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Abstract

Biomembranes and vesicles cover a wide range of length scales. Indeed, small
nanovesicles have a diameter of a few tens of nanometers whereas giant vesicles can
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have diameters up to hundreds of micrometers. The remodeling of giant vesicles on
the micron scale can be observed by light microscopy and understood by the theory
of curvature elasticity, which represents a top-down approach. The theory predicts
the formation of multispherical shapes as recently observed experimentally. On the
nanometer scale, much insight has been obtained via coarse-grained molecular
dynamics simulations of nanovesicles, which provides a bottom-up approach based
on the lipid numbers assembled in the two bilayer leaflets and the resulting leaflet
tensions. The remodeling processes discussed here include the shape transformations
of vesicles, their morphological responses to the adhesion of condensate droplets, the
instabilities of lipid bilayers and nanovesicles, as well as the topological transforma-
tions of vesicles by membrane fission and fusion. The latter processes determine the
complex topology of the endoplasmic reticulum.

1. Introduction

Eukaryotic organisms such as animals and plants contain a large
amount of biomembranes that enclose their cells and many intracellular
organelles. These membranes are fluid and create a flexible architecture,
which is continuously remodeled by two different kinds of processes. First,
the membranes adapt their shape to different interactions with their sur-
roundings. Second, the membrane compartments change their topology
via membrane fusion and membrane fission. The fission and fusion pro-
cesses lead to heavy trafficking of vesicles between different organelles. This
trafficking involves both the production of new vesicles via budding and
fission from a donor membrane as well as the uptake of these vesicles by
acceptor membranes via adhesion and fusion. In the cell, both fission and
fusion involve a complex assortment of membrane-bound proteins that are
believed to steer the different steps of these processes (Alberts et al.,
1998; Bonifacino & Glick, 2004). The different proteins act in a concerted
manner which makes it quite difficult to understand their individual roles
even during a single fission or fusion event.

The remodeling of biological membranes and organelles can be
mimicked via synthetic membrane systems which are built up from a
relatively small number of molecular components and can be studied in a
systematic and quantitative manner. In biochemistry and cell biology, these
systems are conventionally called ‘in-vitro systems’ or ‘reconstituted sys-
tems’. Recently, a new motivation for the study of such model systems has
been provided by the emerging bottom-up approach to synthetic biology
because biomembranes represent an important module for this approach.
Here, recent insights will be described for two synthetic membrane systems
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as provided by giant vesicles and small nanovesicles. For giant vesicles, the
methodology is based on optical microscopy and curvature elasticity, for
nanovesicles on molecular dynamics simulations and the novel concepts of
leaflet tensions and stress asymmetry.

The remodeling of giant vesicles, which have a typical size of many
micrometers, has been studied for a long time (Lipowsky & Sackmann,
1995; Bassereau & Sens, 2018; Dimova & Marques, 2019; Lipowsky &
Dimova, 2021). Using optical microscopy, one can both image the dif-
ferent morphologies of giant vesicles and monitor their morphological
transformations. The morphology of small nanovesicles, on the other hand,
cannot be resolved by optical microscopy. Therefore, the main experi-
mental methods to image small nanovesicles have been different variants of
electron microscopy (Mui et al., 1995; Dragicevic-Curic et al., 2008; Baxa,
2018). The latter methods are, however, restricted to a single snapshot of
each nanovesicle and, thus, cannot monitor how the shape of such a vesicle
changes with time. In contrast, the spatio-temporal remodeling of nano-
vesicles can be elucidated by molecular dynamics simulations as recently
demonstrated (Ghosh et al., 2019, 2023; Sreekumari & Lipowsky, 2022;
Lipowsky et al., 2023).

The paper is organized as follows. The next Section 2 is devoted to
the shapes of giant vesicles, emphasizing multispherical shapes, which
consist of spherical membrane segments connected by closed membrane
necks. The section also highlights the controlled remodeling of vesicle
shape by the fine-tuning of spontaneous curvature, as recently achieved
by exposing the vesicle membrane to His-tagged proteins. Section 3
describes the shape transformations of nanovesicles. These shape trans-
formations are determined by the leaflet tensions acting within the two
leaflets of the lipid bilayers and by the resulting stress asymmetry
between the two leaflets. In the subsequent Section 4, large stress
asymmetries are considered, which lead to stress-induced flip-flops of
lipids from one leaflet to the other and to structural instabilities of the
lipid bilayers. Section 5 deals with the remodeling of vesicle topology by
fusion and fission processes. This section describes the curvature-
induced division of giant vesicles, the stress-induced division of nano-
vesicles, the endocytosis of condensate droplets by nanovesicles, and the
multiscale membrane architecture of the endoplasmic reticulum (ER).
At the end, the results reviewed here are briefly summarized with an
outlook on interesting topics for future research.
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2. Shape remodeling of giant vesicles

Here and below, the term ‘giant vesicle’ always implies a ‘giant
unilamellar vesicle’, for which we also use the abbreviation ‘GUV’.

2.1 Polymorphism of giant vesicles
Giant vesicles form many different shapes and undergo shape transforma-
tion in response to changes in the osmotic conditions, which control the
vesicle volume, and to temperature changes, which affect the area of the
vesicle membrane. This polymorphism has been studied for many years.
Here, we will focus on two recent developments related to multispherical
shapes of vesicles and to the controlled remodeling of vesicle shapes by the
binding of His-tagged proteins to anchor lipids.

2.1.1 Two-sphere shapes with out-buds
The simplest multispheres are provided by two-sphere shapes, which
consist of a spherical mother vesicle and a spherical out- or in-bud. The
formation of an out-budded two-sphere shape is displayed in Fig. 1. In this
example, we start from a GUV with a pear-like shape and reduce the
vesicle volume by osmotic deflation. In response to this change in the
osmotic conditions, the pear develops a membrane neck which closes in
less than 16 s. As explained in the next subsection, such a two-sphere shape
is only possible if the spontaneous curvature is positive and exceeds a
certain positive threshold value.

2.1.2 Two-sphere shapes with in-buds
The formation of an in-budded two-sphere vesicle is shown in Fig. 2. In
this example, we start from a GUV with a discocyte shape and increase the
area of the vesicle membrane by an increase in temperature. In response to
this area increase, the vesicle transforms into a stomatocyte shape and

Fig. 1 Out-budding of a giant vesicle (red) with a pear-like shape, which transforms
into a two-sphere shape, consisting of a spherical mother vesicle and a spherical out-
bud, which are connected by a closed membrane neck. This shape transformation is
obtained for a sufficiently large and positive spontaneous curvature that exceeds a
certain positive threshold value (Bhatia et al., 2020).
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subsequently into a two-sphere vesicle with an in-bud. As explained in the
next subsection, the two-sphere shape in Fig. 2 is obtained for a sufficiently
large and negative spontaneous curvature that does not exceed a certain
negative threshold value.

2.2 Curvature elasticity
2.2.1 Spontaneous curvature model
The two-sphere shapes displayed in Figs. 1 and 2 were first obtained
theoretically from the spontaneous curvature model (Seifert et al., 1991).
This model was introduced by Helfrich (1973) and later supplemented by
the experimentally important constraints for vesicle volume and membrane
area (Deuling & Helfrich, 1976). The spontaneous curvature model is
based on the curvature energy

E A M m Gd [ 2 ( ) ]Gcu
2= + (1)

which represents an integral over the membrane area A, depends on two
geometric quantities, the (local) mean curvature M and the (local) Gaussian
curvature G of the membrane, and on three curvature-elastic parameters as
provided by the bending rigidity κ, the spontaneous curvature m, and the
Gaussian curvature modulus κG.

Fig. 2 In-budding of a giant vesicle with a discocyte shape, which transforms into a
two-sphere shape, consisting of a spherical mother vesicle and a spherical in-bud
connected by a closed membrane neck. This shape transformation is obtained for a
sufficiently large and negative spontaneous curvature, which does not exceed a
certain negative threshold value. Reprinted with permission from Ref Berndl, K., Käs, J.,
Lipowsky, R., Sackmann, E., & Seifert, U. (1990). Shape transformations of giant vesicles:
Extreme sensitivity to bilayer asymmetry. Europhysics Letters, 13, 659–664. [Copyright
1990, EDPSciences].
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In the present section on vesicle shape, we will focus on shape trans-
formations and exclude topological transformations, which implies that the
area integral over the Gaussian curvature does not depend on the vesicle
shape. As a consequence, the Gaussian curvature energy becomes

gE A Gd 2 2 (2 2 )G G G G= = = (2)

with the Euler characteristic χ and the topological genus g as follows from
the Gauss-Bonnet theorem (do Carmo, 1976). Therefore, for shape
transformations, which conserve the vesicle topology, the shapes of GUVs
depend only on the bending energy

E A M md 2 ( ) .be
2= (3)

This energy fulfills the inequality Ebe ≥ 0, with Ebe = 0 for constant mean
curvature M =m. In practise, the vesicle membrane cannot attain such a
state with M =m unless the vesicle forms a sphere or multisphere with
constant mean curvature M =Msp =m.

2.2.2 Shape functional for giant vesicles
The experimentally observed vesicle shapes can be obtained by minimizing
the bending energy Ebe in Eq. (3), provided one takes additional constraints
on the membrane area A and the vesicle volume V into account. At
constant temperature, the membrane area of lipid bilayers is constant,
reflecting the ultralow solubility of the lipid molecules. Likewise, the
volume of the vesicle is conserved for constant pressure difference

P P Pex in (4)

between the pressures Pin and Pex of the interior and exterior solutions,
corresponding to constant osmotic conditions. We are then led to mini-
mize the vesicle’s shape functional (Deuling & Helfrich, 1976; Seifert et al.,
1991).

F PV A E PV A A M m2 d ( )ve be
2= + + = + +

(5)

and to treat the parameters ΔP and Σ as Lagrange multipliers that allow us
to perform the constrained minimization of the bending energy for a
certain vesicle volume V and a certain membrane area A. Several recent
studies have demonstrated that the shapes of GUVs calculated in this
manner agree quantitatively with the experimentally observed shapes
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(Bhatia et al., 2020; Steinkühler et al., 2020). In these latter experiments,
the lipid membranes contained cholesterol which undergoes frequent flip-
flops and implies that area-difference elasticity (Seifert et al., 1992;
Dobereiner et al., 1997; Svetina & Zeks, 2002) plays no role.

2.2.3 Shape parameters and morphology diagrams
The shape functional Fve as given by Eq. (5) depends on four (dimen-
sionful) parameters: two material parameters, namely bending rigidity κ and
spontaneous curvature m, as well as two geometric parameters, vesicle
volume V and membrane area A. Furthermore, we can choose a basic
energy and length scale. A natural choice for the energy scale is the bending
rigidity κ. Furthermore, a convenient choice for the basic length scale is
provided by the vesicle size

R A/(4 ) ,ve (6)

in terms of the membrane area A. Choosing these energy and length scales,
the dimensionless bending energy Ebe/κ depends only on two dimen-
sionless shape parameters: (i) the volume-to-area ratio (or “reduced
volume”)

v
V

R
V A6 /4

3 ve
3

3/2=
(7)

of the vesicle; and (ii) the rescaled and dimensionless spontaneous curvature

m mR m A/(4 ) .ve = (8)

The two variables v and m̄ define the two-dimensional morphology dia-
gram for the vesicle shapes.

The volume-to-area ratio v can be varied experimentally in two dif-
ferent ways. First, it can be controlled by the osmotic conditions, that is, by
osmotic deflation or inflation, which leads to a reduction or to an increase
of the vesicle volume V for fixed membrane area A (Bhatia et al., 2020;
Steinkühler et al., 2020). Alternatively, one might change the volume-to-
area ratio v by varying the area per lipid and thus the membrane area A,
which can be achieved, for example, by changes in temperature (Berndl
et al., 1990) or by light-induced conformational transitions of photo-sen-
sitive molecules in the lipid bilayers (Georgiev et al., 2018).

On the other hand, the spontaneous curvature m̄ can be experimentally
controlled, for fixed v, by adsorption and desorption processes, which
modify the transbilayer asymmetry between the two leaflets of the bilayer
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membranes. One method by which the spontaneous curvature can be
quantitatively controlled in an unprecedented manner is via the binding of
green fluorescent protein (GFP) molecules from the exterior aqueous
solution (Steinkühler et al., 2020) as described in Section 2.3 below.

2.2.4 Effective mean curvature of closed membrane necks
The two-sphere vesicles in Figs. 1 and 2 consist of one large sphere with
radius Rl and one small sphere with radius Rs. Here and below, all radii are
taken to be positive. For the out-budded two-sphere in the last panel of
Fig. 1, both spherical segments have positive mean curvatures, as given by
Ml = 1/Rl and Ms = 1/Rs. For the in-budded two-sphere in the last panel
of Fig. 2, the large sphere has positive mean curvatureMl = 1/Rl as well but
the small, inverted sphere has negative mean curvature Ms = −1/Rs.

Now, consider a closed membrane neck between two spherical seg-
ments with mean curvatures Mi and Mj. Using these two mean curvatures
adjacent to the neck, we define the effective mean curvature of the closed
neck by (Lipowsky, 2019).

M M M
1
2

( ).ij i j
eff +

(9)

Note that the neck curvature Mij
eff represents a purely geometric quantity.

In fact, when the sphere diameters can be resolved by optical microscopy as

in Figs. 1 and 2, the neck curvature Mij
eff can be directly deduced from the

optical images, see the examples in Fig. 3.

2.2.5 Positive and negative membrane necks
For the out-budded two-sphere vesicle in Fig. 1, the closed neck has a
positive effective curvature

i
k
jjjj

y
{
zzzzM M M

R R
1
2

( )
1
2

1 1
0 (out  bud)ls l s

l s

eff = + = + > (10)

as follows from Eq. (9) with Mi =Ml and Mj =Ms. For the in-budded two-
sphere vesicle in Fig. 2, on the other hand, the effective neck mean cur-
vature is negative and given by

i
k
jjjj

y
{
zzzzM M M

R R
1
2

( )
1
2

1 1
0 (in  bud)ls l s

l s

eff = + = < (11)
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The sign of the effective neck mean curvature is now used to distinguish
positive from negative necks. By definition, a “positive neck” has a positive

effective curvature M 0ls
eff > whereas a “negative neck” has a negative

effective curvature M 0ls
eff < . Therefore, the closed neck of an out-budded

two-sphere shape as in Fig. 3a is positive whereas the closed neck of an in-
budded two-sphere shape as in Fig. 3c is negative.

2.2.6 Local properties of closed membrane necks
The stability of closed membrane necks depends on the spontaneous
curvature m. Each positive and negative neck is stably closed for (Lipowsky,
2014, 2019, 2022, 2022a)

m M 0 (stability of positive neck)ij
eff> > (12)

and

m M 0 (stability of negative neck).ij
eff< < (13)

These stability conditions for closed necks are intimately related to the bending
energy for the closure of open necks. This bending energy can then be used to
deduce the constriction force f acting against a positive and negative neck,
which leads to (Lipowsky, 2019; Steinkühler et al., 2020; Lipowsky, 2022):

Fig. 3 Two-sphere shapes of giant vesicles with out- and in-buds: (a,b) Out-budded
two-sphere shapes with positive membrane necks as observed by light microscopy in
(a) and schematically depicted in (b). The scale bar in (a) is 5 μm, which implies the
small-sphere radius Rs = 1.6 μm and the large-sphere radius Rl = 4 μm as well as the
effective neck curvature M = +0.44/ mls

eff as follows from Eq. (9); and (c,d) In-budded
two-sphere shapes with negative membrane necks. The scale bar in (c) is again 5 μm
which leads to the small-sphere radius Rs = 2.5 μm and the large scale radius
Rl = 7.9 μm as well as to M = 0.14/ mls

eff . The red arrows in (b) and (d) indicate the
constriction forces acting against the closed membrane necks.
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f f m M8 ( ) 0 for positive necksijpos
eff= (14)

and

f f M m8 ( ) 0 for negative necks.ijneg
eff= (15)

The constriction forces fpos and fneg are indicated by the red arrows in Fig. 3b
and Fig. 3d, respectively.

2.3 Controlled shape remodeling of giant vesicles
Both the stability conditions for closed necks and the constriction forces at
these necks depend on the spontaneous curvature m. Thus, to investigate
vesicle shapes with closed necks experimentally, one needs a method to
control the spontaneous curvature in a quantitative manner. Such a
method, which is based on the binding of His-tagged proteins to NTA-
anchor lipids, has been recently developed (Steinkühler et al., 2020).

2.3.1 Low density of membrane bound GFP
The experiments were performed with exterior solutions of His-tagged
GFP as well as with 1 mol% or 0.1 mol% anchor lipids in the lipid bilayers.
For 1 mol%, the nanomolar GFP concentration X was varied within the
range 0 < X ≤ 23.4 nM. For 0.1 mol% anchor lipids, the GFP concentra-
tion was varied up to X= 39 nM. In all cases, the membrane-bound GFP
molecules had an average separation that was much larger than their lateral
size of about 3 nm (Arpino et al., 2012), which implies that the vesicle
membranes in Steinkühler et al. (2020) explored the dilute regime of
membrane-bound proteins as indicated in Fig. 4.

Fig. 4 Green fluorescent protein (GFP) molecules bound to the outer leaflet of a lipid
bilayer. Each GFP has a His-tag which binds to an NTA-anchor lipid (orange head-
group). The average separation of the membrane-bound GFPs studied in Steinkühler
et al. (2020) was at least 25 nm, which is much larger than the GFP’s lateral size of
about 3 nm.
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The membrane-bound GFP molecules generate a surprisingly large
spontaneous curvature m that was measured to be (Steinkühler et al., 2020)

m
X

m nM
27 nm= = ×

(16)

where Γ is the GFP coverage of the outer membrane leaflet in units of
membrane-bound molecules per area. The prefactor α is equal to α= 0.186
for 0.1 mol% and α= 1.86 for 1 mol% anchor lipids.

2.3.2 Shape parameters and morphology diagram
The morphology diagram of GUVs with membrane-bound GFP can now
be determined experimentally (i) by changing the volume-to-area ratio v
via the osmotic conditions and (ii) by controlling the spontaneous curva-
ture m mR¯ ve= via the concentration X of His-tagged GFP in the exterior
aqueous solution. The morphology diagram obtained in this manner is
displayed in Fig. 5a for positive spontaneous curvature. The diagram
contains the stability regime for the two-sphere vesicles with a positive

Fig. 5 (a) Morphology diagram of giant vesicles as a function of rescaled spontaneous
curvature m mR¯ = ve and volume-to-area ratio v. Two-sphere vesicles with positive
membrane necks are stable between the two dashed lines of limit shapes L1+1 and L2*

(blue). The latter subregion contains the dash-dotted line, at which the spherical out-
bud becomes unstable and transforms into a prolate out-bud. The shapes denoted by
A, B, and C correspond to three GUVs in the absence of GFP. Adding GFP to the
exterior solution, the three GUVs transform into the dumbbell shapes A′, B′, and C′;
and (b) Confocal images of the six vesicle shapes A, B, and C (left column) as well
as A′, B′, and C′ (right column). The white arrows indicate the closed membrane
necks (Steinkühler et al., 2020).
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neck. This stability regime is bounded by two lines of limit shapes, denoted
by L1+1 and L2⁎. The limit shapes L1+1 consist of one large and one small
sphere, with two different mean curvaturesMl = 1/Rl andMs = 1/Rs> Ml,
which represent two distinct roots of the quadratic shape equation for the
mean curvature of a spherical membrane segment. The limit shapes L2⁎ are
formed by two equally sized spheres with identical mean curvatures
Ml=Ms=M⁎, which correspond to degenerate double roots of the
quadratic shape equation (Lipowsky, 2022, 2022a).

When we leave the stability regime across the line L1+1 or across the
line L2⁎, the closed membrane neck opens up. Within the stability regime,
the two-sphere shapes represent persistent shapes that depend only on v and
are independent of m̄. However, the bending energy Ebe of a given two-
sphere shape increases with increasing spontaneous curvature m̄, which
eventually leads to the fission of the membrane neck as described further
below in Section 5.4.

2.3.3 Control experiments with other fluorophores
The morphology diagram displayed in Fig. 5 has been obtained for His-
tagged GFP bound to NTA anchor lipids. Qualitatively similar results have
been observed for other His-tagged proteins such as His-tagged iLid bound
to the same anchor lipids (Steinkühler et al., 2020). iLid belongs to a
particularly interesting class of proteins, which are able to form photo-
switchable protein dimers (Bartelt et al., 2018). Another, much smaller
fluorophore provided by His-tagged FITC has also been studied (Pramanik
et al., 2022). The experiments on His-tagged FITC turned out to be more
difficult than expected because the fluorescence of FITC is strongly
quenched by the anchor lipids which bind the fluorophores via Ni2+ ions.
Furthermore, the fluorescence of FITC is also observed to be strongly pH-
dependent (Pramanik et al., 2022).

2.4 Two-sphere shapes and condensate droplets
As described in the previous subsections, two-sphere shapes of giant vesicles
can be formed when the two leaflets of the vesicle membranes are exposed to
different aqueous solutions. One example for this solution asymmetry is
provided by interior sucrose solutions and exterior glucose solutions as in
Fig. 1. Another example for such a solution asymmetry is provided by
exterior solutions of His-tagged GFP, which binds to the outer leaflet of the
membranes, as in Fig. 5. Two-sphere shapes of giant vesicles have also been
observed (Li et al., 2012b; Dimova & Lipowsky, 2017) when the vesicle
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membranes are exposed to aqueous solutions of macromolecules, which
undergo liquid-liquid phase separateion into aqueous two-phase systems and
lead to the formation of condensate droplets (Lipowsky, 2023).

2.4.1 Condensate droplets from aqueous phase separation
The term ‘condensate droplet’ is used to emphasize that the droplet is
enclosed by a liquid–liquid rather than by a liquid–gas interface. Aqueous
two-phase (or biphasic) systems based on biopolymers such as PEG and
dextran have been applied for several decades in biochemical analysis and
biotechnology (Albertsson, 1986) and are intimately related to water-in-
water emulsions (Esquena, 2016). The aqueous phase separation leads to
the formation of two coexisting liquid phases, denoted here by α and β.

The aqueous phase separation of PEG-dextran solutions provides an
example for segregative phase separation, in which one phase is enriched in
one macromolecular component such as PEG whereas the other phase is
enriched in the other macromolecular component such as dextran. The
segregative behavior implies that the different species of macromolecules
effectively repel each other. Another type of aqueous two-phase system is
created by associative phase separation, for which one phase is enriched in
the macromolecular components whereas the other phase represents a
dilute solution of the macromolecules (Crowe & Keating, 2018;
Bungenberg de Jong & Kruyt, 1929; Sing, 2017; Li et al., 2018). The
associative behavior implies that the different macromolecular species
effectively attract each other. Associative phase separation is observed, for
instance, in solutions of two, oppositely charged polyelectrolytes (Sing,
2017; Li et al., 2018),

Condensate droplets have also been observed in living cells where they
provide separate liquid compartments which are not bounded by mem-
branes. Examples for these condensates include germ P-bodies (Brangwynne
et al., 2009; Fritsch et al., 2021), nucleoli (Berry et al., 2015), and stress
granules (Jain et al., 2016). These biomolecular condensates are believed to
form via liquid–liquid phase separation in the cytoplasm (Brangwynne et al.,
2009; Banani et al., 2017) and can be reconstituted in vitro (Li et al., 2012a;
Patel et al., 2015; Lin et al., 2015; Molliex et al., 2015). They are enriched in
certain types of proteins that have intrinsically disordered domains and
interact via multivalent macromolecular interactions (Han et al., 2012; Lin
et al., 2015; Molliex et al., 2015; Guo & Shorter, 2015; Banani et al., 2017).
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2.4.2 Geometry of vesicle-droplet systems
When a condensate droplet comes into contact with a vesicle membrane,
attractive interactions between droplet and membrane lead to the adhesion
of the droplet to the membrane. The geometry of these vesicle-droplet
systems involves three liquid phases α, β, and γ as shown in Fig. 6. The two
phases α and β are formed by segregative or associative liquid–liquid phase
separation and are separated by the αβ interface. When the droplet adheres
to the membrane, the αβ interface forms a contact line with the membrane,
which divides the membrane up into two segments, the αγ segment
exposed to the α and γ phases as well as the βγ segment in contact with the
β and γ phases. In Fig. 6a and 6b, the coexisting phases α and β are located
outside and inside the vesicle, respectively. Therefore, Fig. 6a displays one
exterior β droplet in contact with the outer leaflet of the bilayer membrane
whereas Fig. 6b shows one interior α and one interior β droplet in contact
with the inner leaflet of the membrane.

2.4.3 Morphological responses of vesicle membranes
The adhesion of the condensate droplet generates strong morphological
responses of the vesicle membrane. One example for this response is

Fig. 6 Geometry of vesicle-droplet systems, which involve three liquid phases α
(white), β (green), and γ (light red). The phases α and β represent two coexisting
phases that arise via segregative or associative liquid–liquid phase separation; the γ
phase is an inert spectator phase: (a) Phase separation of the exterior solution and
adhesion of an exterior β droplet to the outer leaflet of the vesicle membrane; and (b)
Phase separation of the interior solution creating one interior α and one interior β
droplet, both of which are in contact with the inner leaflet of the membrane. For
partial wetting as shown here, the αβ interface (dashed green line) and the vesicle
membrane form a contact line (open circles), which partitions the vesicle membrane
into the αγ and βγ segments. (Lipowsky, 2023).
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provided by the apparent kinks, which are observed in the optical
microscope along the contact line between the adhering droplet and the
vesicle membrane, as schematically shown in Fig. 6. On nanoscopic scales,
these kinks represent membrane segments with a very high curvature,
caused by the capillary forces that the αβ interface exerts onto the contact
line. (Kusumaatmaja et al., 2009; Lipowsky, 2018) Another, particularly
interesting response is provided by the complete engulfment of the droplet
by the membrane as displayed in Fig. 7. (Li et al., 2012b; Dimova &
Lipowsky, 2017).

2.4.4 Complete engulfment of condensate droplets
The complete engulfment of an exterior β droplet as depicted in Fig. 7a
leads to a spherical in-bud. The complete engulfment of the interior α and
β droplets leads to spherical out-buds as in Fig. 7c. For both morphologies
of the vesicle-droplet system, the closed membrane neck has been formed
via the closure of the contact line. Therefore, these closed necks represents
contact line necks. One consequence of this geometry is that the con-
striction force f acting against the contact line neck is enhanced by the line
tension λcl of the contact line. More precisely, the presence of the contact

Fig. 7 Complete engulfment of condensate droplets (green) by GUV membranes
(red): (a) Two-sphere shape of a vesicle membrane that engulfs the β droplet via an in-
bud; (b) Schematic drawing for the optical image in (a), indicating the negative
contact line neck between the two spheres; (c) Two-sphere shape of the membrane,
which forms two spherical segments around both the β (green) and the α (black)
droplet, connected by a positive contact line neck (Dimova & Lipowsky, 2017); and (d)
Schematic drawing for the optical image in (c). For complete engulfment, the free
energy of the vesicle-droplet system is strongly reduced by eliminating the αβ
interface and replacing it by a closed contact line neck. Reprinted with permission
from Ref. Li, Y., Kusumaatmaja, H., Lipowsky, R., & Dimova, R. (2012b). Wetting-induced
budding of vesicles in contact with several aqueous phases. The Journal of Physical
Chemistry B, 116, 1819–1823. [Copyright 2012, American Chemical Society].
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line within the membrane neck increases the constriction forces fpos and fneg
in Eqs. (14) and (15) by Δfcl = 2πλcl for both positive and negative
membrane necks.

2.5 Multispherical shapes of giant vesicles
The two-sphere shapes in Figs. 1–3, 5, and 7 represent the simplest
examples for multispherical shapes. In general, GUVs can form a large
variety of multispheres consisting of more than two spheres connected by
more than one membrane neck (Lipowsky, 2014, 2018a; Bhatia et al.,
2020; Lipowsky, 2022). Some optical microscopy images of such multi-
spheres are displayed in Fig. 8.

It will be useful to distinguish positive multispheres as formed by vesicle
membranes with positive spontaneous curvature from negative multispheres
for membranes with negative spontaneous curvature. As will be shown
below, each positive multisphere exhibits only positive membrane necks
with neck curvature M 0ij

eff > whereas each negative multisphere involves
only negative necks with neck curvature M 0ij

eff < .

Fig. 8 Positive and negative multispheres of giant vesicles: (a) Positive (1 + 3)-sphere
consisting of one large and one out-budded chain of three small spheres; (b) Negative
(1 + 3)-sphere with one large and one in-budded chain of three small spheres; (c)
Positive (1 + 6)-sphere with one large sphere and one out-budded chain of six small
spheres; (d) Negative (1 + 6)-sphere with one large sphere and one in-budded chain of
six small spheres; (e) Positive (2 + 1)-sphere consisting of two large and one small
spheres; (f) Positive (2 + 2)-sphere with two large and two small spheres; and (g)
Positive (24*)-sphere consisting of 24 equally sized spheres. All scale bars are
10 μm (Bhatia et al., 2020).
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2.5.1 Positive multispheres for positive spontaneous curvature
For positive spontaneous curvatures, the giant vesicles can form (Nl +Ns)-
multispheres consisting of Nl large spheres and Ns small spheres with Nl ≥ 1
and Ns≥ 1. Examples for such multispheres are displayed in Fig. 8a,c,e-g.
Inspection of these panels shows that, for each (Nl +Ns)-multisphere, all
individual spheres have a positive mean curvature and all closed membrane
necks are positive in the sense that they have a positive neck curvature
M 0ij

eff > . Such a positive neck is stably closed for sufficiently large and
positive spontaneous curvatures m, which exceed the neck curvature Mij

eff

as in Eq. (12), and is then compressed by the constriction force f = fpos as
given by Eq. (14).

For each positive multisphere in Fig. 8a,c,e, and f, all large spheres have
the same mean curvature Ml = 1/Rl and all small spheres have the same
mean curvature Ms =+ 1/Rs. Each negative multisphere as in Fig. 8b and d
consists of one large sphere with Ml = 1/Rl and a variable number of
inverted small spheres with Ms =−1/Rs. As long as Rl > Rs, the large and
small spheres correspond to two distinct roots of the quadratic shape
equation for the mean curvature of a spherical segment. When the shape
equation has a degenerate double root, one obtains positive (N⁎ )-multi-
spheres with N⁎ equally sized spheres as in Fig. 8g with N⁎ = 24.

2.5.2 Morphology diagrams for positive multispheres
Each (Nl +Ns)-multisphere represents a stable vesicle morphology for a
certain stability regime within the morphology diagram. Some stability
regimes for positive multispheres are displayed in Fig. 9. Each stability
regime is bounded by two lines of limit shapes, which are denoted by
LNl+Ns and LN⁎ with N⁎ =Nl +Ns. Because the multispheres involve
different types of membrane necks connecting different pairs of adjacent
spheres, the limit shapes LNl+Ns are further specified by the superscript ls
and ss. The superscript ls implies that the most unstable necks are provided
by ls-necks. The superscript ss is used to indicate that the most unstable
necks correspond to ss-necks.

2.5.3 Negative multispheres for negative spontaneous curvature
For vesicle membranes with negative spontaneous curvature, the mem-
branes can form (1 +Ns)-multispheres consisting of one large sphere with
positive mean curvature Ml = 1/Rl and Ns small, inverted spheres with
negative mean curvature Ms =−1/Rs. Examples for the latter type of
multispheres are displayed in Fig. 8b and d. Inspection of this figure shows
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that all individual spheres of the (1 +Ns)-multisphere are connected by
negative membrane necks in the sense that they have a negative neck
curvature M 0ij

eff < . Such a negative neck is stably closed for sufficiently
large and negative spontaneous curvatures m, which are more negative than
Mij

eff as in Eq. (13). The constriction force f = fneg acting against this neck is
given by Eq. (15).

3. Shape transformations of nanovesicles

Lipid bilayers and biomembranes form nanovesicles with a diameter
between 20 and 200 nm. Electron microscopy studies have shown that
these vesicles can attain both spherical and nonspherical shapes. However,
the insight obtained from electron microscopy studies about the shapes of
nanovesicles is quite limited because the corresponding images provide
only a single snapshot of each vesicle. In contrast, molecular dynamics
simulations can monitor the morphologies of individual nanovesicles as we
vary a certain control parameter such as the vesicle volume. Recently, we

Fig. 9 Stability regimes (light blue) for positive multispheres, formed by vesicle
membranes with positive spontaneous curvature. Each stability regime represents a
subregion of the morphology diagram as defined by the rescaled spontaneous cur-
vature m̄ 0 and by the volume-to-area ratio v. Furthermore, each stability regime is
bounded by two lines of limit shapes, LNl+Ns and LN* with N* equally sized spheres. The
red and orange data points represent the values for v and m̄ as obtained experi-
mentally for two different sugar asymmetries across the bilayers. (Bhatia et al., 2020).
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studied how nanovesicles respond to such volume changes mimicking the
experimental procedure of osmotic deflation. As a result, we found that
spherical nanovesicles can transform into a multitude of nonspherical shapes
as illustrated by the simulaton snapshots in Figs. 10 and 11 (Ghosh et al.,
2019). For the simulations, we used coarse-grained molecular dynamics as
provided by dissipative particle dynamics (Shillcock & Lipowsky, 2002,
2005).

The shape transformations of the nanovesicle in Fig. 10 resemble the
remodeling of the GUV in Fig. 1. Likewise, the nanovesicle shapes in
Fig. 11 look similar to those of the GUV in Fig. 2. Thus, the vesicle
volume turns out to be an important control parameter for both giant

Fig. 10 Shape transformation of a spherical nanovesicle into a dumbbell shape with a
closed membrane neck. The first panel with volume parameter ν = 1 displays the initial
spherical shape, assembled from Nol = 6300 lipids in the outer leaflet and Nil = 3800
lipids in the inner leaflet, which leads to a compressed outer leaflet and a stretched
inner leaflet, see Fig. 13 further below. Reducing the volume from ν = 1 to ν0 = 0.978,
the nanovesicle attains a state with vanishing bilayer tension. A further reduction of
the vesicle volume to ν ≤ 0.9 leads to dumbbell shapes with closed membrane necks.
The lipid headgroups are green, the hydrophobic chains are grey. (Ghosh et al., 2019).

Fig. 11 Shape transformation of a spherical nanovesicle into a stomatocyte shape.
The first panel with volume parameter ν = 1 displays the initial spherical shape,
assembled from Nol = 5700 lipids in the outer leaflet and Nil = 4400 lipids in the inner
leaflet, which leads to a stretched outer and a compressed inner leaflet, see Fig. 13
below. Compared to Fig. 10, 600 lipids have been reshuffled from the outer to the
inner leaflet. A vesicle bilayer with vanishing bilayer tension is obtained for volume
parameter ν0 = 0.966. A further reduction of the vesicle volume to ν ≤ 0.8 leads to
stomatocyte shapes with membrane invaginations. Same color code as in Fig. 10.
(Ghosh et al., 2019).
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vesicles and nanovesicles but the spontaneous curvature of GUV mem-
branes is replaced by the leaflet tensions and the stress asymmetry of
nanovesicle membranes.

3.1 Volume parameter for nanovesicles
In the experimental studies of GUVs, the vesicle volume is typically
changed by osmotic deflation and inflation. In the coarse-grained mole-
cular dynamics simulations used to obtain the snapshots in Figs. 10 and 11,
the vesicle volume was varied by changing the number NW of water beads
enclosed by the inner leaflet of the vesicle membrane. Each water bead
with diameter d ≃ 0.8 nm represents three water molecules which implies
the vesicle volume V ≡ NW d3/3. To monitor changes of the vesicle
volume, the rescaled volume ν was used which is defined by

N

N
W

W
isp (17)

where NW
isp is the number of water beads enclosed by the initial spherical

vesicle. Thus, the initial vesicle is characterized by ν= 1 and any volume

reduction with N NW W
isp< leads to ν < 1. Monitoring volume changes via

the parameter ν is convenient because we can directly change the number
NW of water beads within the vesicle and thus compute the value of ν
without the necessity to determine any membrane surface.

3.2 Leaflet tensions and stress asymmetry
The lipid numbers Nol and Nil assembled in the outer and inner leaflet of
the vesicle bilayer provide useful parameters, which can be directly con-
trolled during the simulation setup. These lipid numbers determine the
leaflet tensions Σol and Σil within the two leaflets. The sum Σol + Σil of the
two leaflet tensions is equal to the bilayer tension Σ.

3.2.1 Assembly of planar bilayers and nanovesicles
In water, lipids assemble into molecular bilayers as shown in Fig. 12. The
headgroups of the bilayers form two interfaces with the surrounding
aqueous solutions, thereby shielding the hydrophobic chains from these
solutions. In Fig. 12a, we see a planar bilayer spanning the simulation box
with periodic boundary conditions. If we considered a finite bilayer patch
completely immersed in an aqueous solution, the hydrophobic core of the
bilayer would come into contact with this solution, and the tension of this
bilayer edge would make a large positive contribution to the system’s free
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energy. To avoid these bilayer edges, the planar bilayer patch will close up
to form a nanovesicle as in Fig. 12b.

In Fig. 12a and b, the molecular interface between the two leaflets of
the lipid bilayer is clearly visible because the lipids in one leaflet are
depicted with red headgroups and yellow chains whereas the lipids in the
other leaflet have green headgroups and blue chains, even though all lipids
have the same molecular architecture. Thus, the interface between the two
leaflets separates the yellow from the blue chains.

The midsurface of a lipid bilayer as obtained from the molecular
interface between the two leaflets must be distingulshed both from the
bilayer’s “neutral surface” and from the “surface of tension” for liquid-
liquid interfaces. The “neutral surface” is defined by its elastic state of being
neither stretched nor compressed during an elastic deformation of the
bilayer membrane (Kozlov et al.. 1989; Winterhalter & Helfrich, 1992;
Templer, 1995), as originally described for solid plates and shells (Landau &
Lifshitz, 1986).

The “surface of tension” for liquid-liquid interfaces, on the other hand,
corresponds to a Gibbs dividing surface, which is used to reconcile the
mechanical and thermodynamic definitions of interfacial tension (Gibbs,
The Scientific Papers, 1906; Buff, 1956; Boruvka & Neumann, 1977;
Rowlinson & Widom, 1989). However, in contrast to interfacial tension,

Fig. 12 Leaflets of lipid bilayers visualized by different colors: (a) Oblique view onto a
planar lipid bilayer consisting of 841 lipid molecules in each leaflet; and (b) Half cut
view of a nanovesicle with Nol = 1685 lipids in its outer and Nil = 840 lipids in its inner
leaflet, which sum up to the total lipid number Nol + Nil = 2525. The molecular
interface between the two leaflets is located between the yellow and blue lipid chains.
In both panels a and b, the two leaflets are tensionless which implies that each lipid
attains its optimal area and its optimal volume. The water beads around the lipid
bilayers are taken to be transparent for visual clarity (Zamaletdinov et al., 2023).
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the thermodynamic route to membrane tension is rather problematic.
Indeed, a sufficiently large membrane segment that is stretched by a
positive mechanical tension can always lower its free energy by rupture and
pore formation. Furthermore, a fluid and tensionless membrane starts to
behave like a random surface without any average orientation as soon as its
size exceeds the so-called persistence length (de Gennes & Taupin, 1982;
Gompper & Kroll, 1995). Therefore, the thermodynamic definition of
membrane tension, which involves the limit of large membrane segments,
is beset with conceptual difficulties. In order to avoid these difficulties, our
computational studies were based on the mechanical definition of the
bilayer tension as provided by Eqs. (A3) and (A6) in Appendix A without a
Gibbs dividing surface.

3.2.2 Positive and negative leaflet tensions
Each bilayer leaflet can experience a positive or negative leaflet tension,
depending on the number of lipids that are assembled into the leaflet. A
positive leaflet tension implies that the leaflet is stretched whereas a
negative leaflet tension describes a compressed leaflet. In order to avoid
membrane rupture, the osmotic conditions in the aqueous solutions sur-
rounding the bilayer membrane must be adjusted in such a way that the
bilayer is subject to a relatively low bilayer tension. However, even for a
tensionless bilayer with vanishing bilayer tension Σ = Σol + Σil = 0, the two
leaflets of the bilayer may still experience significant leaflet tensions.
Indeed, a tensionless bilayer with Σ= 0 only implies that Σil =−Σol. The
latter relation can be fulfilled whenever one leaflet is stretched and the
other leaflet is compressed by the opposite leaflet tension.

On the other hand, if both leaflet tensions, Σol and Σol, vanish, the
bilayer tension Σ = Σol + Σil must vanish as well. The special bilayer state
with vanishing leaflet tensions, Σol = Σil = 0 defines a unique reference state
for all bilayers assembled with the same total number N =Nol +Nil of lipids
in the two leaflets. In this reference state, the lipids are packed in an optimal
manner.

3.2.3 Computation of leaflet tensions
The bilayer tension Σ can be obtained from the stress profile across the
bilayer by integrating this profile along the coordinate perpendicular to
the bilayer membrane as described in Appendix A. To actually compute
the leaflet tensions Σol and Σil, we need to identify the spatial regions that
are, on average, occupied by the two leaflets and to decompose the overall
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bilayer tension into two separate contributions from the two leaflets. The
average position of the leaflet-leaflet interface defines the midsurface for
both planar bilayers and spherical nanovesicles. The position of the mid-
surface is easy to find for symmetric planar bilayers but requires some
computational effort in all other cases, both for the midsurfaces of asym-
metric planar bilayers and for the midsurfaces of vesicle bilayers.

During the last couple of years, several protocols have been developed
to determine the midsurface of a lipid bilayer (Rozycki & Lipowsky, 2015;
Sreekumari & Lipowsky, 2018; Ghosh et al., 2019; Miettinen & Lipowsky,
2019; Sreekumari & Lipowsky, 2022; Lipowsky et al., 2023; Zamaletdinov
et al., 2023). The CHAIN protocol is based on the density profile of the
chain beads (Rozycki & Lipowsky, 2015; Sreekumari & Lipowsky, 2018;
Ghosh et al., 2019; Sreekumari & Lipowsky, 2022; Lipowsky et al., 2023).
Two alternative protocols are the HEAD protocol (Ghosh et al., 2019),
which starts from the two head group layers, and the COM protocol
(Ghosh et al., 2019; Miettinen & Lipowsky 2019), which computes the
center-of-mass of the lipid bilayer. All three protocols were systematically
compared in Ref Ghosh et al. (2019) and shown to differ by at most 3% for
the midsurface of a vesicle bilayer. Another useful protocol, which has been
introduced quite recently, is the VORON protocol, which is based on the
computation of volumes per lipid via Voronoi tessellation (Zamaletdinov
et al., 2023). The CHAIN and VORON protocols are described in more
detail in Appendix B.

3.2.4 Dependence of leaflet tensions on lipid numbers
The simulation snapshots in Figs. 10 and 11 display vesicles, which are
assembled from the same total number of lipids, Nol +Nil = 10100. The
corresponding simulation data for the leaflet tensions Σol and Σil are dis-
played in Fig. 13 as functions of the lipid number Nol in the outer leaflet.
The data in Fig. 13a are obtained for fixed volume parameter ν= 1,
corresponding to the initial spherical vesicles in Figs. 10 and 11. The data
in Fig. 13b represent the leaflet tensions for volume parameter ν= ν0,
for which the bilayer tension vanishes. Therefore, the bilayer tension
Σ = Σol + Σil is close to zero in Fig. 13b but has a finite value in Fig. 13a.
All data represent simulation results obtained via the CHAIN protocol.

In both panels of Fig. 13, the lipid number Nol is increased by
reshuffling lipids from the inner to the outer leaflet for fixed total lipid
number Nol +Nil = 10100. This reshuffling increases the lipid density in
the outer leaflet and decreases this density in the inner leaflet. As a
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consequence, the outer leaflet becomes more compressed, which leads to a
reduction of the outer leaflet tension Σol, and the inner leaflet becomes
more stretched, which implies an increase in the inner leaflet tension Σil. In
Fig. 13a, the two data sets for the leaflet tensions Σol and Σil are well fitted
by two straight lines that cross each other at Nol =Nol

⁎ = 5963. At this
crossing point, the two leaflet tensions are equal to each other with
Σil = Σol ≃ 0.18 kBT/d

2. In Fig. 13b, the two data sets for Σol and Σil cross
each other at Nol =Nol

⁎ = 5993, where both leaflet tensions are close to
zero.

The data in Fig. 13 are obtained from several statistically independent
simulations of five different spherical vesicles, corresponding to five dif-
ferent lipid numbers Nol and Nil = 10100 −Nol. In addition, the four data
points in Fig. 13a are for vesicles with volume ν= 1 whereas the five data
points in Fig. 13b are for vesicles with volume ν= ν0 < 1 and vanishing
bilayer tension. For each of these nine vesicles, the area per lipid, ail, in
the inner leaflet was larger than the area per lipid, aol, in the outer
leaflet (Ghosh et al., 2019; Sreekumari & Lipowsky, 2022; Zamaletdinov
et al., 2023).

Fig. 13 Leaflet tensions Σil and Σol of the inner and outer leaflets for vesicle bilayers
with constant total lipid number Nil + Nol = 10100. The lipid number Nol is increased by
reshuffling lipids from the inner to the outer leaflet: Spherical vesicles with volume
parameter ν = 1 in (a) and ν = ν0 < 1 in (b). For ν = ν0, the bilayer tension Σ = Σol + Σil is
close to zero. The crossing points between the two leaflet tensions are estimated by
linear interpolation, which leads to Nol = N*ol = 5963 in (a) and to Nol = N *ol = 5993 in
(b). The reference state with tensionless leaflets is obtained close to the crossing point
in (b). For all data, the midsurface of the bilayers was calculated using the CHAIN
protocol (Ghosh et al., 2019).
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3.2.5 Two-dimensional leaflet tension space
The two leaflet tensions Σil and Σol define a two-dimensional parameter space
for nanovesicles. This space is depicted in Fig. 14 for vesicle bilayers with a
total number of Nol +Nil = 2525 lipids. The origin (Σil, Σol) = (0, 0) of this
leaflet tension space defines the relaxed reference state with tensionless leaflets.
This reference state is obtained for a vesicle bilayer with Nil = 840 lipids in the
inner and Nol = 1685 lipids in the outer leaflet (Zamaletdinov et al., 2023).

To characterize the elastic response of the reference state, it will be
useful to distinguish two types of elastic deformations, corresponding to the
black and green data in Fig. 14. The black data in Fig. 14 describe elastic
deformations of the reference state with

(opposite leaflet tensions, OLTs).il ol= (18)

Fig. 14 Two-dimensional leaflet tension space defined by the inner and outer leaflet
tensions Σil and Σol for vesicle bilayers with constant total lipid number Nil +Nol = 2525.
Negative and positive leaflet tensions describe compressed and stretched leaflets. The
reference state with tensionless leaflets, corresponding to Σil = Σol = 0, is obtained for a
vesicle bilayer with Nil = 840 lipids in the inner leaflet and Nol = 1685 lipids in the outer
one. The black data represent elastic OLT deformations obtained from the reference state
by reshuffling lipids from one leaflet to the other and adjusting the vesicle volume to
obtain tensionless bilayers with Σ = Σil + Σol = 0. The green data represent the elastic
deformations arising from changes in vesicle volume, corresponding to vesicle inflation or
deflation (VID). All data obtained via the VORON protocol (Zamaletdinov et al., 2023).
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The OLT states are located on the perpendicular diagonal which is
orthogonal to the main diagonal in Fig. 14. All OLT states can be obtained
from the reference state by reshuffling lipids from one leaflet to the other,
keeping the total lipid number Nll +Nul constant and imposing the con-
straint of vanishing bilayer tension Σ = Σol + Σil = 0. As a consequence, one
leaflet is compressed by a negative leaflet tension whereas the other leaflet is
stretched by a positive leaflet tension.

The green data in Fig. 14 represent the leaflet tensions arising from
changes in the vesicle volume, corresponding to vesicle inflation or
deflation (VID). To generate the green VID data, we start again from
the reference state with Σil = Σol = 0 but now change the vesicle volume
in order to increase or decrease the bilayer tension, thereby mimicking
the experimental procedure of osmotic inflation or deflation. It is
interesting to note that the green data do not follow the main diagonal.
Therefore, during a VID step, both leaflet tensions are changed by
different amounts.

3.2.6 Voronoi tessellation and volume per lipid
The VORON protocol, used to obtain the leaflet tensions in Fig. 14, is
based on three-dimensional Voronoi tessellation, which assigns a
polyhedral cell to each bead (Zamaletdinov et al., 2023). This cell is
defined by the requirement that all points in the cell are closer to the
center of the chosen bead than to the center of any other bead. The
tensionless leaflets obtained via the VORON protocol have essentially
the same volume per lipid in both leaflets, irrespective of the size and
curvature of the nanovesicles (Zamaletdinov et al., 2023). In contrast,
the optimal lipid areas are different for the two leaflets and depend on
the vesicle size. In fact, the area per lipid in the inner leaflet is always
found to be larger than the area per lipid in the outer leaflet (Ghosh
et al., 2019; Sreekumari & Lipowsky, 2022; Zamaletdinov et al., 2023).
Thus, for each nanovesicle, the inner leaflet is more loosely packed
compared to the outer leaflet. This difference in molecular packing is
consistent with the intuitive view that lipids with two hydrocarbon
chains prefer to reside in a weakly rather than in a strongly curved
surface. Therefore, when these lipids are forced to pack into the more
highly curved inner leaflet, they experience an increased “geometric
frustration” which leads to a looser molecular packing and to an
increased area per lipid.
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3.2.7 Stress asymmetry of vesicle bilayers
The stress asymmetry ΔΣve between the two leaflet tensions of a vesicle
bilayer is defined by (Sreekumari & Lipowsky, 2022; Lipowsky et al., 2023)

r s r r s rd ( ) d ( )ol il
r

r r

ve
0mid

max mid

=
(19)

where the second equality follows from the integral expressions for the
leaflet tensions in Eq. (B1).

The stress asymmetry ΔΣ in Eq. (19) vanishes for all states of the vesicle
bilayer with equal leaflet tensions Σil = Σol. However, these equal leaflet
tension states are not easy to determine for nanovesicles in terms of the
corresponding lipid numbers Nil and Nol of the inner and outer leaflets
because, in contrast to symmetric planar bilayers, these lipid numbers are not
related by any symmetry. Thus, for vesicle bilayers with Nil +Nol = 2525 as
depicted in Fig. 12b, the reference state with tensionless leaflets is obtained
for Nil = 840 lipids in the inner and Nol = 1685 lipids in the outer leaflet.

All OLT states of the vesicle bilayer, corresponding to the black data in
Fig. 14, exhibit a nonzero stress asymmetry ΔΣve because the OLT states
are characterized by one stretched and one compressed leaflet. In fact, apart
from the equal leaflet tension states along the main diagonal of the two-
dimensional leaflet tension space in Fig. 14, all points (Σil, Σol) of this space
lead to a nonzero stress asymmetry. Stress asymmetries of planar bilayers
have also been studied by Deserno and coworkers (Hossein & Deserno
2020; Foley & Deserno, 2020; Varma & Deserno, 2022), who used the
term “differential stress” instead of “stress asymmetry”.

4. Instabilities of lipid bilayers

The vesicle bilayers discussed so far experienced moderate leaflet
tensions Σol and Σil, see Fig. 13, and thus small stress asymmetries ΔΣve

= Σol − Σil. In this regime of small ΔΣve, the phospholipids do not undergo
flip-flops on the time scales of the simulations (Ghosh et al., 2019). This
stability of the lipid bilayers is no longer observed when we consider an
extended range of leaflet tensions and larger stress asymmetries. Indeed, for
sufficiently large stress asymmetries, the phospholipids start to undergo flip-
flops between the two leaflets and the bilayers exhibit structural instabilities
even for vanishing bilayer tension.
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4.1 Stability regime of vesicle bilayers
To illustrate the stability and instability of vesicle bilayers, we consider
bilayers that are assembled from a fixed total number of 2875 lipids, with
Nil lipids in the inner leaflet and Nol = 2875 −Nil lipids in the outer
leaflet. We adjust the vesicle volume to ν = ν0 so that the bilayer tension
Σ = Σil + Σol is close to zero. For all simulations described in the present
section, the vesicle volume has the value ν = ν0. Using the CHAIN
protocol for the average position r = rmid of the leaflet-leaflet interface, we
obtain the leaflet tensions Σol and Σil as plotted in Fig. 15 as functions of
the lipid number Nol in the outer leaflet.

Inspection of Fig. 15 shows that both leaflet tensions vanish when the
outer leaflet contains between 1893 and 1935 lipids. Linear interpolation
then leads to tensionless leaflets for Nol = 1921 lipids in the outer leaflet and
Nil = 954 lipids in the inner one. Thus, for these nanovesicles, the lipid
number in the tensionless outer leaflet is more than twice as large as the one

Fig. 15 Stability and instability regimes for nanovesicles assembled for total lipid
number Nol + Nil = 2875. The CHAIN protocol was used to compute the outer leaflet
tension Σol (blue) and the inner leaflet tension Σil (red) versus the lipid number Nol in
the outer leaflet. Both leaflet tensions vanish for Nol = 1921 and Nil = 954 (vertical
dashed line), which defines the relaxed reference state of the nanovesicles. The green
data represent the bilayer tension Σ = Σol + Σil, which is close to zero. During the run
time of 12.5 μs, we observed no flip-flops within the stability regime (white), corre-
sponding to 2095 ≥ Nol ≥ 1775. The left vertical line at Nol = 2105 represents the
instability line at which the lipids start to undergo flip-flops from the compressed
outer to the stretched inner leaflet. The right vertical line at Nol = 1755 represents the
instability line at which the lipids start to undergo flip-flops from the compressed
inner to the stretched outer leaflet (Sreekumari & Lipowsky, 2022).
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in the tensionless inner leaflet. As a consequence, the area per lipid in the
tensionless outer leaflet is smaller than the area per lipid in the tensionless
inner leaflet, which implies that the tensionless inner leaflet is more loosely
packed than the tensionless outer leaflet.

When we start from the reference state with tensionless leaflets and
reshuffle some lipids between these leaflets, we obtain nonzero leaflet
tensions Σol and Σil. The two leaflets form bilayers that remain stable for the
lipid number range 1775 ≤Nol ≤ 2095 and for the leaflet tension range
1.60 kBT/d

2 ≤ Σol ≤ −1.94 kBT/d
2, as shown by the white stability regime

in Fig. 15. Flip-flops from the compressed inner to the stretched outer
leaflet are observed for Nol ≤ 1755 and Σol ≥ +1.78 kBT/d

2, corresponding
to the right shaded region in Fig. 15. Flip-flops from the compressed outer
to the stretched inner leaflet occur for Nol ≥ 2105 and Σol ≤ −1.97 kBT/d

2,
which defines the left shaded region in Fig. 15. Within these two instability
regimes for Nol< 1755 and Nol> 2105, we also observe structural
instabilities of the lipid bilayers in addition to the flip-flops.

4.2 Stress-induced flip-flops of lipids
We now focus on the left instability regime in Fig. 15, corresponding to
compressed outer leaflets with Σol< 0 and stretched inner leaflets with
Σil> 0. Within this instability regime, the lipids undergo flip-flops from
the outer to the inner leaflets. To determine the kinetic rates, we examined
different ensembles of nanovesicles. Each ensemble consisted of more than
60 vesicles that were initially assembled from the same lipid numbers Nol

and Nil and, thus, experienced the same leaflet tensions as long as they
remained in their initial states. More precisely, the bilayers experienced the
same initial leaflet tensions until time t1, at which the first flip-flop
occurred. The statistics of t1 is described by the cumulative distribution
function Pcdf(t) that represents the probability that the first flip-flop occurs
at time t1 ≤ t. This distribution function is depicted in Fig. 16 for three
ensembles of nanovesicles with tensionless bilayers. All bilayers contain the
same total lipid number Nol +Nil = 2875 but differ in the outer lipid
number Nol.

The cumulative distribution functions in Fig. 16 have a sigmoidal
shape with a point of inflection at intermediate times. This sigmoidal
shape is qualitatively different from the exponential distribution that can
be used to fit the onset of flip-flops in planar bilayers (Sreekumari &
Lipowsky, 2022) Distribution functions with a sigmoidal shape can be
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obtained by generalizing the exponential distributions to Weibull dis-
tributions as provided by (Weibull, 1951)

P t t( ) 1 exp[ ( ) ],k
Wei ve= (20)

which involve stretched exponentials. The Weibull distributions depend
on two parameters, the rate parameter ωve and the dimensionless shape
parameter k > 0. For k = 1, the Weibull distribution in Eq. (20) becomes
identical to the exponential distribution. For k ≠ 1, the empirical Weibull
distribution has been applied to a large variety of different processes
(Rinne, 2008; Laim, 2014).

The inset of Fig. 16 shows that the rate parameter ωve increases
monotonically with the absolute value of the stress asymmetry between the
two leaflet tensions. This behavior demonstrates that the leaflet tensions
and the associated stress asymmetry represent key parameters for the lipid

Fig. 16 Cumulative distribution function Pcdf for the first flip-flop time t1 versus time t
for tensionless bilayers of nanovesicles, assembled from Nol + Nil = 2875 lipids. Three
sets of data are displayed with Nol = 2105 (black circles), Nol = 2125 (red squares), and
Nol = 2150 (blue diamonds) lipids in the outer leaflet, which belong to the left
instability regime in Fig. 15. The three sets of data are well fitted, using least squares,
to Weibull distributions (broken lines) as in Eq. (20), which depend on two parameters,
the shape parameter k and the rate parameter ωve. Each data set represents the
outcome of at least 70 statistically independent simulations. Inset: Monotonic increase
of the rate parameter ωve with the absolute value ∣ΔΣve∣ of the stress asymmetry as
defined by Eq. (19) (Sreekumari & Lipowsky, 2022).
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flip-flops between the two bilayer leaflets. The dashed curves in Fig. 16
represent the best fits to the three data sets as obtained for
Nol = 2105, 2125, and 2150. The rate parameters ωve obtained from these
fits are displayed in the inset of Fig. 16, the shape parameters k corre-
sponding to these fits are k= 2.39, 3.92, and 3.33. (Sreekumari &
Lipowsky, 2022). Because k > 1, the instantaneous flip-flop rate increases
with the age of the metastable state. In mathematical statistics, the instan-
taneous rate is known as the hazard rate and equal to the ratio of the
probability density function dPcdf/dt to the survival probability 1 − Pcdf(t)
(Cox, 1962; Taylor & Karlin, 1998). The only distribution that leads to a
constant and age-independent hazard rate is the exponential distribution.
Therefore, the sigmoidal shape of the cumulative distribution functions as
displayed in Fig. 16 implies ageing of the metastable bilayer states.

4.3 Stress-induced structural instabilities
In addition to the flip-flops, the instability regimes in Fig. 15 lead to
structural instabilities followed by self-healing of the bilayers. One example
is displayed in Fig. 17 which corresponds to the left instability regime in
Fig. 15, characterized by a compressed outer and a stretched inner leaflet.
The vesicle bilayer in Fig. 17 is initially assembled from Nol = 2105 lipids in
the outer and Nil = 770 lipids in the inner leaflet. After adjusting the vesicle
volume to obtain a tensionless bilayer, the outer leaflet is compressed by the
negative leaflet tension Σol =−1.97 kBT/d

2 whereas the inner leaflet is
stretched by the positive leaflet tension Σil = 1.94 kBT/d

2.
During the first 1300 ns, the bilayer of the nanovesicle in Fig. 17a

undergoes shape fluctuations that appear to be ‘normal’ until the outer
leaflet starts to develop a protrusion by expelling some lipids. This pro-
trusion grows rapidly into a cylindrical micelle, which reaches its maximal
extension after 1720 ns as shown in Fig. 17b. Somewhat later, some lipids
move into the inner leaflet, primarily along the contact line between the
micelle and the bilayer, see snapshot at 2160 ns in Fig. 17c. This lipid
exchange decreases the number of lipids within the compressed outer
leaflet and increases the number of lipids within the stretched inner leaflet
until 111 red-green lipids have been moved from the outer to the inner
leaflet and the ordered bilayer structure has been restored at 2710 ns as
shown in Fig. 17d. After this time point, the restored bilayer undergoes no
further flip-flops until the end of the simulations. This absence of flip-flops
is consistent with the lipid number Nol = 1994 in the outer leaflet of the
restored bilayer, which belongs to the stability regime in Fig. 15.
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5. Remodeling of vesicle topology

5.1 Topology of closed vesicle membranes
The closed membrane surface of a giant vesicle separates the interior vesicle
compartment from the exterior space. In general, the topology of any
closed surface in three dimensions can be characterized by two equivalent
integers: (i) the Euler characteristic χ and (ii) the number g of handles or
loops formed by this surface. The integer number g defines the topological
genus of the surface.

Fig. 17 Stress-induced instability of a vesicle bilayer that consists of Nol + Nil = 2875
lipids in both leaflets. At time t = 0, the bilayer is assembled from Nol = 2105 and
Nil = 770 lipids and the vesicle volume is adjusted in such a way that the bilayer
tension is close to zero, which leads to a compressed outer leaflet with negative leaflet
tension Σol = −1.97 kBT∕d

2: (a) At t = 780 ns, the compressed outer leaflet leads to some
kinky bilayer deformations; (b) At t = 1720 ns, a cylindrical micelle has been formed
from about 180 red-green lipids that were expelled from the outer leaflet; (c) At
t = 2160 ns, lipids move towards the stretched inner leaflet along the contact line
between micelle and bilayer; and (d) At t = 2710 ns, the self-healing process via stress-
induced lipid exchange has been completed and 111 red-green lipids have moved to
the inner leaflet. The restored bilayer undergoes no further flip-flops until the end of
the simulations (Sreekumari & Lipowsky, 2022).
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5.1.1 Euler characteristic
The Euler characteristic of a closed membrane surface can be obtained
from any partitioning of the surface into a discrete set of surface seg-
ments (do Carmo, 1976). One widely applied discretization method is
triangulation but one may also use a mesh of smooth curves that are
embedded in the surface. Any discretization involves the surface segments
themselves, usually called ‘faces’, the edges between neighboring faces, and
the vertices at which several edges come together. Counting the number of
faces, F, the number of edges, E, and the number of vertices, V, the Euler
charactersitic χ is obtained via

F E V .= + (21)

The three numbers F, E, and V depend on the chosen partitioning of the
surface, as one can easily see by using different polyhedra to discretize a
sphere. In contrast, the Euler characteristic χ itself is independent of this
partitioning and defines the topology of the surface. Thus, we obtain χ= 2
for a tetrahedron, a cube or an icosahedron as well as for any other par-
titioning of the spherical surface. The torus or doughnut surface has the
Euler characteristic χ= 0, the double-torus or button surface has χ=−2,
and the combined surface of Nve spherical vesicles is characterized by
χ= 2Nve.

5.1.2 Topological genus
The number g of handles or loops provides another, equivalent char-
acterization of a closed membrane surface, the so-called topological genus
g, which satisfies

g g1
1
2

and
1
2

= =
(22)

where g g g2 1 is the difference between the genera of two surfaces 1
and 2, which is equal to minus half the difference Δχ ≡ χ2 − χ1 between
the Euler characteristics of the two surfaces. For a sphere and a torus, the
topological genus is equal to g 0= and g 1= , respectively. Positive values
of the topological genus g can be deduced directly from the global surface
geometry by counting the number of handles or loops formed by the
surface, without any partitioning or discretization of this surface.
Furthermore, the linear relation between g and χ as given by Eq. (22) can
be used to define negative values of the topological genus g, as obtained for
N ≥ 2 vesicles with χ ≥ 2N. Likewise, this relation leads to negative values of
the Euler characteristic χ for g 2.
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5.2 Topological transformations of vesicles
By definition, a topological transformation of a vesicle or another closed
membrane compartment implies that this compartment changes its
topology and, thus, its Euler characteristic and topological genus. In the
living cell, the membrane-bound organelles continuously undergo such
topological transformations by membrane fission and membrane fusion.
The fission and fusion processes of intracellular membranes can be
mimicked by the fission and fusion of giant vesicles, which demonstrates
that individual fission and fusion events proceed via localized perturbations
of the vesicle membranes.

5.2.1 Local topology changes by fission and fusion
Different vesicle topologies can be transformed into each other by indi-
vidual fusion and fission processes. The intermediate transition states
between the different topologies involve closed membrane necks as
depicted in Fig. 3. These necks are cleaved by fission and created by fusion.
Therefore, individual fission and fusion events proceed via some ‘local
surgery’ which can be characterized by the change Δχ in the Euler char-
acteristic or, equivalently, by the change g in the topological genus,
without knowing the global shape and topology of the membrane com-
partment.

A single, local fission event leads to an increase of the Euler char-
acteristic by Δχ = +2 and to a decrease of the topological genus by

g 11
2

= = . On the other hand, a single, local fusion event leads to
a decrease of the Euler characteristic by Δχ = −2 and to an increase of the
genus by g 1= + . These positive and negative values of Δχ and g for
single fission and fusion events are completely general and apply to any
shape and topology of the membrane compartment as long as this com-
partment forms a closed surface without bilayer pores or bilayer edges,
both before and after such an event.

5.2.2 Fission geometries for two-sphere vesicles
Two-sphere vesicles provide simple and instructive examples for vesicles
with closed membrane necks and topological genus g 0= . As shown in
Fig. 3, two-sphere vesicles can exhibit two different geometries corre-
sponding to out-budded and in-budded vesicle shapes. An out-budded or
positive two-sphere shape as in Fig. 3a has a positive membrane neck with
neck curvature M 0ls

eff > , see Eq. (10), which can be formed for positive
spontaneous curvature m Mij

eff as in Eq. (12). An in-budded or negative
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two-sphere shape as in Fig. 3b has a negative membrane neck with neck
curvature M 0ls

eff < , see Eq. (11), which can be formed for negative
spontaneous curvature m Mij

eff as in Eq. (13).
For both geometries, the fission process is completed by the clea-

vage of the membrane neck. After the neck cleavage of an out-bud, the
newly created daughter vesicle is released into the exterior space. In
contrast, the cleavage of an in-bud leads to an intraluminal daughter
vesicle within the interior compartment of the mother vesicle. The
out-budded vesicle in Fig. 3a and the in-budded vesicle in Fig. 3c have
the same Euler characteristic χ = 2 and the same topological genus
g 0= . After neck fission, the two daughter vesicles are characterized by
χ = 4 and g 1= , both for the release of the out-bud into the exterior
space and for the release of the in-bud into the interior vesicle com-
partment.

Thus, the two fission processes for out-budded and in-budded vesicles
lead to the same topological changes but one should note one difference
between these two processes, related to the mean curvatures of the two
daughter vesicles. For the fission of an out-budded vesicle, each daughter
vesicle has a positive mean curvature, which implies that both mean cur-
vatures are stabilized by the positive spontaneous curvature of the vesicles.
In contrast, for the fission of an in-budded vesicle, the smaller daughter
vesicle has a negative mean curvature whereas the larger daughter vesicle
has a positive mean curvature, the latter being antagonistic to the negative
spontaneous curvature of the membrane.

5.2.3 Fusion geometries for spherical vesicles
Next, let us consider the fusion of two spherical vesicles with Euler
characteristic χ = 4 and topological genus g 1= . When the two
vesicles enclose two different spatial regions, the fusion process leads to a
two-sphere vesicle as in Fig. 3a,b with a positive membrane neck. On
the other hand, when we start from two nested vesicles, fusion leads to
an in-budded two-sphere vesicle with a negative membrane neck as in
Fig. 3c,d. The open necks generated by fusion are traditionally called
fusion pores. Thus, the 1-vesicle state obtained after the fusion of two
spherical vesicles is identical with a two-sphere vesicle before the fission
of its membrane neck. Therefore, as long as we focus on the initial and
final states of fusion and fission, the fusion process is the reverse of the
fission process.
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5.3 Free energy landscapes for fission and fusion
On molecular scales, both the fission of a membrane neck and the for-
mation of such a neck via fusion involve a strong local reorganization of the
lipid molecules close to these necks. This molecular reorganization will
determine the free energy barriers for the fission and fusion processes as
schematically displayed in Fig. 18. For fission, this barrier must be over-
come by the constriction force f acting against the neck.

5.3.1 Free energy landscape for fission
The process of neck fission and vesicle division transforms the 1-vesicle
state provided by the dumbbell or two-sphere shape to the 2-vesicle state of
two separate daughter vesicles as shown in the schematic free energy
landscape of Fig. 18a (Steinkühler et al., 2020). Similar schemes for the free
energy landscape of fission have been displayed in Refs Lipowsky (2018b)
and Deserno (2018). The two states before and after fission have essentially
the same bending energy because the closed neck of the two-sphere shape
does not contribute to this energy. However, the two states have different
topologies which implies that the Gaussian curvature term, which is equal
to 2πχκG according to Eq. (2), makes a different contribution to the 1-
vesicle and to the 2-vesicle state. Indeed, the Gaussian curvature term is

Fig. 18 Free energy landscapes for individual fission and fusion events: Schematic
landscape for an exergonic (or downhill) fission process in (a) and for an endergonic
(or uphill) fusion process in (b). The free energy G2 of the 2-vesicle state is lower than
the free energy G1 of the 1-vesicle state. The negative free energy difference
G2 − G1 < 0 implies that the exergonic fission process can proceed spontaneously
whereas the endergonic fusion process must be coupled to another exergonic process
such as nucleotide hydrolysis. The kinetics of these processes is governed by the free
energy barriers Δ.
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equal to 4πκG for the 1-vesicle state with χ= 2 and to 8πκG for the 2-
vesicle state with χ= 4. Therefore, the difference in free energy, G2 −G1,
between the 2- and the 1-vesicle state is equal to 4πκG. Furthermore, both
experimental studies (Derzhanski et al., 1978; Lorenzen et al., 1986) and
computer simulations (Briguglio et al., 2012) indicate that the Gaussian
curvature modulus κG is negative and can be estimated by the negative
bending rigidity κ, that is, by κG ≃ −κ. For a lipid bilayer, the bending
rigidity has the typical value κ ≃ 10−19J ≃ 20 kBT at room temperature
which leads to the free energy difference G2 −G1 ≃ −4πκ ≃ −250 kBT.
Therefore, neck fission and GUV division is a strongly exergonic process
and can, in principle, occur spontaneously. However, the rate, with which
this process proceeds, is governed by the free energy barrier that separates
the 1-vesicle from the 2-vesicle state.

5.3.2 Free energy barrier for neck fission
A simple estimate for the free energy barrier, which has to be overcome by
the fission process, can be obtained as follows. In order to cleave the neck,
we have to create two bilayer pores with a radius that is comparable to the
radius Rne ≃ 2ℓme of the closed membrane neck before fission where ℓme is
the thickness of the bilayer membrane. The resulting free energy barrier is
governed by the bilayer edges of these two pores. The associated edge
free energy is equal to the edge tension λed times the combined cir-
cumference 4πRne of the two pores, which leads to the estimate 4πRneλed
for the free energy barrier. To overcome this barrier, the constriction force
f acting against the closed neck must expend mechanical work of the order
of fRne, thereby decreasing the radius of the neck from Rne ≃ ℓme to
Rne = 0 (Lipowsky, 2019). For a positive neck as displayed in Fig. 18, the
curvature-induced constriction force is equal to f m M8 ( )ne

eff= as
given by Eq. (14). It then follows from

fR m M R R8 ( ) 4ne ne
eff

ne ne ed= (23)

that the neck undergoes fission if the spontaneous curvature exceeds the
value λed/(2κ). The edge tension λed is expected to be reduced by the
constriction force, which pushes against the neck and leads to a local
thinning of the lipid bilayer close to the neck.

5.3.3 Free energy landscape for fusion
Now, consider the fusion of two spherical vesicles as in Fig. 18b. For
simplicity, we take the two vesicles to have the same molecular
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composition before fusion which implies that this composition also applies
to the resulting 1-vesicle state after fusion. Because the curvature-elastic
parameters are determined by the molecular composition, the 1-vesicle
state after fusion has the same curvature-elastic parameters as the two
vesicles before fusion. It then follows that the 1-vesicle state has the same
bending energy as the 2-vesicle state, where we ignore the small con-
tribution from the fusion neck (or pore) after fusion. Therefore, the free
energy difference G2 −G1 is again determined by the Gaussian curvature
modulus κG and can again be estimated by G2 −G1 ≃ 4πκG ≃ −4πκ,
which leads to the same free energy difference G2 −G1 ≃ −250 kBT for
κ ≃ 20 kBT as for the fission process. Furthermore, because the free energy
G1 of the 1-vesicle state after fusion is much larger than the free energy
G2 of the two vesicles before fusion. we can immediately conclude that the
fusion process is endergonic (or uphill) and is unlikely to occur sponta-
neously, in contrast to the fission process.

The free energy barrier for fusion has to be overcome by attractive
interactions that lead to the adhesion of the two membranes to be fused.
These attractive interactions must in particular overcome the strong
repulsive forces arising from the hydration of the lipid bilayers. In the cell,
these attractive interactions are typically provided by some protein
machinery, which acts to generate a local contact between the two
membranes. Thus, from our point of view, the main distinction between
fission and fusion is that the fusion process requires membrane adhesion
whereas the fission process does not. A different point of view about this
distinction has been described in Ref. Deserno (2018).

5.4 Neck fission and division of giant vesicles
The controlled division of GUVs has been recently achieved by binding
His-tagged GFP to anchor lipids in the GUV membranes (Steinkühler
et al., 2020). As explained in Section 2.3, membrane-bound GFP generates
a significant spontaneous curvature as described by Eq. (16). Furthermore, a
positive membrane neck as in Fig. 19a experiences a large curvature-
dependent constriction force f m M8 ( )pos ne

eff= as given by Eq. (14)
and displayed in Fig. 19b for the measured bending rigidity
κ ≃ 48 kBT (Steinkühler et al., 2020).

As shown in Fig. 19b, membrane-bound GFP generates constriction
forces up to 80 pN, comparable to the largest constriction forces generated
by specialized protein complexes that cleave the necks of cellular mem-
branes. Therefore, the cleavage of membrane necks and the concomitant
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division of GUVs can be induced simply by an increase in the GFP solution
concentration X and the resulting spontaneous curvature as given by
Eq. (16) (Steinkühler et al., 2020).

The controlled division process consists of three steps. First, the volume
of the GUV is adjusted by osmotic deflation or inflation to attain an
appropriate value for the volume-to-area ratio v. Second, the GFP con-
centration in the exterior solution is increased until the GUV attains a two-
sphere shape with a closed membrane neck. Third, increasing the GFP
concentration even further leads to the cleavage of the neck and to the
division of the GUV.

5.5 Neck fission and division of nanovesicles
The deflation of a spherical nanovesicle with Nol = 5700 lipids in the outer
leaflet and Nil = 4400 lipids in the inner leaflet leads to a stomatocyte shape
with an open membrane neck as shown in Fig. 11. By reshuffling 200 lipids
from the outer to the inner leaflet, we obtain a new initial vesicle state with

Fig. 19 Curvature-induced constriction force f = fpos compressing the closed mem-
brane neck of a giant vesicle: (a) Confocal image of a vesicle (red) that consists of two
equally sized spheres connected by a closed neck. The spontaneous curvature is
generated by His-tagged GFP which binds to the membrane from the exterior solu-
tion. Scale bar: 5 μm; and (b) Constriction force f as a function of the excess curvature
m − Mne. The straight line corresponds to Eq. (14) with κ = 48 kBT. The dashed lines
represent the values of m − Mne and f for the membrane neck in (a). For comparison,
the plot also includes literature values for the constriction forces as generated by the
specialized protein complexes of dynamin (Roux et al., 2010), ESCRT-III (Schoeneberg
et al., 2018), and FtsZ (Xiao & Goley, 2016). Thus, the curvature-induced constriction
force in (a) lies within the range of force values found in vivo (Steinkühler et al., 2020).
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Nol = 5500, which transforms into a stomatocyte shape with a closed neck
that undergoes membrane fission within about 15 μs as shown in Fig. 20.
As a result of this fission process, the vesicle is divided up into two nested
daughter vesicles, which adhere to each other.

The two leaflets of the vesicle displayed in Fig. 20 contain Nol +Nil

= 10100 lipids, which is the same total lipid number as for the vesicles in
Figs. 10 and 11. Therefore, the leaflet tensions for the spherical vesicle in
the first panel of Fig. 20 can be estimated by extrapolation of the leaflet
tension data in Fig. 13b. This extrapolation leads to a stretched outer
leaflet with Σol = 1.485 kBT/d

2 and to a compressed inner leaflet with
Σil =−1.44 kBT/d

2, which implies the stress asymmetry ΔΣve = 2.9 kBT/
d2. These leaflet tensions belong to the stability regime for the lipid bilayer
of the smaller nanovesicle with Nol +Nil = 2875 lipids as follows from
Fig. 15.

The diameter of a spherical nanovesicle can be estimated from the mean
value of the diameters for the two headgroup layers. For total lipid number
Nol +Nil = 10100 and vanishing bilayer tension as in Fig. 20, the spherical
nanovesicle has a diameter of about 44 d or 35 nm (Ghosh et al., 2019). For
total lipid number Nol +Nil = 2875 and vanishing bilayer tension as in
Fig. 14, the nanovesicle has a diameter of about 23.4 d or 18.7 nm. For such
a small nanovesicle, it seems difficult to accommodate an in-bud when the
vesicle volume is reduced but the latter process remains to be investigated.

Fission of nanovesicles can be facilitated by several molecular
mechanisms as observed in other simulation studies. These mechanisms
include complete engulfment of nanoparticles (Noguchi & Takasu, 2002),

Fig. 20 Time-lapse snapshots for the division of a nanovesicle with Nol = 5500 lipids in
the outer and Nil = 4600 lipids in the inner leaflet, corresponding to a stretched outer
leaflet and a compressed inner leaflet with bilayer tension Σ = Σol + Σil close to zero.
Until time t = 0 μs, the vesicle has a spherical shape with a certain volume as deter-
mined by the number of water molecules within the interior vesicle compartment. At
t = 0 μs, the vesicle volume is reduced by 20%. After this volume reduction, the vesicle
develops an in-bud with a membrane neck that is closed at t = 5 μs. At about t = 15 μs,
the neck undergoes fission, thereby generating an intraluminal daughter vesicle that
adheres to the inner leaflet of the larger daughter vesicle (Lipowsky et al., 2023b).
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two-domain vesicles with the domain boundary being located in the
membrane neck (Urakami et al., 2018; Li et al., 2009), protein helices
mimicking dynamin (Pannuzzo et al., 2018), and the adsorption of small
solutes onto the outer leaflet of the nanovesicle (Ghosh et al., 2021).

5.6 Droplet endocytosis by nanovesicles
For phase-separated PEG-dextran solutions within giant vesicles as in
Fig. 7c and d, the formation of two spherical subcompartments has been
observed, with one subcompartment enclosing the PEG-rich α droplet
whereas the other subcompartment was filled with the dextran-rich
β droplet, but these two vesicles remained connected by a membrane
nanotube (or tether) (Andes-Koback & Keating, 2011; Dimova &
Lipowsky, 2017). Thus, for giant vesicles, a closed membrane neck as in
Fig. 7 has not yet been reported to undergo fission. This neck fission
represents, however, a necessary step for the endo- and exocytosis of
condensate droplets. Therefore, neither endo- nor exocytosis have been
observed, so far, for giant vesicles. In contrast, the adhesion of small dro-
plets to nanovesicles can lead to the endocytosis of these droplets as
demonstrated by molecular dynamics simulations and described in the
following paragraphs.

5.6.1 Adhesion of condensate droplets to nanovesicles
The adhesion of a small condensate droplet to a nanovesicle as observed in
molecular dynamics simulations is shown in Fig. 21. The adhesion geo-
metry involves again three liquid phases as in Fig. 6a: the two coexisting
phases α and β in the exterior solution as well as the inert spectator phase γ
within the interior vesicle compartment. After the onset of adhesion, the
droplet starts to spread over the membrane as in Fig. 21b, which leads to
partial engulfment of the droplet by the membrane as in Fig. 21c. The
contact area of droplet and membrane defines the βγ segment of the
membrane while the membrane segment exposed to the α phase represents
the αγ segment. The size of the βγ segment depends on the relative size of
droplet and vesicle.

5.6.2 Partial versus complete engulfment
During the partial engulfment process displayed in Fig. 21, the vesicle
volume is kept constant and the contact area of the βγ segment grows by
pulling out excess membrane area that is stored in the thermally-excited
shape fluctuations of the membrane. For a further increase of the contact
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area beyond the value in Fig. 21c, one has to reduce the vesicle volume,
which is filled with the blue γ phase. Such a volume reduction leads to
complete engulfment of the droplet by the vesicle membrane, provided the
droplet volume is sufficiently small compared to the vesicle volume, which
applies to Fig. 21c. For a completely engulfed droplet, the area of the
membrane segment βγ in contact with the droplet is equal to the surface
area of the droplet and the αβ interface between the α phase and the β
droplet has been replaced by a closed membrane neck, see side views in
Figs. 22 and 23 below.

If the droplet is too large, complete engulfment is not possible without
membrane rupture (Lipowsky, 2019; Ghosh et al., 2023). This geometric
constraint is obvious from an intuitive point of view and can be described
in a quantitative manner using the isoperimetric inequality (Osserman,
1978; Hildebrandt & Tromba, 1985; Ghosh et al., 2023; Lipowsky, 2023).
In what follows, we will assume that the droplet is sufficiently small, so that
it can be completely engulfed by the vesicle membrane after an appropriate
reduction of vesicle volume.

Fig. 21 Partial engulfment of a condensate droplet (green) by the lipid bilayer
(purple-grey) of a nanovesicle. The vesicle encloses the aqueous spectator phase γ
(blue). Both the nanodroplet and the nanovesicle are immersed in the aqueous bulk
phase α (white): (a) Initially, the droplet is well separated from the vesicle which
implies that the outer leaflet of the bilayer is only in contact with the α phase; (b)
When the droplet is attracted towards the vesicle, it spreads onto the lipid bilayer,
thereby increasing its contact area with the vesicle bilayer; and (c) Partial engulfment
of the droplet by the membrane after the vesicle-droplet system has relaxed to a new
stable state. The contact area between bilayer and β droplet defines the βγ segment
of the bilayer membrane whereas the rest of the bilayer represents the αγ segment
still exposed to the α phase (Ghosh et al., 2023).
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5.6.3 Two-step process of endocytosis
During endocytosis, the condensate droplet originates from the exterior
solution as in Fig. 21a and is eventually transferred to the interior vesicle
compartment. This endocytic process consists of two steps. First, the
droplet is completely engulfed by the membrane, leading to a closed
membrane neck that connects the droplet-bound membrane segment to
the membrane segment not in contact with the droplet. Complete

Fig. 22 Endocytosis of condensate droplet (green) via axisymmetric engulfment,
followed by the division of the nanovesicle (purple-grey) into two nested daughter
vesicles: At time t = 0, the droplet is partially engulfed by the vesicle membrane, which
forms an open membrane neck. At t = 4 μs, the neck closes and the droplet becomes
completely engulfed. The neck undergoes fission at t = 9 μs, generating a small
intraluminal vesicle around the droplet. The vesicle membrane contains Nol = 5500
lipids in its outer and Nil = 4600 lipids in its inner leaflet. The vesicle volume is equal to
ν = 0.6 during the whole endocytic process (Ghosh et al., 2023).

Fig. 23 Non-axisymmetric engulfment of condensate droplet (green), which leads to a
tight-lipped shape of the membrane neck that prevents neck fission: Vesicle bilayer
(purple-grey) with Nol = 5700 lipids in its outer and Nil = 4400 lipids in its inner leaflet.
From t = 0 μs until t = 12 μs, the vesicle and the partially engulfed droplet are both
axisymmetric, see white dashed circles. At t = 12 μs, the vesicle volume is reduced
from ν = 0.7 to ν = 0.6, which leads to complete engulfment of the droplet with a
strongly non-circular and highly elongated contact line, see white dashed rectangles
in the top views for t = 13.5 μs and t = 30 μs (Ghosh et al., 2023).
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engulfment is typically induced by the reduction of the vesicle volume and
the concomitant release of excess membrane area. The second step of
endocytosis is provided by the fission of the closed membrane neck and the
division of the vesicle into two daughter vesicles, one of which encloses the
droplet.

5.6.4 Two pathways for complete engulfment
Molecular dynamics simulations have demonstrated that the complete
engulfment of a condensate droplet can proceed via two different pathways
that involve axisymmetric and non-axisymmetric membrane shapes (Ghosh
et al., 2023). The axisymmetric pathway leads to a circular contact line
between droplet and membrane as well as to a closed membrane neck that
undergoes fission, thereby dividing the nanovesicle up into two daughter
vesicles, see the simulation snapshots in Fig. 22. In contrast, the non-axi-
symmetric pathway leads to a strongly non-circular contact line and to a
tight-lipped shape of the closed membrane neck, which prevents the fission
of this neck, see the simulation snapshots in Fig. 23. Such a tight-lipped
membrane neck was first observed in molecular dynamics simulations for
complete engulfment of a condensate droplet by a planar bilayer (Satarifard
et al., 2018).

5.6.5 Axisymmetric droplet engulfment and endocytosis
The axisymmetric pathway of complete engulfment, which leads to droplet
endocytosis, is illustrated by the simulation snapshots in Fig. 22. During this
pathway, the contact line between droplet and membrane remains, on
average, circular during the whole engulfment process. At the same time,
the membrane segment in the vicinity of the contact line develops an
axisymmetric membrane neck. The waistline of this neck is identical with
the contact line. Both the contact line and the membrane neck become
closed after the complete engulfment of the droplet, see the simulation
snapshot at time t= 4 μs in Fig. 22. This closed neck undergoes fission,
which drives the division of the vesicle into two daugther vesicles, one of
which encloses the condensate droplet, see last simulation snapshot in
Fig. 22.

5.6.6 Tight-lipped membrane neck and blocked fission
The non-axisymmetric pathway for complete engulfment, which leads to a
tight-lipped membrane neck, is illustrated by the simulation snapshots in
Fig. 23. In this example, the vesicle volume has the initial value ν= 0.7
until time t= 12 μs. During this time period, the contact line between
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droplet and membrane has a circular average shape, as indicated by the
white dashed circles in the first two panels of the upper row in Fig. 23. At
t= 12 μs, the volume is reduced from ν= 0.7 to ν= 0.6, after which the
contact line assumes a strongly non-circular and highly elongated shape, as
indicated by the white dashed rectangles in the last two panels of the upper
row in Fig. 23. The droplet is again completely engulfed but the membrane
neck around the non-circular contact line now attains a tight-lipped shape,
which prevents the fission of this neck, see the last panel in the lower row
of Fig. 23.

5.6.7 Positive and negative line tension of contact line
The different pathways for complete engulfment and droplet endocytosis
are intimately related to the line tension λcl of the contact line between
droplet and vesicle membrane. This line tension is plotted in Fig. 24a
versus the lipid number Nol in the outer leaflet of the nanovesicles.
Inspection of this figure shows that the contact line tension is positive for
Nol = 5400 and 5500 but negative for Nol = 5700 and 5963. Interpolation
of these simulation data leads to an estimate for the threshold value Nol

[0], at
which the line tension changes sign. This threshold value depends weakly
on the droplet diameter Ddr and varies from N 5582ol

[0] = for the smallest

Fig. 24 (a) Line tension λ = λcl of the droplet-vesicle contact line versus lipid number
Nol in the outer leaflet of the nanovesicles, for droplets with three different diameters
Ddr, see inset. As we increase Nol, the line tension undergoes a transition from positive
to negative values. The line tension is positive for Nol = 5400 and 5500, for which the
whole engulfment process remains axisymmetric as in Fig. 22. On the other hand, for
Nol = 5700 and 5963, the line tension has a negative value and leads to the formation
of a tight-lipped membrane neck as in Fig. 23; and (b) Leaflet tensions Σil and Σol for
the inner and outer bilayer leaflets of spherical vesicles with tensionless bilayers as
functions of the lipid number Nol (Ghosh et al., 2023).
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droplets with a diameter of 11.2 nm to N 5538ol
[0] = for the largest droplets

with a diameter of 19.6 nm.
For comparison, the simulation data for the two leaflet tensions are

displayed in Fig. 24b. These data are obtained for the spherical nanovesicles
in the absence of adhering droplets. Furthermore, the green data points for
the bilayer tension Σ= Σol + Σil demonstrate that these data are obtained for
OLT states with vanishing bilayer tension, Σol + Σil = 0. Inspection of the
black and red data for the outer and inner leaflets shows that all spherical
vesicles studied here have a stretched outer leaflet with Σol> 0 and a
compressed inner leaflet with Σil< 0.

It follows from the Nol-dependence of the leaflet tensions in Fig. 24b
and from the Nol-dependence of the line tension in Fig. 24a that the line
tension λ is positive for large stress asymmetries ΔΣve = Σol − Σil but
negative for small stress asymmetries. This conclusion agrees with the
results for symmetric planar bilayers (Satarifard et al., 2018) because the
adhesion of condensate droplets to such bilayers leads to a negative line
tension as well. As a consequence, the sign of the contact line tension is also
controlled by the stress asymmetry between the two leaflet tensions.

5.7 Fusion of nanovesicles
Two nanovesicles that come into close proximity may adhere to each other
and undergo fusion. This adhesion and fusion behavior is also controlled by
the lipid numbers assembled in the two leaflets and by the associated leaflet
tensions. As a simple example, consider two identical vesicles, both of
which are characterized by tensionless bilayers with Σ= 0 as well as by
stretched outer and compressed inner leaflets with Σol> 0 and Σil < 0
before they come into contact. The vesicles start to adhere to each other
but may then attain a stable adhesive state or undergo fusion, depending on
the magnitude of the leaflet tensions (Lipowsky et al., 2023).

For Nol = 5700 lipids in the outer and Nil = 4400 lipids in the inner
leaflets of the vesicle bilayer, the inner leaflets are compressed by the
negative leaflet tension Σil = −0.82 kBT/d

2 whereas the outer leaflets are
stretched by the positive leaflet tension Σol =+0.87 kBT/d

2 (Lipowsky
et al., 2023). Thus, both vesicle bilayers experience the initial stress
asymmetry ΔΣve = Σol − Σil = 1.69 kBT/d

2. After slightly deflating both
vesicles from volume ν= 0.8 to volume ν= 0.7, the two vesicles start to
adhere to each other, transform into two oblate shapes, and reach a stable
adhesive state after about 20 μs without fusion (Lipowsky et al., 2023).
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On the other hand, if we reshuffle only 100 lipids from the outer to the
inner leaflet, thereby keeping the total lipid number in both leaflets at the
constant value Nol +Nil = 10100, we increase the outer leaflet tension
to Σol = +1.02 kBT/d

2 and decrease the inner leaflet tension to
Σil =−1.02 kBT/d

2, which implies a moderate increase of the initial stress
asymmetry from ΔΣve = 1.69 kBT/d

2 to ΔΣve = 2.04 kBT/d
2. As a con-

sequence of this increased stress asymmetry, the two vesicles undergo a fast
fusion process, which is completed within 0.3 μs, even without any
intermediate reduction of the vesicle volumes (Lipowsky et al., 2023).

5.8 Membrane architecture of endoplasmic reticulum
Finally, let us briefly look at the fascinating architecture of the ER, a
membrane-bound organelle that is found in all eukaryotic cells. In fact,
each of these cells contains only one ER, which extends, however,
throughout the whole cell by forming a continuous network of membrane
nanotubes connected by three-way junctions, see the light microscopy
image in Fig. 25a.

5.8.1 Multiscale architecture of ER membrane
The membrane architecture of the ER involves a hierarchy of length scales.
The smallest supramolecular scale is provided by the thickness of the ER
membrane which is of the order of 4 nm. Mitra et al. (2004) The ER
membrane forms membrane nanotubes with a width that varies from about
50 nm to about 100 nm, depending on the organism and the cell type. The
nanotubes are connected by three-way junctions, at which three nanotubes
meet. The predominance of three-way junctions can be understood in
terms of Steiner minimal trees (Lipowsky, 2022; Lipowsky et al., 2023a).
The junctions form the vertices of irregular polygons, which are clearly
visible in Fig. 25a. Even though the small ER section in Fig. 25a appears to
be two-dimensional, the nanotubes and three-way junctions form a net-
work that is truly three-dimensional, in analogy to Steiner minimal trees in
three dimensions. The average mesh size of this nanotubular network is of
the order of 1 μm. Finally, the nanotubular network extends across the
whole eukaryotic cell, which has a typical extension of more than 50 μm.

5.8.2 Bicontinuous structure and topological genus
In spite of its complex architecture, the whole nanotubular network of the
ER is formed by a single membrane which encloses a continuous nano-
fluidic network of water channels (Dayel et al., 1999; Holcman et al., 2018;
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Obara et al., 2023). The continuity of the ER lumen has been demon-
strated by monitoring the diffusion of fluorescently labeled molecules,
using a variety of experimental techniques such as fluorescence recovery
(Dayel et al., 1999) and single particle tracking (Holcman et al., 2018;
Obara et al., 2023). As a consequence, the ER membrane creates a
bicontinuous structure that partitions the intracellular space into two
separate, interpenetrating subcompartments, provided by the lumen of the
ER network and by the surrounding cytosol (Lipowsky et al., 2023a).

For a network of membrane nanotubes and junctions as formed by the
ER membrane, the topological genus g is equal to the number of polygons
within this network. The optical image in Fig. 25a corresponds to a small
section across the peripheral region of the ER, displaying more than 40
polygons which implies the topological genus g 40> for this ER section.
Fluorescence microscopy images of the whole organelle (Valm et al., 2017)
indicate that the ER is built up from several thousands of polygons and,
thus, has a very large topological genus.

Fig. 25 (a) Nanotubular network of the peripheral endoplasmic reticulum (ER) with a
very high topological genus, which is equal to the number of irregular polygons
formed by the membrane nanotubes. Scale bar: 10 μm (Obara et al., 2023) Reprinted
with permission of Jennifer Lippincott-Schwartz; and (b) Dynamic processes of sliding,
ring closure, and branching as shown in row 1, 2, and 3, respectively. Ring closure
removes one polygon from the network, thereby reducing the genus of the ER
membrane by g = 1, whereas branching creates a new polygon which increases
this genus by g = +1. Reprinted with permission from Ref Baumann, O. & Walz, B.
(2001). Endoplasmic reticulum of animal cells and its organization into structural and
functional domains. International Review of Cytology, 205. [Copyright 2001, Elsevier].
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5.8.3 Tensile forces and junction dynamics
Each three-way junction is subject to three tensile forces arising from the
three nanotubes that meet at the junction. As long as the junction does not
move, the three forces balance each other. This force balance explains
the predominance of contact angles close to 120 degree between the
nanotubes (Lipowsky et al., 2023a). Sometimes, the junctions are observed
to move as shown in Fig. 25b. A moving junction implies that the tensile
forces at this junction become temporarily unbalanced.

Three types of movements have been reported for three-way junctions
in vivo. (Lee & Chen, 1988; Baumann & Walz, 2001). First, the sliding
motion of one junction as displayed in the upper row of Fig. 25b moves the
junction along one edge of a polygon, merges this moving junction into a
transient four-way junction, which subsequently splits up into two new
three-way junctions. This sliding process does not involve any fission or
fusion of the membrane nanotubes and, thus, does not change the topo-
logical genus of the ER.

Second, during ring closure as shown in the middle row of Fig. 25b,
one junction of a polygon merges successively with the other junctions of
this polygon, which eventually leads to the elimination of one edge from
the polygon. This process involves a single fission event of the ER
membrane and locally decreases the genus of the ER by g 1= . Third,
branching as in the lower row of Fig. 25b leads to a new tubule with a free
end. Fusion of this free end with another tubule then creates a new
junction and locally increases the genus of the ER by g 1= + .

The three junction movements in Fig. 25b seem to affect only the local
neighborhood of the junction under consideration. It is not known to what
extent these movements are present in the whole nanotubular network of
the ER. Likewise, the frequency with which these movements occur in a
given subregion remains to be studied. If ring closure is more frequent than
branching, the nanotubular network will decay by membrane fission. If
branching is more frequent than ring closure, the network will grow by
membrane fusion.

6. Summary and outlook

This review describes recent insights into the remodeling of bio-
membranes and vesicles. The remodeling processes considered here include
the remodeling of vesicle shapes in Sections 2 and 3, stress-induced flip-
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flops and instabilities of lipid bilayers in Section 4, and topological trans-
formations of vesicles in Section 5. These different processes are studied for
two synthetic membrane systems as provided by giant vesicles and nano-
vesicles.

For giant vesicles, we start with the formation of two-sphere shapes,
which may involve out-buds as in Fig. 1 or in-buds as in Fig. 2. The
membrane necks that connect the two spherical membrane segment can be
characterized by their effective mean curvature Mij

eff as defined in Eq. (9).
The sign of this curvature allows us to distinguish positive necks with
M 0ij

eff > from negative necks with M 0ij
eff < . This distinction also applies

to multispheres consisting of more than two spheres connected by more
than one membrane neck. In fact, all necks of a multisphere are either
positive or negative, which allows us to distinguish positive from negative
multispheres as in Fig. 8.

Two-sphere vesicles have also been observed for the complete engulf-
ment of condensate droplets, see Fig. 7, and play a prominent role for phase-
separated membranes with several intramembrane domains (Julicher &
Lipowsky, 1996; Lipowsky, 2024) as well as for the endo- and exocytosis of
nanoparticles (Agudo-Canalejo & Lipowsky, 2016). More details on mul-
tispheres can be found in Ref. Lipowsky (2022a), more details on the
remodeling of membranes by condensate droplets in Ref. Lipowsky (2023).

Another recent development related to giant vesicles is the con-
trolled remodeling of their shape by His-tagged proteins as described in
Section 2.3. This development is based on the fine-tuning of the
spontaneous curvature by low densities of membrane-bound proteins,
which has been demonstrated for His-tagged GFP in a systematic and
quantitative manner (Steinkühler et al., 2020). This controlled variation
of the spontaneous curvature is also crucial for the fission of the closed
membrane necks, which leads to the division of giant vesicles by
increasing the GFP concentration in the exterior solution (Steinkühler
et al., 2020).

The shape transformations of nanovesicles, as displayed in Figs. 10
and 11, resemble those of giant vesicles in Figs. 1 and 2, respectively. In
fact, the volume represents an important shape parameter for both types of
vesicles but the second shape parameter for nanovesicles is provided by the
stress asymmetry between the two leaflet tensions of the lipid bilayers, as
defined in Eq. (19), rather than by the spontaneous curvature as for giant
vesicles. In order to obtain the leaflet tensions, one has to compute the
average position of the molecular interface between the two leaflets. For
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this computation, two protocols have been particularly useful, the CHAIN
protocol (Ghosh et al., 2019; Sreekumari & Lipowsky, 2022) and the
VORON protocol (Zamaletdinov et al., 2023), both of which are
described in Appendix B. The two leaflet tensions define a two-dimen-
sional parameter space as in Fig. 14.

Large stress asymmetries lead to instabilities of lipid bilayers as described
in Section 4. Two types of instabilities can be distinguished. First, large
stress asymmetries lead to transbilayer flip-flops of lipids from one leaflet to
the other. These flip-flops can be characterized by cumulative distribution
functions as in Fig. 16. For nanovesicles, the distribution functions have a
sigmoidal shape which implies that the vesicle bilayers undergo an ageing
process. Second, in addition to flip-flops, large stress asymmetries also lead
to structural instabilities of the lipid bilayers. One example for such an
instability is shown in Fig. 17. More details on leaflet tensions and stress
asymmetries can be found in Ref. Lipowsky et al. (2023).

Topological transformations of vesicles by membrane fission and fusion
are addressed in Section 5. The simplest examples are provided by the
fission of two-sphere vesicles and the fusion of two spherical vesicles. Each
individual fission and fusion event involves the formation of a membrane
neck as in Fig. 3. The free energy landscapes for fusion and fission are
displayed in Fig. 18. For negative values of the Gaussian curvature mod-
ulus, membrane fission is an exergonic (downhill) process whereas mem-
brane fusion is an endergonic (uphill) process.

The endocytosis of small condensate droplets by nanovesicles has been
recently observed in molecular dynamics simulations (Ghosh et al., 2023) as
described in Section 5.6. Two different endocytic pathways have been
observed, which proceed via axisymmetric and non-axisymmetric shapes of
the vesicle-droplet systems. The axisymmetric pathway involves a circular
contact line between droplet and vesicle as well as an axisymmetric
membrane neck that undergoes fission as in Fig. 22. The non-axisymmetric
pathway leads to a tight-lipped shape of the closed membrane neck, which
prevents the fission of this neck as in Fig. 23. The axisymmetric and non-
axisymmetric pathways are observed for positive and negative line tensions
of the contact line tension λcl, as follows from Fig. 24.

Interesting topics for future simulation studies include the influence of
the stress asymmetries on the fission and fusion of nanovesicles. The
simulation snapshots in Fig. 20 represent the results of preliminary simu-
lations by Rikhia Ghosh (Lipowsky et al., 2023) and remain to be cor-
roborated by more systematic studies. Likewise, recent simulations by
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Aparna Sreekumari (Lipowsky et al., 2023) provide evidence for the for-
mation of tight-lipped membrane necks during the engulfment of rigid
nanoparticles. Because of their elongated shape, the latter necks do not
undergo fission. On the other hand, for sufficiently large stress asymmetries,
circular membrane necks should be formed, which do undergo fission and
lead to particle endocytosis.

It would be highly desirable to develop experimental methods by which
one can measure and modify the leaflet tensions of lipid bilayers and
nanovesicles. Because the rate of lipid flip-flops depends on the stress
asymmetry between the two leaflet tensions, see Fig. 16, additional insight
into these tensions could be obtained from experiments that measure how
the flip-flop rates vary when we expose the bilayers to different external
conditions. One approach is provided by osmotic deflation and inflation of
nanovesicles, see the VID data in Fig. 14.

Fusion and fission processes also generate the multiscale membrane
architecture of the ER as briefly described in Section 5.8. Many aspects of
this architecture are still poorly understood. A detailed analysis of the
experimental literature has led to the proposal that the nanotubular net-
work of the ER is subject to a significant membrane tension. (Lipowsky
et al., 2023a) This proposal can be scrutinized by experiments on giant
vesicles with reconstituted membrane proteins.

Several topics reviewed here are also addressed in other chapters of this
book. Giant vesicles with asymmetric bilayer membranes are considered by
T. Enoki et al. Biomolecular condensates on solid-supported bilayers are
addressed by T. Baumgart et al. Numerical methods to solve the local shape
equation of curvature elasticity are described by P. Rangamani et al.
Improved error estimates for the computation of stress profiles are discussed
by M. Deserno et al. Experimental techniques to study lipid flip-flops are
addressed by D. Marquardt et al.
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Appendix A. Computation of bilayer tension
By definition, the local stress within a lipid bilayer is equal to the negative local pressure.
Therefore, stress profiles are equivalent to pressure profiles. From an intuitive point of view,
the local stress is positive close to the interface between a headgroup layer and the adjacent
aqueous solution, because this interface can reduce its interfacial free energy by reducing its
area, whereas the local stress is negative in the hydrophobic core, corresponding to a
positive pressure arising from the confined hydrocarbon chains. It is interesting to note that
the stress profiles as obtained by DPD simulations corroborate this intuitive
picture (Rozycki & Lipowsky, 2015; Ghosh et al., 2019). Before stress profiles for planar
bilayers were computed via molecular dynamics simulations, they have been described in a
qualitative manner (Israelachvili et al., 1980; Helfrich, 1981; Cantor, 1997) and were stu-
died by a statistical mechanical model for the hydrocarbon lipid chains (Szleifer et al., 1990)
as well as by a local density functional (Gompper & Klein, 1992).

Values for the bilayer tension Σ were first reported from all-atom molecular dynamics
simulations of DPPC bilayers (Feller et al., 1995). The latter study revealed, however, that
the bilayer tension undergoes large fluctuations in such atomistic simulations, which make it
difficult to obtain reliable tension values. The first stress profiles across planar lipid bilayers
were reported in (Goetz & Lipowsky, 1998) where the underlying molecular model used a
united-atom approach.

A.1 Anisotropic pressure tensor for planar bilayers
For a planar bilayer with periodic boundary conditions, the symmetry of the lipid-water
system implies that the components of the local stress or pressure tensor, P, depend only on
the Cartesian coordinate z perpendicular to the bilayer and has the general form (Goetz &
Lipowsky, 1998)

P z PP e e e e e e( )[ ]x x y y z zT N= + + (A1)

with the tangential component PT(z) and the normal component PN where ex, ey, and ez
are orthogonal unit vectors and the symbol ⊗ represents the dyadic product. Furthermore,
all components of the divergence of the pressure tensor, which is a vector with the Cartesian
components ∑j∂Pij/∂xj, must vanish (Schofield & Henderson, 1982; Rowlinson & Widom,
1989). In the present context, the latter requirement leads to ∂Pzz/∂z= 0 which implies that
Pzz = PN does not depend on z and is constant throughout the simulation box. The tan-
gential and normal components, PT(z) and PN, of the pressure tensor determine the
z-dependent stress profile

s z P P z( ) ( )N T (A2)

across the bilayer. Note that positive stress s > 0 implies local stretching whereas negative
stress s < 0 describes local compression. The bilayer tension Σ is then obtained from

z s z z P P zd ( ) d [ ( )].N T= (A3)

Because a planar liquid–liquid interface has the same symmetry as a planar bilayer, the
pressure tensor of such an interface has the same general form as in Eq. (A1) and the
interfacial tension and the stress profile can also be expressed in terms of the tangential and
normal components of the pressure tensor as in Eqs. (A2) and (A3). For planar liquid–liquid
interfaces, the pressure tensor and the interfacial tension have been theoretically studied for a
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long time (Bakker, 1928; Kirkwood & Buff, 1949; Irving & Kirkwood, 1950; Harasima,
1958; Schofield & Henderson, 1982; Rowlinson & Widom, 1989). These studies showed
that the normal and tangential components of the pressure tensor can be divided up into a
kinetic term and an interaction term.

The thermal average over the kinetic term is equal to ρ(z)δij which is proportional to
the local particle number density ρ(z) but does not contribute to the stress profile s(z) = PN
− PT(z) in Eq. (A2) because it cancels out from this difference. The interaction terms of the
pressure tensor components are more complex and depend on the interaction potentials
between the particles. Furthermore, these interaction terms involve contours between
interacting particles, which can be chosen in different ways (Irving & Kirkwood, 1950;
Harasima, 1958). Using straight contours as in (Irving & Kirkwood, 1950), we generalized
the theory for planar liquid–liquid interfaces as described in (Schofield & Henderson, 1982)
to planar lipid bilayers (Goetz & Lipowsky, 1998). The resulting Goetz-Lipowsky protocol
has been used to compute the stress profiles for all planar bilayers studied by our
group (Rozycki & Lipowsky, 2015; Miettinen & Lipowsky, 2019; Sreekumari & Lipowsky,
2022; Lipowsky et al., 2023).

Because the pressure tensor is not unique (Irving & Kirkwood, 1950; Harasima, 1958;
Schofield & Henderson, 1982; Rowlinson & Widom, 1989), the protocol for its calculation
is not unique either. Another protocol is based on central force decomposition, which leads
to a symmetric pressure tensor (Vanegas et al., 2014; Nakagawa & Noguchi, 2016). One
disadvantage of the latter protocol is that it is ill-defined when three beads attain a collinear
or four beads a coplanar configuration. In particular, central force decomposition cannot be
used for the dihedral potentials which are present in the Martini force field for the glycolipid
GM1 (Miettinen & Lipowsky, 2019).

A.2 Anisotropic pressure tensor for spherical nanovesicles
For a spherical nanovesicle, the components of the local stress or pressure tensor depend on
the radial coordinate r. The pressure tensor then has the general form (Nakamura et al.,
2015; Satarifard et al., 2018; Ghosh et al., 2019)

P r P rP e e e e e e( ) ( )[ ]r rN T= + + (A4)

with the normal component PN(r) and the tangential component PT(r) where er, eθ, and eϕ
are orthogonal unit vectors for the spherical coordinate system and the symbol ⊗ represents
the dyadic product. The numerical values of PN(r) and PT(r) as well as the r-dependent stress
profile

s r P r P r( ) ( ) ( )N T (A5)

can be calculated using the computational method described in (Nakamura et al., 2015;
Satarifard et al., 2018; Ghosh et al., 2019). We found that the stress profile s(r) changes
strongly when we reshuffle lipids from one leaflet to the other, thereby changing the lipid
numbers Nol and Nil for constant Nol +Nil. The bilayer tension Σ of the vesicle bilayer is
taken to be

r P r P r r s rd [ ( ) ( )] d ( ).
0

N T
0

= (A6)

in analogy to the bilayer tension of a planar bilayer as given by Eq. (A3) (Ghosh et al., 2019;
Sreekumari & Lipowsky, 2022).
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It is instructive to compare the mechanical bilayer tension Σ of a spherical vesicle as
defined by Eq. (A6) with the interfacial tension Σint of a spherical liquid-liquid interface.
The interfacial tension Σint can be defined in two ways: (i) Thermodynamically via an
expansion of the system’s free energy in powers of the system size; and (ii) Mechanically via
the work expended to increase the area of the interface. In order to reconcile the
mechanical and the thermodynamic route to interfacial tension, Gibbs dividing surfaces or
“surfaces of tension” have been considered (Buff, 1956; Boruvka & Neumann, 1977;
Rowlinson & Widom, 1989). As a consequence, one needs to solve two coupled equations
to determine both the interfacial tension Σint and the position r =Rint of the Gibbs dividing
surface. In contrast, our computational studies of bilayer tension Σ were based on the
mechanical definition of this tension as provided by Eqs. (A3) and (A6) which do not
involve a Gibbs dividing surface. However, to decompose the bilayer tension into two
leaflet tensions, we have to consider another surface, the midsurface of the lipid bilayer, the
computation of which is described in the following Appendix B (Rozycki & Lipowsky,
2015; Ghosh et al., 2019; Miettinen & Lipowsky, 2019; Sreekumari & Lipowsky, 2022).

Appendix B. Computation of leaflet tensions
The molecular interface between the two leaflets of a bilayer undergoes thermally excited
shape fluctuations as visualized in Fig. 12. The midsurface of such a lipid bilayer is defined
by the average position of this molecular interface. For a spherical nanovesicle, this average
position is described by the radial coordinate r= rmid. The leaflet tensions Σil and Σol of the
inner and outer leaflet are then computed by (Ghosh et al., 2019; Sreekumari & Lipowsky,
2022)

r s r r s rd ( ) and d ( ),il

r

ol
r

r

0

mid

mid

max

= =
(B1)

which represents the decomposition of the bilayer tension Σ in Eq. (A6) according to
Σ = Σil + Σol. The radius rmax is an appropriate upper cut-off for the integration. In practice,
one can reduce the integration over r to a small interval around the vesicle bilayer because
the stress profile s= s(r) decays rapidly to zero as we move away from this bilayer.

B.1 CHAIN protocol for computation of rmid
The simplest procedure to determine the midsurface radius r= rmid is provided by the CHAIN
protocol, which uses the local extremum of the hydrophobic chain density to obtain rmid. The
leaflet tension data in Fig. 11 have been obtained via this protocol. The data in Fig. 13a are
obtained for vesicle volume ν= 1, using N 90 400W

isp = for the initial number of interior
water beads. The data in Fig. 13b are computed for tensionless vesicle bilayers after slightly
deflating the vesicles to ν= ν0 < 1. For the five values of Nol displayed in Fig. 13b, the
nanovesicles attain OLT states with vanishing bilayer tension, Σ =Σil +Σol = 0, for rescaled
volumes ν0 within the range 0.966 ≤ ν0 ≤ 0.978. (Ghosh et al., 2019) All OLT states of the
nanovesicles are obtained from the reference state with tensionless leaflets by reshuffling lipids
from one leaflet to the other and adjusting the rescaled volume ν of the vesicle to ν= ν0.

B.2 VORON protocol for computation of rmid
The VORON protocol is based on Voronoi tesselation of all molecules or beads within the
simulation box. (Zamaletdinov et al., 2023) Voronoi tessellation assigns a polyhedral
Voronoi cell to each bead of the molecular model. The volumes of the inner and outer
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leaflets of the vesicle bilayer, Vil and Vol, are computed by summing up all bead volumes
located within each leaflet. The volumes per lipid of the inner and outer leaflets are then
obtained by dividing the leaflet volumes Vil and Vol by the number of lipids, Nil and Nol,
assembled in these leaflets.

To compute the radial coordinate r = rmid for the midsurface position of the vesicle
bilayer, we consider a cubic simulation box with volume L3, which is divided up into two
separate water compartments by the closed surface of the vesicle, the inner water com-
partment with volume ViW and the outer water compartment with volume VoW. The
midsurface radius r= rmid of the vesicle bilayer can then be computed using two geometric
relationships. The first geometric relationship has the form

r V V
4
3

,il imid
3

W= + (B2)

and relates the midsurface radius rmid to the volume Vil of the inner leaflet and the volume
ViW of the inner water compartment. The second geometric relationship is given by

r L V V
4
3

,o olmid
3 3

W= (B3)

which depends on the volume L3 of the simulation box, the volume VoW of the outer
water compartment, and the volume Vol of the outer leaflet. The two relationships in
Eqs. (B2) and B3 give identical values for rmid within the numerical accuracy (Zamaletdinov
et al., 2023).
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