap with each other or, equivalently, that the 
membrane that forms the multispherical shape must not intersect itself. 
Thus, for each value of Ns, we need to determine the largest value of rs, at 
which the spheres come into contact and start to touch each other. 

This touching condition is depicted in Fig. 20 for three examples 
corresponding to (1 + Ns)-multispheres with Ns = 2, 3, and 13. The 
numerical values of the different quantities that characterise the 
resulting close packing of the small spheres are given in Table 1. In
spection of this table shows that both radii rl and rs decrease, reflecting 
the conserved membrane area, whereas the ratio rl/rs increases with 
increasing Ns. Furthermore, the close packing volume vcp, for which all 
spheres touch each other, decreases with Ns. The overall dependence of 
the volume v on the small sphere radius rs is displayed in Fig. 21, where 
the close packing volumes are included as horizontal dashed lines. 

Fig. 19. Volume v as a function of small-sphere radius rs for (1 + Ns)-multispheres with positive spontaneous curvature: (a–c) Volume functions as described by Eq. 
(60) (a) for Ns = 2 as in Fig. 1b; (b) for Ns = 3 as in Fig. 1e; and (c) for Ns = 15 as in Fig. 9b. The upper dashed lines are located at v = 1/

̅̅̅̅̅
Nl

√
= 1 which represents the 

largest possible volume of the multisphere. The lower dashed lines are located at v = v* = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
, corresponding to Nl + Ns equally sized spheres and the 

smallest possible volume. 
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7.3.2. Volume range for negative spontaneous curvature 
The previous considerations imply that a membrane with negative 

spontaneous curvature can form (1 + Ns)-multispheres when the volume 
v lies within the range 

1 ≥ v ≥ vcp (80)  

where the close packing volume vcp decreases with increasing small- 
sphere number Ns, see Fig. 20 and Table 1. 

The (1 + Ns)-multispheres shown in Fig. 2 are formed by the growth 

of inward-pointing membrane protrusions into tubules of small spheres. 
During such a process, the small spheres are likely to experience the 
confinement by the membrane of the large sphere as soon as the length 
of the small-sphere tubule becomes large compared to the diameter of 
the large sphere. However, the multispherical membrane is fluid and the 
tubule of small spheres is quite flexible. As a consequence, the tubule 
undergoes strong thermally-excited undulations for which the mem
brane necks act as flexible hinges. In addition, the multispherical tubule 
can further relax the steric constraint arising from the large sphere by 
forming a branched chain as in Fig. 9c. 

7.4. Digression: close packing of identical spheres 

The close packing density Φcp, which has been included in Table 1, is 
equal to the fraction of the combined volume, Ns

4π
3 R3

s , of all small 
spheres to the volume 4π

3 R3
l of the large sphere which implies 

Φcp ≡
NsR3

s

R3
l

=
Nsr3

s

r3
l

. (81) 

The close packing density of identical spheres has attracted the cu
riosity of scientists ever since 1611, when Johannes Kepler wrote a 
booklet on “The Six-Cornered Snowflake” [86]. In this booklet, he 

(a)                                  (b)                               (c)

Fig. 20. (1 + Ns)-spheres for negative spontaneous curvature with Ns closed-packed small spheres: (a–c) Close packing for Ns = 2, 3, and 13 small spheres within the 
large sphere. In (c), only the small spheres that lie in the equatorial cross-section are displayed. In all three panels, the membranes forming the (1 + Ns)-sphere have 
the same surface area, whereas the volume v = vcp of the interior solution (blue) decreases from (a) to (c). The exterior solution is shown in white. The numerical 
values of the associated geometric parameters are provided in Table 1. 

Table 1 
(1 + Ns)-multispheres with negative spontaneous curvature, close packing of Ns 
small spheres within one large sphere: Numerical values of small-sphere radius 
rs, large-sphere radius rl, ratio rl/rs, close packing volume vcp, and close packing 
density Φcp as defined in Eq. (81). All quantities are dimensionless.  

Ns 1 2 3 4 13 

rs 0.7071 0.4082 0.3617 0.3343 0.2132 
rl 0.7071 0.8165 0.7794 0.7437 0.6396 

rl/rs 1 2 2.1547 2.2247 3 
vcp 0 0.4082 0.3315 0.2619 0.1357 
Φcp 1 0.25 0.2999 0.3633 0.4815  

Fig. 21. Volume v as a function of the small-sphere radius rs for negative spontaneous curvature, as described by Eq. (77): Functional dependence of v for (1 + 2)- 
multispheres in (a), for (1 + 3)-multispheres in (b), and for (1 + 13)-multispheres in (c). In each panel, the lower dashed line corresponds to the close packing volume 
v = vcp, at which all spheres start to touch each other, see Fig. 9. For v < vcp, the spheres overlap and the multispherical membrane intersects itself. The numerical 
values for vcp are included in Table 1. 
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hypothesized that the hexagonal shapes of snowflakes might arise from 
the close packing of identical spherical ‘ice particles’. In addition, he 
also proposed, without proof, that the densest possible packing of such 
identical spheres in three dimensions is provided by what we now know 
as the regular close packing of spheres on a face-centered cubic lattice. 
The corresponding packing density is equal to 

max[Φcp] =
π

3
̅̅̅
2

√ = 0.7405 . (82)  

The mathematical proof of this apparently simple statement, which 
became to be known as Kepler’s conjecture, turned out to be rather 
difficult. Such a proof has not been found until quite recently. Indeed, a 
complex computer-aided proof has been announced in 1998 and was 
finally published in 2006 [87,88]. The delay in publication was caused 
by the difficulties that the referees had in verifying the proof [89]. 

The value of the packing density in Eq. (81) also corresponds to the 
widely used packing of spherical objects such as oranges or cannonballs, 
provided one focusses on the inner spheres, which are in contact with 
twelve nearest-neighbor spheres. If the spheres are packed into a finite 
container, the spheres close to the surface of this container have less 
nearest neighbors, which acts to reduce the packing density Φcp. Indeed, 
for the packing of 13 small spheres in Fig. 9c, the packing density is 
Φcp = 0.4815, see last row of Table 1, which is quite a bit smaller than 
the maximal possible value max [Φcp] = 0.7405 in three dimensions. 

Another reason why the packing density Φcp is often reduced 
compared to its maximal possible value is the dynamics of the packing 
process. As an example, consider monodisperse spheres as a model for 
granular material such as sand. If one pours such a material into a 
container, one finds an initial packing density which is quite a bit lower 
than max[Φcp] but can be increased to about Φcp = 0.63 to 0.64 by 
shaking the container in a random manner [90–92]. The resulting 
random close packing involves jammed clusters of spheres that prevent 
the local relaxation of neighboring clusters. 

8. Stability regimes of multispherical shapes 

We will now combine the multisphere geometry as described in the 
previous section with the stability conditions for closed membrane necks 
as given by Eqs. (27) and (33). As a result, we obtain the multisphere 
stability regimes within the morphology diagram, which is defined by 
two dimensionless shape parameters, the (rescaled) volume v as intro
duced in Eq. (46) and the (rescaled) spontaneous curvature 

m ≡ mRve with the vesicle size Rve =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A/(4π)

√
. (83)  

We will also use the rescaled neck curvature Mab as defined by 

Mab ≡ MabRve =
1
2
(Ma + Mb)Rve (84)  

and express the stability conditions for closed necks in terms of the 
rescaled variables m and Mab. 

Another interesting feature of stable multispherical shapes is the 
mechanical tension Σ experienced by the vesicle membranes. The 
expression for the total tension Σtot in Eq. (9) leads to the mechanical 
membrane tension 

Σ = Σtot − 2κm2 = 2κm(Ml + Ms − m) . (85)  

which depends on the curvature-elastic parameters κ and m as well as on 
the vesicle geometry via Ml = 1/Rl and Ms = ±1/Rs. Furthermore, the 
tension-curvature relationship in Eq. (85) does not depend explicitly on 
the sphere numbers Nl and Ns but only implicitly via the radii Rl and Rs of 
the large and small spheres, see the geometric relations in Sections 7.2 
and 7.3. 

In the following, we will examine the stability regimes for positive 
and negative spontaneous curvatures. In both cases, the stability regimes 

involve two boundary lines of limit shapes, which follow from the neck 
closure conditions for ls and ss necks. For positive spontaneous curva
ture, the stability regimes also involve a third boundary line of limit 
shapes, corresponding to N* equally sized spheres. The latter line follows 
directly from the geometry of the multispheres which implies that such 
spheres cannot be formed when the volume v is below the threshold 
value v* = 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
. 

8.1. Stability regimes for positive spontaneous curvature 

For positive spontaneous curvature, the membrane can form multi
spheres with a variable number of Nl large and Ns small spheres, see the 
optical images in Fig. 1 as well as the cartoons in Figs. 13 and 14. 
Furthermore, for given values of Nl and Ns, the multispheres can exhibit 
distinct (Nl + Ns)-patterns that differ in the way in which the spheres are 
mutually connected. For each pattern, the stability regime depends on 
the neck closure conditions for the ss and ls necks. The corresponding 
neck closure conditions define two boundary lines within the 
morphology diagram, corresponding to the limit shapes Lls

Nl+Ns and 
Lss

Nl+Ns, see red and curved blue lines in Fig. 22. A third boundary line is 
provided by the line of equally sized spheres, denoted by LN* and 
included as the horizontal blue lines in Fig. 22. 

8.1.1. Equally sized spheres as limit shapes 
The limit shapes LN* consist of N* = Nl + Ns equally sized spheres and 

have the (rescaled) volume 

v = v* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ =
1

N*  

as in Eq. (69). Each of the N* spheres has the same radius given by 

r* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ =
1

N*
.

as in Eq. (66). Furthermore, each of the closed necks connecting two 
equally sized spheres has the rescaled neck curvature 

M** =
1
2

(
1
r*

+
1
r*

)

=
1
r*

. (86)  

Finally, the condition for these necks to be stably closed now has the 
form 

m ≥ M** =
1
r*

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
≡ m* , (87)  

where the lower boundary value m = 1/r* describes the neck closure 
condition. Therefore, the line of limit shapes LN* is located at 

v = v* =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√ and m ≥ m* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
. (88)  

which includes the neck closure condition m* = 1/r*. 
The location (m, v) = (m*, v*) in the morphology diagram provides a 

special corner point at which the line of limit shapes LN* meets the other 
two lines of limit shapes, see Fig. 22. At this corner point, the constant 
mean curvature M* = 1/r* =

̅̅̅̅̅̅
N*

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl + Ns

√
of the N* spheres is equal 

to the spontaneous curvature m = m* as given by Eq. (87). Therefore, at 
the corner points, the (N*)-multispheres provide constant-mean-curva
ture surfaces that satisfy the Euler–Lagrange Eq. (19) with the mean 
curvature M being equal to the spontaneous curvature m. 

8.1.2. Limit shapes from the closure of membrane necks 
The volume v of the multispherical shapes can be parametrized in 

terms of the small-sphere radius rs, see Fig. 19. The same parametriza
tion will now be used for the closure conditions of the different necks. 
The closure condition for ss necks then leads to the spontaneous 
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curvature 

m = mss(rs) =
1
2
(Ms + Ms) =

1
rs

(89)  

whereas the closure condition for ls necks becomes 

m = mls(rs) =
1
2

( ̅̅̅̅̅
Nl

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Nsr2

s

√ +
1
rs

)

, (90)  

where the first term represents the inverse large-sphere radius 1/rl. The 
corresponding boundary lines of limit shapes can then be obtained by 
parametric plots in the morphology diagram, using the volume function 
v = h(rs) as in Eq. (60) and the neck closure conditions in Eqs. (90) or 
(89) for ls and ss necks. When this method is used for (1 + 2)- and 
(1 + 15)-multisphere patterns, one obtains the red and curved blue lines 
in Fig. 22. 

8.1.3. Mechanical membrane tension 
The mechanical membrane tension Σ is obtained by substracting the 

spontaneous membrane tension 2κm2 from the total membrane tension 
Σtot which leads to Σ = 2κm(Ml + Ms − m) as in Eq. (85). The mechanical 
tension vanishes for m = Ml + Ms or for 

m = 2mls(rs) =

̅̅̅̅̅
Nl

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Nsr2

s

√ +
1
rs

. (91)  

Because 2mls(rs) > 1/rs = mss(rs), see Eq. (89), the multispheres with 
vanishing mechanical tension are located within the stability regime of 
the (Nl + Ns)-patterns with at least one ss neck, corresponding to the 
purple lines within the blue-shaded regions in Fig. 22a and b. 

When we keep the volume v fixed but change the spontaneous cur
vature m within the stability regime of the pattern, the geometry of the 
(Nl + Ns)-multisphere does not change which implies that the curvature 
sum Ml + Ms remains unchanged as well. Therefore, the mechanical 
tension becomes large and negative with 

Σ ≈ − 2κm2 for large positive m. (92)  

On the other hand, using the neck closure condition Ml + Ms = 2m for ls 
necks, we obtain the mechanical tension 

Σ = 2κm2 > 0 for the limit shapes Lls
Nl+Ns (93)  

which are located along the red boundary lines in Fig. 22. Likewise, 
using the neck closure condition Ms = m for ss necks, the mechanical 
tension becomes 

Σ = 2κmMl > 0 for the limit shapes Lss
Nl+Ns (94)  

which are located along the curved blue lines in Fig. 22. Thus, the 
membranes of both limit shapes Lls

Nl+Ns and Lss
Nl+Ns experience a positive 

mechanical tension. Furthermore, in both cases, the tension Σ increases 
when we move along the boundary lines towards larger values of m. 

For the limit shapes provided by N* = Nl + Ns equally sized spheres, 
the curvature sum Ml + Ms = 2m* which leads to the mechanical tension 

Σ = 2κm
(

2
̅̅̅̅̅̅
N*

√

Rve
− m

)

for the limit shapes LN* (95)  

which are located along the horizontal blue lines in Fig. 22. 

8.2. Stability regimes for negative spontaneous curvature 

For negative spontaneous curvature, the membrane can form mul
tispheres with a variable number Ns of small spheres which are enclosed 
in one large sphere, see the optical images in Fig. 2 as well as the car
toons in Figs. 16 and 17. Furthermore, for a given value of Ns, the 
multispheres exhibit distinct (1 + Ns)-patterns that can involve ls and ss 
necks. One special pattern is provided by a (1 + Ns)-pattern with Ns in- 
buds and ls necks which contains no ss neck. All other pattern involve at 
least one ss neck which then determines the stability of these patterns, 
see the examples for Ns = 2, 3 and 4 in Figs. 16 and 17. The stability 
regimes for these different patterns again depend on the neck closure 
conditions for the necks which define two boundary lines within the 
morphology diagram, corresponding to the limit shapes Lls

1+Ns and Lss
1+Ns, 

Fig. 22. Stability regimes of (1 + 2)- and (1 + 15)-multisphere patterns for positive spontaneous curvature. In both cases, the stability regime involves three 
boundary lines of limit shapes, denoted by Lls

Nl+Ns (red lines), Lss
Nl+Ns (curved blue lines), and LN* (horizontal blue lines): (a) The (1 + 2)-patterns ℘1 and ℘2, see 

Figs. 13a and 1b,c, lead to two somewhat different stability regimes. Both patterns are stable within the blue-shaded region. The (1 + 2)-pattern ℘2 with two out-buds 
is also stable within the white stripe between the curved blue and the red line; and (b) The (1 + 15)-patterns with at least one ss neck are stable within the blue- 
shaded region. The (1 + 15)-patterns with no ss necks and at least one ls neck are stable in the same region as well as in the white stripe between the curved 
blue line and the red line. In both (a) and (b), the mechanical tension Σ vanishes along the purple lines. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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see red and curved blue lines in Fig. 23. A third boundary line is pro
vided by the line of touching spheres, arising from the physical 
constraint that the membrane of the multispherical shape should not 
intersect itself. 

8.2.1. Limit shapes from closure of membrane necks 
For negative spontaneous curvature, the dependence of the volume v 

on the small-sphere radius rs is described by Eq. (77) and displayed in 
Fig. 21. As in the case of positive spontaneous curvature, we also 
parametrize the neck closure conditions in terms of the small-sphere 
radius rs. The closure condition for ss necks then leads to the sponta
neous curvature 

m = mss(rs) =
1
2
(Ms + Ms) = −

1
rs

(96)  

whereas the closure condition for ls necks becomes 

m = mls(rs) =
1
2

(
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Nsr2

s

√ −
1
rs

)

, (97)  

where the first term represents the inverse large-sphere radius 1/rl. The 
corresponding boundary lines of limit shapes can then be obtained by 
parametric plots in the morphology diagram, combining the rs-depen
dence of the volume v in Eq. (77) with the neck closure conditions in Eqs. 
(97) or (96) for ls and ss necks. When this method is used for (1 + 2)- and 
(1 + 15)-multispheres, one obtains the boundary lines Lls

1+Ns and Lss
1+Ns in 

Fig. 23. 

8.2.2. Mechanical membrane tension 
The mechanical membrane tension Σ is again given by Σ = 2κm 

(Ml + Ms − m) as in Eq. (85) and vanishes for m = Ml + Ms. Thus the 
mechanical tension vanishes for 

m = 2mls(rs) =

̅̅̅̅̅
Nl

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Nsr2

s

√ −
1
rs

(98)  

which satisfies mss(rs) < 2mls(rs) < mls(rs) for negative spontaneous 

curvature. Therefore, the line of (1 + Ns)-multispheres with vanishing 
tension, corresponding to the purple lines in Fig. 23a and b, is now 
located between the two lines of limit shapes Lss

1+Ns and Lls
1+Ns. 

When we keep the volume v fixed but change the negative sponta
neous curvature m to large negative values the geometry of the 
(Nl + Ns)-multisphere remains unchanged which implies that Ml + Ms 
remains constant as well. Therefore, the mechanical tension behaves as 

Σ ≈ − 2κm2 for large negative m, (99)  

which is the same asymptotic behavior as for large positive m. 
Using the neck closure conditions Ml + Ms = 2m for ls necks, we 

obtain the positive mechanical tension 

Σ = 2κm2 > 0 for the limit shapes Lls
1+Ns (100)  

which are located along the red boundary lines in Fig. 23. On the other 
hand, using the neck closure condition Ms = m for ss necks, the me
chanical tension now attains the negative values 

Σ = 2κmMl < 0 for the limit shapes Lss
1+Ns (101)  

which are located along the curved blue lines in Fig. 23. Thus, the 
membranes of the limit shapes Lss

1+Ns now experience a negative tension 
Σ, in contrast to the positive mechanical tension for the limit shapes 
Lls

1+Ns. 

8.3. Instabilities of multispherical shapes via neck opening 

It is instructive to consider an (Nl + Ns)-multisphere pattern, which is 
characterized by values of m and v that belong to the corresponding 
stability regime, and to explore the different trajectories in the 
morphology diagram by which one may open up the closed membrane 
necks. When we increase the volume of such a multisphere vesicle by 
osmotic inflation, we cross the boundary line LNl+Ns at which the least 
stable neck starts to open up. For (1 + 2)-multispheres and positive 
spontaneous curvature, for example, this neck opening occurs along the 
two boundary lines Lss

1+2 and Lls
1+2 in Fig. 22a. If the (1 + 2)-multiphere 

Fig. 23. Stability regimes of (1 + 2)- and (1 + 13)-multisphere patterns for negative spontaneous curvature. In both cases, the stability regime involves two boundary 
lines of limit shapes, denoted by Lls

1+Ns (red lines) and Lss
1+Ns (curved blue lines): (a) The two (1 + 2)-patterns in Fig. 16 are both stable within the blue-shaded region. 

In addition, the pattern with two in-buds and two ls necks is also stabe in the intermediate region between the boundary lines for Lls
1+Ns and Lss

1+Ns. Along the purple 
lines, the mechanical tension Σ of the multispheres vanishes. One notable difference to the case with positive spontaneous curvature is that all (1 + Ns)-patterns with 
at least one ss neck experience a negative mechanical tension that acts to compress the vesicle membrane. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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forms the (1 + 2)-pattern ℘1 with one ss and one ls neck as in Figs. 13a 
and 1b, the ss neck opens up along the boundary line Lss

1+2 in Fig. 22a. If 
the (1 + 2)-multisphere forms the (1 + 2)-pattern ℘1 with two ls necks 
and two out-buds, the ls necks open up along the boundary line Lls

1+2. 
Analogous behavior applies to (1 + 2)-multispheres and negative 
spontaneous curvature, for which the two boundary lines are displayed 
in Fig. 23a. 

When we start from an (Nl + Ns)-multisphere pattern within its sta
bility regime and decrease the volume by osmotic deflation, we reach 
two different boundary lines for positive and negative spontaneous 
curvature. For positive spontaneous curvature, we cross the boundary 
line LN* of N* = Nl + Ns equally sized spheres, at which all ** necks start 
to open up. For negative spontaneous curvature, we will reach the 
boundary line at which the small spheres start to touch each other and 
attain their most closely packed state. A third direction by which we can 
leave the stability regime of a multisphere is by decreasing the sponta
neous curvature m for positive m and by increasing it for negative m. In 
both cases, we will again cross the boundary line LNl+Ns, at which the 
least stable necks of the multisphere pattern start to open up. 

Finally, yet another pathway for neck opening of a multisphere is 
provided by external forces that are locally applied to the multisphere. 
So far, the corresponding elastic response of the multisphere has not 
been determined in a systematic manner. However, in view of the 
curvature-induced constriction forces as given by Eqs. (38) and (39), it 
seems likely that the necks open up when the locally applied forces 
exceed certain threshold values that are proportional to the constriction 
forces. 

9. Summary and outlook 

In this review, multispherical shapes of vesicles have been addressed 
theoretically for vesicle membranes with positive and negative values of 
the spontaneous curvature. For positive spontaneous curvature, m > 0, 
the membranes can form (Nl + Ns)-multispheres consisting of Nl large 
spheres and Ns small spheres, see the optical images in Fig. 1 as well as 
the cartoons in Figs. 13 and 14. One important consequence of curvature 
elasticity is that each (Nl + Ns)-multisphere involves only two different 
radii, with all large and all small spheres having the same radius Rl and 
Rs, respectively. For each value of Nl and Ns, the multispheres exhibit 
distinct patterns which differ in the way in which the spheres are 
mutually connected. As far as the stability of these patterns is concerned, 
we have to distinguish patterns with at least one ss neck between two 
small spheres from those with no ss neck but at least one ls neck between 
a large and a small sphere. The two types of patterns differ in their 
stability regimes as illustrated in Fig. 22 for (1 + 2)- and (1 + 15)- 
patterns. 

For positive spontaneous curvature, multispheres with N* = Nl + Ns 
equally sized spheres are also possible, see optical images in Fig. 8 and 
cartoons in Fig. 15. These shapes represent limit shapes, denoted by LN*, 
which are constant-mean-curvature surfaces and have the remarkable 
property that they provide a boundary line for all (Nl + Ns)-multispheres 
with Nl + Ns = N*. For Nl + Ns = 3, for example, the multispheres form 
two (1 + 2)-patterns and two (2 + 1)-patterns, see Fig. 13. All four 
patterns approach the limit shapes L3* when we reduce the volume v 
towards its lowest possible value v* = 1/

̅̅̅
3

√
. This degeneracy of the LN*- 

multispheres increases strongly with the sphere number N*. 
For negative spontaneous curvature, m < 0, the membranes can form 

(1 + Ns)-multispheres, see the optical images in Fig. 2 as well as the 
cartoons in Figs. 16 and 17, consisting of one large sphere that encloses 
Ns small spheres. For each value of Ns, the multispheres exhibit distinct 
patterns in which the spheres are connected in different ways. For m < 0, 
only one pattern, corresponding to Ns in-buds, has no ss neck whereas all 
other patterns involve at least one ss neck. The two types of patterns 
differ again in their stability regimes as illustrated in Fig. 23 for (1 + 2)- 
and (1 + 13)-patterns. For Ns ≥ 3, the small spheres can form junctions, 

at which a central small sphere is connected to three or more neigh
boring small spheres. Now, the physical requirement that the spheres 
should not overlap or, equivalently, that the membrane should not self- 
intersect leads to the smallest possible value v = vcp corresponding to 
close packing the small spheres within the large sphere. Some examples 
for the numerical value of vcp are provided in Table 1 

In order to keep the length of this paper within reasonable limits, 
several aspects of multispheres have not been addressed here. These 
aspects include (i) the elastic energy landscape of the multispheres, (ii) 
the stability of individual spheres with respect to sphere-prolate bi
furcations, and (iii) the curvature-induced fission of membrane necks for 
sufficiently large absolute values of the spontaneous curvature. All three 
aspects have been theoretically examined in Ref. [17], at least to some 
extent. The elastic energy landscape is quite ‘rugged’ and exhibits many 
metastable states as described in Ref. [75] for (1 + Ns)-multispheres 
with negative spontaneous curvature. The sphere-prolate bifurcation 
leads to an upper boundary for the spontaneous curvature, which has 
been used to estimate the spontaneous curvature of the multispheres in 
Fig. 1 [13]. The fission of a single membrane neck has been experi
mentally demonstrated for giant two-sphere vesicles in Ref. [40] where 
the controlled division of these vesicles into two daughter vesicles has 
been observed. 

Many interesting aspects of multispherical shapes remain to be 
explored. First, the constriction forces acting at membrane necks could 
be used experimentally to drive the controlled division of multispheres 
with more than one neck. The constriction force fls at an ls neck exceeds 
the constriction force fss at an ss neck, as described by Eq. (40) for 
positive spontaneous curvature and by Eq. (41) for negative sponta
neous curvature. Therefore, for given values of spontaneous curvature m 
and volume v, the ls necks are more likely to be cleaved compared to the 
ss necks. Likewise, when the necks are opened by locally applied 
external forces, these forces should exceed certain threshold values that 
are proportional to the curvature-dependent constriction forces fls and 
fss. 

Second, when combined with changes in the osmotic conditions, the 
fine-tuning of the spontaneous curvature by His-tagged GFPs [40] could 
be used to create multispherical shapes with more than one neck in a 
controlled manner. The creation of stable multispheres could be further 
improved by experimental methods that induce membrane fusion. One 
could start from spherical vesicles which are exposed to 
curvature-generating molecules such as His-tagged GFP. When two such 
vesicles are fused, a two-sphere vesicle is formed. This two-sphere 
vesicle is stable if the volume and the spontaneous curvature are 
located within the corresponding stability regime. When we fuse a third 
spherical vesicle with the two-sphere vesicle, we should obtain a stable 
three-sphere vesicle provided we match the radius of the third sphere 
with one sphere radius of the two-sphere shape. Otherwise, we expect to 
see interesting relaxation processes that may involve the opening of 
membrane necks. Using membrane fusion, we should also be able to 
create multispherical shapes that have a more complex higher-genus 
topology with closed cycles of spheres. Finally, it would be rather 
interesting to consider multispherical shapes using membranes with two 
types of coexisting lipid phase domains. Two-sphere vesicles formed by 
membranes with two different lipid domains have been studied theo
retically [68,93] and, to some extent, experimentally [94–96]. The 
theory also predicts that membranes with coexisting lipid phase do
mains can form more complex (Nl + Ns)-multispheres that involve more 
than two different sphere radii [17]. Such more complex multispherical 
shapes remain to be studied in a systematic manner, both theoretically 
and experimentally2. 

2 The adsorption of Ca2+ ions onto negatively charged membranes generates 
membrane tubules that point away from the solution with the higher Ca2+

concentration [97], in agrement with the concentration-dependent reduction of 
the area per lipid discussed in Section 2.2. 
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