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NETWORKS IN BIO-SYSTEMS

Activity Patterns on Scale-Free Networks

The biosphere contains many complex net-
works built up from rather different ele-
ments such as molecules, cells, organisms,
or machines. In spite of their diversity, these
networks exhibit some univeral features and
generic properties. The basic elements of
each network can be represented by nodes or
vertices.  Furthermore, any binary relation
between these elements can be described by connec-
tions or edges between these vertices as shown in Fig. 1. By
definition, the degree k of a given vertex is equal to the num-
ber of edges connected to it, i.e., to the number of direct
neighbors. Large networks containing many vertices can then
be characterized by their degree distribution, P(k), which rep-
resents the probability that a randomly chosen vertex has
degree k.

(b)

Fig. 1: Two examples for small scale-free networks: (a) Network with
scaling exponenty= 2 and minimal degree k, = 1. This network has a
tree-like structure and a small number of closed cycles; and (b) Network
with scaling exponent y=5/2 and minimal degree k,= 2 for which all
edges belong to closed cycles.

Scale-Free Degree Distributions
Many biological, social, and technological networks are
found to be scale-free in the sense that their degree distribu-
tion decays as

P(k) ~ 1/k" for k > ko
which defines the scaling exponent +y. Typical values for this
exponent are found to lie between 2 and 5/2. [1,2] As one
would expect naively, there are fewer vertices with a larger
number of connections. However, since the probability P(k)
decreases rather slowly with k, a large network with many
vertices always contains some high-degree vertices with a
large number of direct neighbors.

As an example, let us consider neural networks. The human
brain consists of about 100 billion nerve cells or neurons that
are interconnected to form a huge network. Each neuron can
be active by producing an action potential. If we were able to
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make a snapshot of the whole neural network, we would see,
at any moment in time, a certain pattern of active and inac-
tive neurons. If we combined many such snapshots into a
movie, we would find that this activity pattern changes con-
tinuously with time. At present, one cannot observe such
activity patterns on the level of single neurons, but modern
imaging techniques enable us to monitor coarse-grained pat-
terns with a reduced spatial resolution. Using functional
magnetic resonance imaging, for example, we can obtain
activity patterns of about 100 000 neural domains, each of
which contains about a million neurons.

These neural domains form another, coarse-grained network.
Each domain corresponds to a vertex of this network, and
each vertex can again be characterized by its degree k, i.e.,
by the number of connections to other vertices. It has been
recently concluded from magnetic resonance images that the
functional networks of neural domains are scale-free and
characterized by a degree distribution with scaling exponent
vy=2.1.

Dynamical Variables and Activity Patterns

In general, the elements of real networks are dynamic and
exhibit various properties that change with time. A more
detailed description of the network is then obtained in terms
of dynamical variables associated with each vertex of the
network. In many cases, these variables evolve fast com-
pared to changes in the network topology, which is therefore
taken to be time-independent. Two examples for such
dynamical processes are provided by neural networks that
can be characterized by firing and nonfiring neurons or by the
regulation of genetic networks that exhibit a changing pat-
tern of active and inactive genes. In these examples, each
dynamical variable can attain only two states (active or inac-
tive), and the configuration of all of these variables defines
the activity pattern of the network as shown in Fig. 2.

Fig. 2: Three subsequent snapshots of the activity pattern on a small
scale-free network with 31 vertices and 50 edges. The active and inac-
tive vertices are yellow and blue, respectively. For the initial pattern on
the left, about half of the vertices are inactive (blue); for the final pat-
tern on the right, almost all vertices are active (yellow). Each vertex of
the network has a certain degree which is equal to the number of con-
nections attached to it; this number is explicitly given for some nodes
on the left.



Local Majority Rules Dynamics

In collaboration with Haijun Zhou (now professor at ITP, CAS,
Beijing), we have recently started to theoretically study the
time evolution of such activity patterns. [3,4]1 We focused on
the presumably simplest dynamics as generated by a local
majority rule: If, at a certain time, most direct neighbors of a
certain vertex are active or inactive, this vertex will become
active or inactive at the next update of the pattern. This
dynamical rule leads to two fixed points corresponding to
two completely ordered patterns, the all-active pattern and
the all-inactive one. Each fixed point has a basin of attraction
consisting of all patterns that evolve towards this fixed point
for sufficiently long times. The boundary between the two
basins of attraction of the two fixed points represents the so-
called separatrix. One global characterization of the space of
activity patterns is the distance of a fixed point from the sep-
aratrix as measured by the smallest number of vertices one
has to switch from active to inactive (or vice versa) in order to
reach the basin of attraction of the other fixed point.

Distance Between Fixed Points and Separatrix

We found that, for scale-free networks, this distance corre-
sponds to selective switches of the high-degree vertices and
strongly depends on the scaling exponent . For a network
with N vertices, the number € of highly connected vertices
that one has to switch in the all-active (or all-inactive) pat-
tern in order to perturb this pattern beyond the separatrix
grows as Q = N/2° with £ = (y-1)/(y-2) and vanishes as an
essential singularity when the scaling exponent y approach-
es the value y = 2 from above. [3] If we used random rather
than selective switches, on the other hand, we would have to
switch of the order of N/2 vertices irrespective of the value
of y. Note that, in the limit in which the scaling exponent -y
becomes large, selective and random switching lead to the
same distance ). A low-dimensional cartoon of the high-
dimensional pattern space is shown in Fig. 3.
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Fig. 3: Two fixed points (red dots) and separatrix (orange line) between
their basins of attraction, (a) For large values of the scaling exponent
~y the separatrix is smooth; (b) As the scaling exponent is decreased
towards the value y = 2, the separatrix develops spikes which come
very close to the fixed points. These spikes correspond to the selective
switching of the high-degree vertices.
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Decay Times of Disordered Patterns

Another surprising feature of activity patterns on

scale-free networks is the evolution of strongly disordered
patterns that are initially close to the separatrix. These pat-
terns decay towards one of the two ordered patterns but the
corresponding decay time, i.e., the time it takes to reach
these fixed points, again depends strongly on the scaling
exponent .

We have developed a mean field theory that predicts qualita-
tively different behavior for y < 5/2 and y > 5/2. [3,4] For
2 <y < 5/2, strongly disordered patterns decay within a
finite decay time even in the limit of infinite networks. For
v >5/2, on the other hand, this decay time diverges logarith-
mically with the network size N. These mean field predic-
tions have been checked by extensive computer simulations
of two different ensembles of random scale-free networks
using both parallel (or synchronous) as well as random
sequential (or asynchronous) updating. [4] The two ensem-
bles consist of (i) multi-networks that typically contain many
self-connections and multiple edges and (i) simple-networks
without self-connections and multiple edges. For simple-net-
waorks, the simulations confirm the mean field results, see
Fig. 4. For multi-networks, it is more difficult to determine the
asymptotic behavior for large number of vertices since these
networks are governed by an effective, N-dependent scaling
exponent .« that exceeds y for finite values of N. [4]
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Fig. 4: Decay times for strongly disorderd patterns as a function of the
number, N, of vertices contained in simple-networks for random sequen-
tial updating. The minimal vertex degree k, was chosen in such a way
that the average degree is roughly equal for all values of the scaling
exponent-y In the limit of large N, the decay times attain a finite value
for~y < 5/2 but increase logarithmically with N for~y > 5/2.
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